Lecture 14

Hessenberg/Tridiagonal Reduction

MIT 18.335J / 6.337J
Introduction to Numerical Methods

Per-Olof Persson (persson@mit.edu)
October 29, 2007

Introducing Zeros by Similarity Transformations

- Try computing the Schur factorization $A = Q T Q^*$ by applying Householder reflectors from left and right that introduce zeros:

- The right multiplication destroys the zeros previously introduced
- We already knew this would not work, because of Abel’s theorem
- However, the subdiagonal entries typically decrease in magnitude

The Hessenberg Form

- Instead, try computing an upper Hessenberg matrix H similar to A:

- This time the zeros we introduce are not destroyed
- Continue in a similar way with column 2:

Householder Reduction to Hessenberg

Algorithm: Householder Hessenberg

```
for k = 1 to m - 2
  x = A_{k+1,m,k}
  v_k = sign(x_i)||x|| e_1 + x
  v_k = v_k/||v_k||
  A_{k+1,m,k,m} = A_{k+1,m,k,m} - 2 v_k (v_k^T A_{k+1,m,k,m})
  A_{1,m,k+1,m} = A_{1,m,k+1,m} - 2 (A_{1,m,k+1,m} v_k^T v_k)
```

- Operation count (not twice Householder QR):

 $\sum_{k=1}^m 4(m-k)^2 + 4m(m-k) = 4m^3/3 + 4m^3 - 4m^3/2 = 10m^3/3$

- For hermitian A, operation count is twice QR divided by two $= 4m^3/3$

Stability of Householder Hessenberg

- The Householder Hessenberg reduction algorithm is backward stable:

 $\tilde{Q} H \tilde{Q}^* = A + \delta A$, $\frac{||\delta A||}{||A||} = O(\epsilon_{machine})$

 where \tilde{Q} is an exactly unitary matrix based on \tilde{v}_k