Chapter 2 Solutions of Equations in One Variable

Per-Olof Persson persson@berkeley.edu

Department of Mathematics University of California, Berkeley

Math 128A Numerical Analysis

The Bisection Method

- $\bullet\,$ Suppose f continuous on [a,b], and f(a),f(b) opposite signs
- By the IVT, there exists an x in (a,b) with f(x) = 0
- $\bullet\,$ Divide the interval [a,b] by computing the midpoint

$$p = (a+b)/2$$

- $\bullet~\mbox{If }f(p)$ has same sign as f(a), consider new interval [p,b]
- If f(p) has same sign as f(b), consider new interval $\left[a,p\right]$
- Repeat until interval small enough to approximate x well

MATLAB Implementation

```
function p = bisection(f, a, b, tol)
% Solve f(p) = 0 using the bisection method.
while 1
    p = (a+b) / 2;
    if p-a < tol, break; end
    if f(a)*f(p) > 0
        a = p;
    else
        b = p;
    end
end
```

Termination Criteria

• Many ways to decide when to stop:

$$\begin{split} |p_N-p_{N-1}| &< \varepsilon \\ \frac{|p_N-p_{N-1}|}{|p_N|} &< \varepsilon \\ &|f(p_N)| &< \varepsilon \end{split}$$

• None is perfect, use a combination in real software

Theorem

Suppose that $f\in C[a,b]$ and $f(a)\cdot f(b)<0.$ The Bisection method generates a sequence $\{p_n\}_{n=1}^\infty$ approximating a zero p of f with

$$|p_n-p| \leq \frac{b-a}{2^n}, \qquad \text{when } n \geq 1.$$

Convergence Rate

• The sequence $\{p_n\}_{n=1}^\infty$ converges to p with rate of convergence $O(1/2^n)$:

$$p_n = p + O\left(\frac{1}{2^n}\right).$$

Fixed Points and Root-Finding

- A number p is a *fixed point* for a given function g if g(p) = p
- Given a root-finding problem f(p) = 0, there are many g with fixed points at p:

$$g(x) = x - f(x)$$
$$g(x) = x + 3f(x)$$

 $\bullet\,$ If g has fixed point at p, then f(x)=x-g(x) has a zero at p

...

Theorem

- a. If $g\in C[a,b]$ and $g(x)\in [a,b]$ for all $x\in [a,b],$ then g has a fixed point in [a,b]
- b. If, in addition, $g^\prime(x)$ exists on (a,b) and a positive constant k<1 exists with

$$|g'(x)| \le k, \qquad \text{for all } x \in (a,b),$$

then the fixed point in [a, b] is unique.

Fixed-Point Iteration

Fixed-Point Iteration

- \bullet For initial $p_0,$ generate sequence $\{p_n\}_{n=0}^\infty$ by $p_n=g(p_{n-1}).$
- If the sequence converges to p, then

$$p = \lim_{n \to \infty} p_n = \lim_{n \to \infty} g(p_{n-1}) = g\left(\lim_{n \to \infty} p_{n-1}\right) = g(p).$$

MATLAB Implementation

```
function p = fixedpoint(g, p0, tol)
% Solve g(p) = p using fixed-point iteration.
```

```
while 1
    p = g(p0);
    if abs(p-p0) < tol, break; end
    p0 = p;
end</pre>
```

Convergence of Fixed-Point Iteration

Theorem (Fixed-Point Theorem)

Let $g\in C[a,b]$ be such that $g(x)\in [a,b],$ for all x in [a,b]. Suppose, in addition, that g' exists on (a,b) and that a constant 0< k<1 exists with

 $|g'(x)| \leq k, \qquad \text{for all } x \in (a,b).$

Then, for any number p_0 in [a,b], the sequence defined by $p_n=g(p_{n-1})$ converges to the unique fixed point p in [a,b].

