Chapter 1
 Mathematical Preliminaries and Error Analysis

Per-Olof Persson
persson@berkeley.edu

Department of Mathematics
University of California, Berkeley
Math 128A Numerical Analysis

Limits and Continuity

Definition

A function f defined on a set X of real numbers has the limit L at x_{0}, written $\lim _{x \rightarrow x_{0}} f(x)=L$, if, given any real number $\varepsilon>0$, there exists a real number $\delta>0$ such that

$$
|f(x)-L|<\varepsilon, \quad \text { whenever } \quad x \in X \text { and } 0<\left|x-x_{0}\right|<\delta .
$$

Definition

Let f be a function defined on a set X of real numbers and $x_{0} \in X$. Then f is continuous at x_{0} if

$$
\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)
$$

The function f is continuous on the set X if it is continuous at each number in X.

Limits of Sequences

Definition

Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be an infinite sequence of real of complex numbers. The sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ has the limit x if, for any $\varepsilon>0$, there exists a positive integer $N(\varepsilon)$ such that $\left|x_{n}-x\right|<\varepsilon$, whenever $n>N(\varepsilon)$. The notation

$$
\lim _{n \rightarrow \infty} x_{n}=x, \text { or } x_{n} \rightarrow x \text { as } n \rightarrow \infty
$$

means that the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges to x.

Theorem

If f is a function defined on a set X of real numbers and $x_{0} \in X$, then the following statements are equivalent:

1. f is continuous at x_{0};
2. If the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ in X converges to x_{0}, then $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f\left(x_{0}\right)$.

Derivatives

Definition

Let f be a function defined in an open interval containing x_{0}. The function f is differentiable at x_{0} if

$$
f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

exists. The number $f^{\prime}\left(x_{0}\right)$ is called the derivative of f at x_{0}. A function that has a derivative at each number in a set X is differentiable on X.

Theorem

If the function f is differentiable at x_{0}, then f is continuous at x_{0}.

Derivative Theorems

Theorem (Rolle's Theorem)

Suppose $f \in C[a, b]$ and f is differentiable on (a, b). If $f(a)=f(b)$, then a number c in (a, b) exists with $f^{\prime}(c)=0$.

Theorem (Mean Value Theorem)

If $f \in C[a, b]$ and f is differentiable on (a, b), then a number c in (a, b) exists with

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Theorem (Extreme Value Theorem)

If $f \in C[a, b]$, then $c_{1}, c_{2} \in[a, b]$ exist with $f\left(c_{1}\right) \leq f(x) \leq f\left(c_{2}\right)$, for all $x \in[a, b]$. In addition, if f is differentiable on (a, b), then the numbers c_{1} and c_{2} occur either at the endpoints of $[a, b]$ or where f^{\prime} is zero.

Integrals

Definition

The Riemann integral of the function f on the interval $[a, b]$ is the following limit, provided it exists:

$$
\int_{a}^{b} f(x) d x=\lim _{\max \Delta x_{i} \rightarrow 0} \sum_{i=1}^{n} f\left(z_{i}\right) \Delta x_{i}
$$

where the numbers $x_{0}, x_{1}, \ldots, x_{n}$ satisfy
$a=x_{0} \leq x_{1} \leq \cdots \leq x_{n}=b$, and where $\Delta x_{i}=x_{i}-x_{i-1}$, for each $i=1,2, \ldots, n$, and z_{i} is arbitrarily chosen in the interval $\left[x_{i-1}, x_{i}\right]$.

Integrals

Theorem (Weighted Mean Value Theorem for Integrals)

Suppose $f \in C[a, b]$, the Riemann integral of g exists on $[a, b]$, and $g(x)$ does not change sign on $[a, b]$. Then there exists a number c in (a, b) with

$$
\int_{a}^{b} f(x) g(x) d x=f(c) \int_{a}^{b} g(x) d x
$$

Generalizations

Theorem (Generalized Rolle's Theorem)

Suppose $f \in C[a, b]$ is n times differentiable on (a, b). If $f(x)$ is zero at the $n+1$ distinct numbers x_{0}, \ldots, x_{n} in $[a, b]$, then a number c in (a, b) exists with $f^{(n)}(c)=0$.

Theorem (Intermediate Value Theorem)

If $f \in C[a, b]$ and K is any number between $f(a)$ and $f(b)$, then there exists a number c in (a, b) for which $f(c)=K$.

