## Math 128A: Numerical Analysis (Spring 2014)

Homework, Quizzes, and Programming Assignments:
HW QZ PA Date Problems, 9th Ed 8th Ed changes
1     Tue 01/28 1.1: 1c, 4a, 5, 14, 19, 28b
1.2: 1ah, 4c, 9, 12, 15cd, 16cd
1.1: 28b -> 1.1: 26
2 1   Tue 02/04 1.3: 1a, 6, 7, 16
2.1: 1, 10, 15
2.2: 3bd, 11abf

3     Tue 02/11 2.3: 6a, 8a, 16
2.4: 2a, 4a, 6
2.5: 1d, 5, 14a

4 2   Tue 02/18 2.6: 2b, 4b
3.1: 5a, 7a
3.2: 1a

3.1: 7a -> 3.1: 9a
3.2: 1a -> 3.1: 7a
5   1 (PDF, Solutions) Tue 02/25 3.3: 3a, 5a, 17
3.4: 2a, 4a, 9, 11a
3.5: 4c, 6c, 8c
4.1: 6a, 8a, 22, 29
3.3 -> 3.2
3.4 -> 3.3
3.5 -> 3.4
6 3   Tue 03/04 4.2: 1d, 2d, 8
4.3: 2a, 4a, 6a, 8a, 16
4.4: 2a, 4a, 26a

7   2 (PDF, Solutions) Tue 03/11 4.5: 2a, 4a, 13
4.6: 1ab, 9
4.7: 1ab, 2ab, 3ab, 4ab, 7, 8
4.8: 1a, 2a, 10

8 4   Tue 04/01 4.9: 2a, 4a, 6, 9
5.1: 1a, 4ac, 6
5.2: 2b, 4b, 9

9     Tue 04/08 5.3: 2b, 4b
5.4: 2b, 14b, 30, 31
5.9: 2c, 4b

10 5 3 (PDF, Solutions) Tue 04/15 5.5: 3bd, 4bd
5.6: 1ac, 4ac, 12
5.10: 1, 2, 5, 8

11     Tue 04/22 5.11: 9, 10, 12, 15
6.1: 5d, 10, 20ab
6.2: 2d, 4d, 31

12 6 4 (PDF, Solutions) Tue 04/29 6.3: 6a, 10, 18
6.4: 2b, 6, 8, 11
6.5: 2a, 4a, 6a, 8a, 11a
6.6: 2bc, 4b
6.3: 6a, 10, 18 -> 6.3: 2a, 6, 14
Syllabus:
Lec Date 9th Ed Section, Topic 8th Ed
1 Tue 01/21 1.1: Review of Calculus
1.2: Round-off Errors and Computer Arithmetic
1.1
1.2
2 Thu 01/23 1.3: Algorithms and Convergence 1.3
3 Tue 01/28 2.1: The Bisection Method
2.2: Fixed-Point Iteration
2.1
2.2
4 Thu 01/30 2.3: Newton's Method and Its Extensions 2.3
5 Tue 02/04 2.4: Error Analysis for Iterative Methods
2.5: Accelerating Convergence
2.4
2.5
6 Thu 02/06 2.6: Zeros of Polynomials and Müller's Method 2.6
7 Tue 02/11 3.1: Interpolations and the Lagrange Polynomial
3.2: Data Approximation and Neville's Method
3.1
3.1
8 Thu 02/13 3.3: Divided Differences
3.4: Hermite Interpolation
3.2
3.3
9 Tue 02/18 3.5: Cubic Spline Interpolation
4.1: Numerical Differentiation
3.4
4.1
10 Thu 02/20 4.2: Richardson's Extrapolation 4.2
11 Tue 02/25 4.3: Elements of Numerical Integration
4.4: Composite Numerical Integration
4.3
4.4
12 Thu 02/27 4.5: Romberg Integration
4.5
4.6
13 Tue 03/04 4.7: Gaussian Quadrature
4.8: Multiple Integrals
4.7
4.8
14 Thu 03/06 4.9: Improper Integrals 4.9
15 Tue 03/11 Review
16 Thu 03/13 Midterm Exam - In class, 4 LeConte, 9:30-11:00am
17 Tue 03/18 5.1: The Elementary Theory of Initial-Value Problems
5.2: Euler's Method
5.1
5.2
18 Thu 03/20 5.3: Higher-Order Taylor Methods 5.3
Spring Break 3/24-3/28 - No lectures
19 Tue 04/01 5.4: Runge-Kutta Methods
5.9: Higher-Order Equations and Systems of Differential Equations
5.4
5.9
20 Thu 04/03 5.5: Error Control and the Runge-Kutta-Fehlberg Method
5.6: Multistep Methods
5.5
5.6
21 Tue 04/08 5.7: Variable Step-Size Multistep Methods
5.10: Stability
5.7
5.10
22 Thu 04/10 5.11: Stiff Differential Equations 5.11
23 Tue 04/15 6.1: Linear Systems of Equations
6.2: Pivoting Strategies
6.1
6.2
24 Thu 04/17 6.3: Linear Algebra and Matrix Inversion 6.3
25 Tue 04/22 6.4: The Determinant of a Matrix
6.5: Matrix Factorization
6.4
6.5
26 Thu 04/24 6.6: Special Types of Matrices 6.6
27 Tue 04/29 Review
28 Thu 05/01 Review
Reading/Review/Recitation Week 5/5-5/9 - No lectures
Wed 05/14 Final Exam - 220 Hearst Gym, 11:30am-2:30pm
GSIs and Discussion Sections:
Sec Time Room GSI E-mail Office Office hours
101 Tue 8 - 9am B3A Evans C. Melgaard chrismelgaard@berkeley.edu 1039 Evans M 1-2pm, F 4-5pm
102 Tue 11 - 12pm B3A Evans D. Anderson davidanderson@berkeley.edu 737 Evans M 1:30-3:30pm
103 Tue 12 - 1pm B3A Evans D. Anderson davidanderson@berkeley.edu 737 Evans M 1:30-3:30pm
104 Tue 1 - 2pm B3A Evans M. Fortunato meiref@math.berkeley.edu 1065 Evans M 3:30-4:30pm, Th 4-5pm
105 Tue 2 - 3pm B3A Evans M. Pejic mpejic@math.berkeley.edu 824 Evans F 3-5pm
106 Tue 3 - 4pm B3A Evans M. Pejic mpejic@math.berkeley.edu 824 Evans F 3-5pm
107 Tue 4 - 5pm B3A Evans C. Melgaard chrismelgaard@berkeley.edu 1039 Evans M 1-2pm, F 4-5pm
108 Tue 5 - 6pm B3A Evans M. Fortunato meiref@math.berkeley.edu 1065 Evans M 3:30-4:30pm, Th 4-5pm
MATLAB Codes: Lecture 1: num2bin.m
Lecture 3: bisection.m, bisection_table.m
Lecture 3: fixedpoint.m, fixedpoint_table.m, fixedpoint_plot.m, fixedpoint_demo.m, newton.m, newton_table.m, newton_plot.m
Lecture 5: steffensen.m, steffensen_table.m, horner.m, muller.m, muller_table.m, muller_plot.m
Lecture 7: neville.m
Lecture 8: divideddifference.m
Lecture 9: ncspline.m, ccspline.m, splineeval.m, diffsplineeval.m, spline_demo.m
Lecture 9: diff_demo.m, rich_demo.m
Lecture 12: romberg.m