Corollary

If g satisfies the hypotheses above, then bounds for the error are given by

$$\begin{split} |p_n-p| &\leq k^n \max\{p_0-a,b-p_0\} \\ |p_n-p| &\leq \frac{k^n}{1-k} |p_1-p_0| \end{split}$$

Newton's Method

Taylor Polynomial Derivation

Suppose $f \in C^2[a, b]$ and $p_0 \in [a, b]$ approximates solution p of f(x) = 0 with $f'(p_0) \neq 0$. Expand f(x) about p_0 :

$$f(p) = f(p_0) + (p - p_0)f'(p_0) + \frac{(p - p_0)^2}{2}f''(\xi(p))$$

Set $f(\boldsymbol{p})=0$, assume $(\boldsymbol{p}-\boldsymbol{p}_0)^2$ negligible:

$$p\approx p_1=p_0-\frac{f(p_0)}{f'(p_0)}$$

This gives the sequence $\{p_n\}_{n=0}^\infty$:

$$p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}$$

MATLAB Implementation

```
function p = newton(f, df, p0, tol)
% Solve f(p) = 0 using Newton's method.
```

```
while 1
    p = p0 - f(p0)/df(p0);
    if abs(p-p0) < tol, break; end
    p0 = p;
end</pre>
```

Fixed Point Formulation

Newton's method is fixed point iteration $p_n = g(p_{n-1})$ with

$$g(x) = x - \frac{f(x)}{f'(x)}$$

Theorem

Let $f \in C^2[a, b]$. If $p \in [a, b]$ is such that f(p) = 0 and $f'(p) \neq 0$, then there exists a $\delta > 0$ such that Newton's method generates a sequence $\{p_n\}_{n=1}^{\infty}$ converging to p for any initial approximation $p_0 \in [p - \delta, p + \delta]$.

The Secant Method

Replace the derivative in Newton's method by

$$f'(p_{n-1}) \approx \frac{f(p_{n-2}) - f(p_{n-1})}{p_{n-2} - p_{n-1}}$$

to get

$$p_n = p_{n-1} - \frac{f(p_{n-1})(p_{n-1}-p_{n-2})}{f(p_{n-1}) - f(p_{n-2})}$$

The Method of False Position (Regula Falsi)

Like the Secant method, but with a test to ensure the root is bracketed between iterations.

Order of Convergence

Definition

Suppose $\{p_n\}_{n=0}^\infty$ is a sequence that converges to p, with $p_n\neq p$ for all n. If positive constants λ and α exist with

$$\lim_{n\to\infty}\frac{|p_{n+1}-p|}{|p_n-p|^\alpha}=\lambda,$$

then $\{p_n\}_{n=0}^{\infty}$ converges to p of order α , with asymptotic error constant λ .

An iterative technique $p_n = g(p_{n-1})$ is said to be of order α if the sequence $\{p_n\}_{n=0}^{\infty}$ converges to the solution p = g(p) of order α .

Special cases

- If $\alpha = 1$ (and $\lambda < 1$), the sequence is *linearly convergent*
- If $\alpha = 2$, the sequence is *quadratically convergent*

Theorem

Let $g \in C[a, b]$ be such that $g(x) \in [a, b]$, for all $x \in [a, b]$. Suppose g' is continuous on (a, b) and that 0 < k < 1 exists with $|g'(x)| \leq k$ for all $x \in (a, b)$. If $g'(p) \neq 0$, then for any number p_0 in [a, b], the sequence $p_n = g(p_{n-1})$ converges only linearly to the unique fixed point p in [a, b].

Theorem

Let p be solution of x=g(x). Suppose g'(p)=0 and g'' continuous with |g''(x)| < M on open interval I containing p. Then there exists $\delta>0$ s.t. for $p_0 \in [p-\delta,p+\delta]$, the sequence defined by $p_n=g(p_{n-1})$ converges at least quadratically to p, and

$$|p_{n+1}-p| < \frac{M}{2} |p_n-p|^2.$$

Derivation

Seek \boldsymbol{g} of the form

$$g(x) = x - \phi(x)f(x).$$

Find differentiable ϕ giving g'(p)=0 when $f(p)=0{:}$

$$\begin{split} g'(x) &= 1 - \phi'(x) f(x) - f'(x) \phi(x) \\ g'(p) &= 1 - \phi'(p) \cdot 0 - f'(p) \phi(p) \end{split}$$

and g'(p)=0 if and only if $\phi(p)=1/f'(p).$ This gives Newton's method

$$p_n = g(p_{n-1}) = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}$$

Multiplicity of Zeros

Definition

A solution p of f(x) = 0 is a zero of multiplicity m of f if for $x \neq p$, we can write $f(x) = (x - p)^m q(x)$, where $\lim_{x \to p} q(x) \neq 0$.