Taylor Polynomials

Theorem (Taylor's Theorem)

Suppose $f \in C^{n}[a, b]$, that $f^{(n+1)}$ exists on $[a, b]$, and $x_{0} \in[a, b]$. For every $x \in[a, b]$, there exists a number $\xi(x)$ between x_{0} and x with $f(x)=P_{n}(x)+R_{n}(x)$, where

$$
\begin{aligned}
P_{n}(x) & =f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+ \\
& +\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}=\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}
\end{aligned}
$$

and

$$
R_{n}(x)=\frac{f^{(n+1)}(\xi(x))}{(n+1)!}\left(x-x_{0}\right)^{n+1}
$$

IEEE Floating Point Numbers

Long real (double precision) format

- Widely adopted standard
- Default data type in MATLAB, "double" in C
- Base 2, 1 sign bit, 11 exponent bits, 52 significand bits:

x	xxxxxxxxxxx	$\mathrm{xxx} \cdots$	$(52$ total bits) $\cdots \mathrm{xxx}$
s	c	f	

- Represented number:

$$
(-1)^{s} 2^{c-1023}(1+f)
$$

Decimal Floating-Point Numbers

Base-10 Floating-Point

- For simplicity we study k-digit decimal machine numbers:

$$
\pm 0 . d_{1} d_{2} \ldots d_{k} \times 10^{n}, \quad 1 \leq d_{1} \leq 9, \quad 0 \leq d_{i} \leq 9
$$

- Any positive number within the range can be written:

$$
y=0 . d_{1} d_{2} \cdots d_{k} d_{k+1} d_{k+2} \cdots \times 10^{n}
$$

- Two ways to represent y with k digits:
- Chopping: Chop off after k digits:

$$
f l(y)=0 . d_{1} d_{2} \ldots d_{k} \times 10^{n}
$$

- Rounding: Add $5 \times 10^{n-(k+1)}$ and chop:

$$
f l(y)=0 . \delta_{1} \delta_{2} \ldots \delta_{k} \times 10^{n}
$$

Errors and Significant Digits

Definition

If p^{*} is an approximation to p, the absolute error is $\left|p-p^{*}\right|$, and the relative error is $\left|p-p^{*}\right| /|p|$, provided that $p \neq 0$.

Definition

The number p^{*} is said to approximate p to t significant digits (or figures) if t is the largest nonnegative integer for which

$$
\frac{\left|p-p^{*}\right|}{|p|} \leq 5 \times 10^{-t}
$$

Floating Point Operations

Finite-Digit Arithmetic

- Machine addition, subtraction, multiplication, and division:

$$
\begin{array}{ll}
x \oplus y=f l(f l(x)+f l(y)), & x \otimes y=f l(f l(x) \times f l(y)) \\
x \ominus y=f l(f l(x)-f l(y)), & x \oslash y=f l(f l(x) / f l(y))
\end{array}
$$

- "Round input, perform exact arithmetic, round the result"

Cancellation

- Common problem: Subtraction of nearly equal numbers:

$$
\begin{aligned}
& f l(x)=0 . d_{1} d_{2} \ldots d_{p} \alpha_{p+1} \alpha_{p+2} \ldots \alpha_{k} \times 10^{n} \\
& f l(y)=0 . d_{1} d_{2} \ldots d_{p} \beta_{p+1} \beta_{p+2} \ldots \beta_{k} \times 10^{n}
\end{aligned}
$$

gives fewer digits of significance:

$$
f l(f l(x)-f l(y))=0 . \sigma_{p+1} \sigma_{p+2} \ldots \sigma_{k} \times 10^{n-p}
$$

Error Growth and Stability

Definition

Suppose $E_{0}>0$ is an initial error, and E_{n} is the error after n operations.

- $E_{n} \approx C n E_{0}$: linear growth of error
- $E_{n} \approx C^{n} E_{0}$: exponential growth of error

Stability

- Stable algorithm: Small changes in the initial data produce small changes in the final result
- Unstable or conditionally stable algorithm: Large errors in final result for all or some initial data with small errors

Rate of Convergence (Sequences)

Definition

Suppose $\left\{\beta_{n}\right\}_{n=1}^{\infty}$ is a sequence converging to zero, and $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ converges to a number α. If a positive constant K exists with

$$
\left|\alpha_{n}-\alpha\right| \leq K\left|\beta_{n}\right|, \quad \text { for large } n,
$$

then we say that $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ converges to α with rate of convergence $O\left(\beta_{n}\right)$, indicated by $\alpha_{n}=\alpha+O\left(\beta_{n}\right)$.

Polynomial rate of convergence

- Normally we will use

$$
\beta_{n}=\frac{1}{n^{p}}
$$

and look for the largest value $p>0$ such that $\alpha_{n}=\alpha+O\left(1 / n^{p}\right)$.

Rate of Convergence (Functions)

Definition

Suppose that $\lim _{h \rightarrow 0} G(h)=0$ and $\lim _{h \rightarrow 0} F(h)=L$. If a positive constant K exists with

$$
|F(h)-L| \leq K|G(h)|, \quad \text { for sufficiently small } h
$$ then we write $F(h)=L+O(G(h))$.

Polynomial rate of convergence

- Normally we will use

$$
G(h)=h^{p}
$$

and look for the largest value $p>0$ such that $F(h)=L+O\left(h^{p}\right)$.

