MIT 18.335, Fall 2007: Midterm

November 7, 2007

Name: ________________________________

- Do all of the 8 problems
- Justify your answers
- Exam time 90 minutes

<table>
<thead>
<tr>
<th>Grading</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 / 10</td>
</tr>
<tr>
<td>2 / 10</td>
</tr>
<tr>
<td>3 / 10</td>
</tr>
<tr>
<td>4 / 10</td>
</tr>
<tr>
<td>5 / 15</td>
</tr>
<tr>
<td>6 / 15</td>
</tr>
<tr>
<td>7 / 15</td>
</tr>
<tr>
<td>8 / 15</td>
</tr>
<tr>
<td>/100</td>
</tr>
</tbody>
</table>
1. (10 points)

(a) Give the definition of induced matrix norms.

(b) Prove the inequality $\|AB\| \leq \|A\| \cdot \|B\|$ for induced matrix norms.

(c) Suppose A has right singular vectors v_i^A and B has left singular vectors u_i^B. Give a sufficient condition on these vectors to achieve the equality $\|AB\|_2 = \|A\|_2 \cdot \|B\|_2$.
2. (10 points)

(a) Give the definition of a projector.

(b) *Onto* which space does a projector P project, and *along* which space does it project? Give brief motivations.

(c) Find the projector P that projects onto the space $\{(2, 1)\}$ along the space $\{(3, -1)\}$.
3. (10 points)

Use Gram-Schmidt orthogonalization to find a reduced QR factorization of the matrix

\[
A = \begin{bmatrix}
0 & \sqrt{2} \\
1 & 4 \\
1 & 2
\end{bmatrix}
\]
4. (10 points)

In many algorithms, we use Householder reflectors of the form

\[F = I - 2 \frac{vv^*}{v^*v}, \quad \text{where} \quad v = \text{sign}(x_1)\|x\|e_1 + x. \]

(a) Show algebraically that \(F \) is unitary.

(b) What are the eigenvalues of \(F \)?

(c) Describe with a simple drawing the effect of applying the reflector \(F \) on \(x \), and explain the choice of sign in the expression for \(v \).
5. (15 points)

The following algorithm is implemented on a computer satisfying the two usual floating point axioms:

Data $x_1, x_2 \in \mathbb{C}$, solution $(x_1 + 1)/x_2$, computed as $(\text{fl}(x_1) \oplus 1) \odot \text{fl}(x_2)$.

State if it is backward stable, stable but not backward stable, or unstable, and show why. For perturbed data, determine the coefficients of first order terms, such as in “$|\epsilon| \leq k\epsilon_{\text{machine}} + O(\epsilon_{\text{machine}}^2)$”.
6. (15 points)

For each of the following statements, determine if it is true or false, and justify your answer. \(A \in \mathbb{C}^{m \times m} \).

(a) If \(v \) and \(w \) are linearly independent, \(A = vv^* + ww^* \) has rank 2.

(b) In MATLAB, \(\left(1/0\right) + \left(1/(-0)\right) \) returns NaN.

(c) If \(A \) has upper and lower bandwidth \(p \) and it has an LU factorization with partial pivoting \(PA = LU \), then \(U \) has upper bandwidth \(p \).

(d) If \(A \) is hermitian, it has a Cholesky factorization \(A = R^*R \).

(e) If all eigenvalues of \(A \) are distinct, it has an eigenvalue decomposition \(A = X\Lambda X^{-1} \).
Consider the following algorithm applied to an m-by-m matrix A:

$$B = A$$

for $k = 1$ to m

$$x = B_{k:m,k}$$
$$v_k = \text{sign}(x_1)\|x\|_2 e_1 + x$$
$$v_k = v_k / \|v_k\|_2$$
$$B_{k:m,k:m} = B_{k:m,k:m} - 2v_k (v_k^* B_{k:m,k:m})$$
$$x = B_{k,k+1:m}^T$$
$$w_k = \text{sign}(x_1)\|x\|_2 e_1 + x$$
$$w_k = w_k / \|w_k\|_2$$
$$B_{k:m,k+1:m} = B_{k:m,k+1:m} - 2(B_{k:m,k+1:m} w_k) w_k^*$$

(a) What does the algorithm do, and what is the structure of B?

(b) How are the singular values of B related to those of A?

(c) Give the operation count of the algorithm (leading term only).
8. (15 points)

(a) Describe an iterative algorithm (in pseudo-code) for computing $\|A\|_2$ for an m-by-n matrix A, which only uses A in the form of matrix-vector products Ax and A^*y.

(b) State under which conditions your algorithm converges, and at which rate (in terms of appropriate properties of A).