Theorem

 $f\in C^1[a,b]$ has a simple zero at p in (a,b) if and only if f(p)=0, but $f'(p)\neq 0.$

Theorem

The function $f\in C^m[a,b]$ has a zero of multiplicity m at point p in (a,b) if and only if

$$0=f(p)=f'(p)=f''(p)=\cdots=f^{(m-1)}(p), \text{ but } f^{(m)}(p)\neq 0.$$

Newton's Method for Multiple Roots

Define $\mu(x)=f(x)/f'(x).$ If p is a zero of f of multiplicity m and $f(x)=(x-p)^mq(x),$ then

$$\mu(x)=(x-p)\frac{q(x)}{mq(x)+(x-p)q'(x)}$$

also has a zero at p. But $q(p)\neq 0,$ so

$$\frac{q(p)}{mq(p)+(p-p)q'(p)}=\frac{1}{m}\neq 0,$$

and p is a simple zero of $\mu.$ Newton's method can then be applied to μ to give

$$g(x) = x - \frac{f(x)f'(x)}{[f'(x)]^2 - f(x)f''(x)}$$

Aitken's Δ^2 Method

Accelerating linearly convergent sequences

- \bullet Suppose $\{p_n\}_{n=0}^\infty$ linearly convergent with limit p
- Assume that

$$\frac{p_{n+1}-p}{p_n-p}\approx \frac{p_{n+2}-p}{p_{n+1}-p}$$

 \bullet Solving for p gives

$$p\approx \frac{p_{n+2}p_n-p_{n+1}^2}{p_{n+2}-2p_{n+1}+p_n}=\cdots=p_n-\frac{(p_{n+1}-p_n)^2}{p_{n+2}-2p_{n+1}+p_n}$$

• Use this for new more rapidly converging sequence $\{\hat{p}_n\}_{n=0}^\infty$:

$$\hat{p}_n = p_n - \frac{(p_{n+1}-p_n)^2}{p_{n+2}-2p_{n+1}+p_n}$$

Definition

For a given sequence $\{p_n\}_{n=0}^\infty,$ the forward difference Δp_n is defined by

$$\Delta p_n = p_{n+1} - p_n, \qquad \text{for } n \geq 0$$

Higher powers of the operator Δ are defined recursively by

$$\Delta^k p_n = \Delta(\Delta^{k-1} p_n), \qquad \text{for } k \geq 2$$

Aitken's Δ^2 method using delta notation

Since $\Delta^2 p_n = p_{n+2} - 2p_{n+1} + p_n$, we can write

$$\hat{p}_n = p_n - \frac{(\Delta p_n)^2}{\Delta^2 p_n}, \qquad \text{for } n \geq 0$$

Theorem

Suppose that $\{p_n\}_{n=0}^\infty$ converges linearly to p and that

$$\lim_{n\to\infty}\frac{p_{n+1}-p}{p_n-p}<1$$

Then $\{\hat{p}_n\}_{n=0}^\infty$ converges to p faster than $\{p_n\}_{n=0}^\infty$ in the sense that

$$\lim_{n \to \infty} \frac{\hat{p}_n - p}{p_n - p} = 0$$

Accelerating fixed-point iteration

Aitken's Δ^2 method for fixed-point iteration gives

$$\begin{split} p_0, \ p_1 &= g(p_0), \ p_2 &= g(p_1), \ \hat{p}_0 = \{\Delta^2\}(p_0), \\ p_3 &= g(p_2), \ \hat{p}_1 = \{\Delta^2\}(p_1), \ \dots \end{split}$$

