Real Symmetric Matrices

- We will only consider eigenvalue problems for real symmetric matrices
- Then $A = A^T \in \mathbb{R}^{m \times m}$, $x \in \mathbb{R}^m$, $x^* = x^T$, and $\|x\| = \sqrt{x^T x}$
- A then also has
 - real eigenvalues: $\lambda_1, \ldots, \lambda_m$
 - orthonormal eigenvectors: q_1, \ldots, q_m
- Eigenvectors are normalized $\|q_j\| = 1$, and sometimes the eigenvalues are ordered in a particular way
- Initial reduction to tridiagonal form assumed
 - Brings cost for typical steps down from $O(m^3)$ to $O(m)$

Rayleigh Quotient

- The Rayleigh quotient of $x \in \mathbb{R}^m$:
 $$ r(x) = \frac{x^T A x}{x^T x} $$
- For an eigenvector x, the corresponding eigenvalue is $r(x) = \lambda$
- For general x, $r(x) = \alpha$ that minimizes $\|A x - \alpha x\|_2$
- x eigenvector of A \iff $\nabla r(x) = 0$ with $x \neq 0$
- $r(x)$ is smooth and $\nabla r(q_j) = 0$, therefore quadratically accurate:
 $$ r(x) - r(q_j) = O(\|x - q_j\|^2) \quad \text{as} \; x \to q_j $$

Power Iteration

- Simple power iteration for largest eigenvalue:

 Algorithm: Power Iteration

 $v^{(0)}$ is some vector with $\|v^{(0)}\| = 1$
 for $k = 1, 2, \ldots$
 $$ w = A v^{(k-1)} \quad \text{apply} \; A $$
 $$ v^{(k)} = w / \|w\| \quad \text{normalize} $$
 $$ \lambda^{(k)} = (v^{(k)})^T A v^{(k)} \quad \text{Rayleigh quotient} $$

 - Termination conditions usually omitted

Convergence of Power Iteration

- Expand initial $v^{(0)}$ in orthonormal eigenvectors q_i, and apply A^k:
 $$ v^{(0)} = a_1 q_1 + a_2 q_2 + \cdots + a_m q_m $$
 $$ v^{(k)} = c_k A^k v^{(0)} $$

 - If $|\lambda_1| \geq |\lambda_2| \geq \cdots \geq |\lambda_m| \geq 0$ and $q_j^T v^{(0)} \neq 0$, this gives:
 $$ \|v^{(k)} - (\pm q_1)\| = O\left(\frac{\lambda_2}{\lambda_1}\right)^k, \quad |\lambda^{(k)} - \lambda_1| = O\left(\frac{\lambda_2}{\lambda_1}\right)^{2k} $$
 - Finds the largest eigenvalue (unless eigenvector orthogonal to $v^{(0)}$)
 - Linear convergence, factor $\approx \lambda_2 / \lambda_1$ at each iteration

Inverse Iteration

- Apply power iteration on $(A - \mu I)^{-1}$, with eigenvalues $(\lambda_j - \mu)^{-1}$

 Algorithm: Inverse Iteration

 $v^{(0)}$ is some vector with $\|v^{(0)}\| = 1$
 for $k = 1, 2, \ldots$
 $$ (A - \mu I) w = v^{(k-1)} \quad \text{for} \; w \quad \text{apply} \; (A - \mu I)^{-1} $$
 $$ v^{(k)} = w / \|w\| \quad \text{normalize} $$
 $$ \lambda^{(k)} = (v^{(k)})^T A v^{(k)} \quad \text{Rayleigh quotient} $$

 - Converges to eigenvector q_j if the parameter μ is close to λ_j:
 $$ \|v^{(k)} - (\pm q_j)\| = O\left(\frac{\mu - \lambda_j}{\mu - \lambda_K}\right)^k, \quad |\lambda^{(k)} - \lambda_j| = O\left(\frac{\mu - \lambda_j}{\mu - \lambda_K}\right)^{2k} $$

Rayleigh Quotient Iteration

- Parameter \(\mu \) is constant in inverse iteration, but convergence is better for \(\mu \) close to the eigenvalue
- Improvement: At each iteration, set \(\mu \) to last computed Rayleigh quotient

Algorithm: Rayleigh Quotient Iteration

\[
\begin{align*}
\epsilon^{(0)} &= \text{some vector with } \|\epsilon^{(0)}\| = 1 \\
\lambda^{(0)} &= (\epsilon^{(0)})^T A \epsilon^{(0)} = \text{corresponding Rayleigh quotient} \\
\text{for } k = 1, 2, \ldots \\
& \quad \text{Solve } (A - \lambda^{(k-1)} I) w = \epsilon^{(k-1)} \text{ for } w \quad \text{apply matrix} \\
& \quad v^{(k)} = w / \|w\| \quad \text{normalize} \\
& \quad \lambda^{(k)} = (v^{(k)})^T A v^{(k)} \quad \text{Rayleigh quotient}
\end{align*}
\]

Convergence of Rayleigh Quotient Iteration

- Cubic convergence in Rayleigh quotient iteration:
 \[
 \|v^{(k+1)} - (\pm q_j)\| = O(\|v^{(k)} - (\pm q_j)\|^3)
 \]
 and
 \[
 |\lambda^{(k+1)} - \lambda_j| = O(|\lambda^{(k)} - \lambda_j|^3)
 \]
- Proof idea: If \(v^{(k)} \) is close to an eigenvector, \(\|v^{(k)} - q_j\| \leq \epsilon \), then the accurate of the Rayleigh quotient estimate \(\lambda^{(k)} \) is \(|\lambda^{(k)} - \lambda_j| = O(\epsilon^2) \).
 One step of inverse iteration then gives
 \[
 \|v^{(k+1)} - q_j\| = O(|\lambda^{(k)} - \lambda_j| \|v^{(k)} - q_j\|) = O(\epsilon^3)
 \]