Steffensen's method assumes \hat{p}_0 is better than p_2 :

$$\begin{split} p_0^{(0)}, \ p_1^{(0)} &= g(p_0^{(0)}), \ p_2^{(0)} &= g(p_1^{(0)}), \ p_0^{(1)} &= \{\Delta^2\}(p_0^{(0)}), \\ p_1^{(1)} &= g(p_0^{(1)}), \ \dots \end{split}$$

Theorem

Suppose x = g(x) has solution p with $g'(p) \neq 1$. If exists $\delta > 0$ s.t. $g \in C^3[p - \delta, p + \delta]$, then Steffensen's method gives quadratic convergence for $p_0 \in [p - \delta, p + \delta]$.

MATLAB Implementation

```
function p = steffensen(g, p0, tol)
% Solve g(p) = p using Steffensen's method.
```

```
while 1
    p1 = g(p0);
    p2 = g(p1);
    p = p0 - (p1-p0)^2 / (p2-2*p1+p0);
    if abs(p-p0) < tol, break; end
    p0 = p;
end</pre>
```

Zeros of Polynomials

Polynomial

A polynomial of degree n has the form $P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ with coefficients a_i and $a_n \neq 0$.

Theorem (Fundamental Theorem of Algebra)

If P(x) polynomial of degree $n\geq 1,$ with real or complex coefficients, P(x)=0 has at least one root.

Corollary

Exists unique
$$x_1, \ldots, x_k$$
 and m_1, \ldots, m_k , with $\sum_{i=1}^k m_i = n$ and

$$P(x) = a_n (x-x_1)^{m_1} (x-x_2)^{m_2} \cdots (x-x_k)^{m_k}.$$

Corollary

P(x),Q(x) polynomials of degree at most n. If $P(x_i)=Q(x_i)$ for $i=1,2,\ldots,k,$ with k>n, then P(x)=Q(x).

Horner's Method

Theorem (Horner's Method)

Let
$$P(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0.$$
 If $b_n=a_n$ and

$$b_k=a_k+b_{k+1}x_0,\qquad \text{for }k=n-1,n-2,\ldots,1,0,$$

then $b_0 = P(x_0)$. Moreover, if

$$Q(x) = b_n x^{n-1} + b_{n-1} x^{n-2} + \dots + b_2 x + b_1,$$

 $\text{then }P(x)=(x-x_0)Q(x)+b_0.$

Computing Derivatives

Differentiation gives

$$P'(x) = Q(x) + (x-x_0)Q'(x) \qquad \text{and} \qquad P'(x_0) = Q(x_0).$$

MATLAB Implementation

```
function [y, z] = horner(a, x0)
% Evaluate polynomial:
% P(x) = a(1)x^n + a(2)x^{(n-1)} + ... + a(n)x + a(n+1)
% and its derivative at x0 using Horner's method.
% Outputs: y = P(x0), z = P'(x0).
n = length(a) - 1;
y = a(1);
z = a(1);
for j = 2:n
   y = x0*y + a(j);
   z = x0*z + y;
end
y = x0*y + a(n+1);
```

Deflation

 \bullet Compute approximate root \hat{x}_1 using Newton. Then

$$P(x) \approx (x - \hat{x}_1)Q_1(x).$$

- \bullet Apply recursively on $Q_1(x)$ until the quadratic factor $Q_{n-2}(x)$ can be solved directly.
- Improve accuracy with Newton's method on original P(x).

Müller's Method

- Similar to the Secant method, but parabola instead of line
- Fit quadratic polynomial $P(x)=a(x-p_2)^2+b(x-p_2)+c$ that passes through $(p_0,f(p_0)),(p_1,f(p_1)),(p_2,f(p_2)).$
- Solve P(x) = 0 for p_3 , choose root closest to p_2 :

$$p_3=p_2-\frac{2c}{b+\mathrm{sgn}(b)\sqrt{b^2-4ac}}$$

- Repeat until convergence
- Relatively insensitive to initial $p_0,p_1,p_2,$ but e.g. $f(p_i)=f(p_{i+1})=f(p_{i+2})\neq 0$ gives problems