The QR Algorithm

- Remarkably simple algorithm: QR factorize and multiply in reverse order:

Algorithm: “Pure” QR Algorithm

\[
\begin{align*}
A^{(0)} &= A \\
\text{for } k = 1, 2, \ldots \\
Q^{(k)} R^{(k)} &= A^{(k-1)} \quad \text{QR factorization of } A^{(k-1)} \\
A^{(k)} &= R^{(k)} Q^{(k)} \quad \text{Recombine factors in reverse order}
\end{align*}
\]

- With some assumptions, \(A^{(k)} \) converge to a Schur form for \(A \) (diagonal if \(A \) symmetric)
- Similarity transformations of \(A \):
 \[
 A^{(k)} = R^{(k)} Q^{(k)} = (Q^{(k)})^T A^{(k-1)} Q^{(k)}
 \]

Unnormalized Simultaneous Iteration

- Define well-behaved basis for column space of \(V^{(k)} \) by \(\tilde{Q}^{(k)} \tilde{R}^{(k)} = V^{(k)} \)
- Make the assumptions:
 \- The leading \(n + 1 \) eigenvalues are distinct
 \- All principal leading principal submatrices of \(\tilde{Q}^T V^{(0)} \) are nonsingular, where columns of \(\tilde{Q} \) are \(q_1, \ldots, q_n \)

We then have that the columns of \(\tilde{Q}^{(k)} \) converge to eigenvectors of \(A \):

\[
\|q_j^{(k)} - \pm q_j\| = O(C^k)
\]

where \(C = \max_{1 \leq k \leq n} |\lambda_{k+1}| / |\lambda_k| \)

- Proof. Textbook / Black board

Unnormalized Simultaneous Iteration

- To understand the QR algorithm, first consider a simpler algorithm
- Simultaneous Iteration is power iteration applied to several vectors
- Start with linearly independent \(v_1^{(0)}, \ldots, v_n^{(0)} \)
- We know from power iteration that \(A \) converge to eigenvectors of \(A^{(k)} \)
- With some assumptions, the space \(\langle A^{(k)} v_1^{(0)}, \ldots, A^{(k)} v_n^{(0)} \rangle \) should converge to \(q_1, \ldots, q_n \)
- Notation: Define initial matrix \(V^{(0)} \) and matrix \(V^{(k)} \) at step \(k \):

\[
V^{(0)} = \begin{bmatrix}
v_1^{(0)} & \cdots & v_n^{(0)}
\end{bmatrix}, \quad V^{(k)} = A^{(k)} V^{(0)} = \begin{bmatrix}
v_1^{(k)} & \cdots & v_n^{(k)}
\end{bmatrix}
\]

Simultaneous Iteration

- The matrices \(V^{(k)} = A^{(k)} V^{(0)} \) are highly ill-conditioned
- Orthonormalize at each step rather than at the end:

Algorithm: Simultaneous Iteration

\[
Pick \hat{Q}^{(0)} \in \mathbb{R}^{m \times n} \\
\text{for } k = 1, 2, \ldots \\
Z = A^{(k-1)} \hat{Q}^{(k-1)} \\
\hat{Q}^{(k)} \hat{R}^{(k)} = Z \quad \text{Reduced QR factorization of } Z
\]

- The column spaces of \(\hat{Q}^{(k)} \) and \(Z^{(k)} \) are both equal to the column space of \(A^{(k)} \hat{Q}^{(0)} \), therefore same convergence as before
Simultaneous Iteration ↔ QR Algorithm

- The QR algorithm is equivalent to simultaneous iteration with $Q^{(0)} = I$
- Notation: Replace $R^{(k)}$ by $R^{(k)}$, and $Q^{(k)}$ by $Q^{(k)}$

Simultaneous Iteration:

$Q^{(0)} = I$
$Z = A Q^{(k-1)}$
$Z = Q^{(k)} R^{(k)}$
$A^{(k)} = (Q^{(k)})^T A Q^{(k)}$

Unshifted QR Algorithm:

$A^{(0)} = A$
$A^{(k-1)} = Q^{(k)} R^{(k)}$
$A^{(k)} = R^{(k)} Q^{(k)}$
$Q^{(k)} = Q^{(k)} Q^{(2)} \ldots Q^{(k)}$

- Also define $R^{(k)} = R^{(k)} R^{(k-1)} \ldots R^{(1)}$
- Now show that the two processes generate same sequences of matrices

Simultaneous Iteration ↔ QR Algorithm

- Both schemes generate the QR factorization $A^k = Q^{(k)} R^{(k)}$ and the projection $A^{(k)} = (Q^{(k)})^T A Q^{(k)}$
- Proof. $k = 0$ trivial for both algorithms.
 For $k \geq 1$ with simultaneous iteration, $A^{(k)}$ is given by definition, and

 $A^k = AQ^{(k-1)} R^{(k-1)} = Q^{(k)} R^{(k)} R^{(k-1)} = Q^{(k)} R^{(k)}$

 For $k \geq 1$ with unshifted QR, we have

 $A^k = AQ^{(k-1)} R^{(k-1)} = Q^{(k-1)} A^{(k-1)} R^{(k-1)} = Q^{(k)} R^{(k)}$

 and

 $A^{(k)} = (Q^{(k)})^T A^{(k-1)} Q^{(k)} = (Q^{(k)})^T A Q^{(k)}$