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The Bisection Method

The Bisection Method
Suppose 𝑓 continuous on [𝑎, 𝑏], and 𝑓(𝑎), 𝑓(𝑏) opposite signs
By the IVT, there exists an 𝑥 in (𝑎, 𝑏) with 𝑓(𝑥) = 0
Divide the interval [𝑎, 𝑏] by computing the midpoint

𝑝 = (𝑎 + 𝑏)/2

If 𝑓(𝑝) has same sign as 𝑓(𝑎), consider new interval [𝑝, 𝑏]
If 𝑓(𝑝) has same sign as 𝑓(𝑏), consider new interval [𝑎, 𝑝]
Repeat until interval small enough to approximate 𝑥 well



The Bisection Method – Implementation

MATLAB Implementation
function p = bisection(f, a, b, tol)
% Solve f(p) = 0 using the bisection method.

while 1
p = (a+b) / 2;
if p-a < tol, break; end
if f(a)*f(p) > 0

a = p;
else

b = p;
end

end



Bisection Method

Termination Criteria
Many ways to decide when to stop:

|𝑝𝑁 − 𝑝𝑁−1| < 𝜀
|𝑝𝑁 − 𝑝𝑁−1|

|𝑝𝑁|
< 𝜀

|𝑓(𝑝𝑁)| < 𝜀

None is perfect, use a combination in real software



Convergence

Theorem
Suppose that 𝑓 ∈ 𝐶[𝑎, 𝑏] and 𝑓(𝑎) ⋅ 𝑓(𝑏) < 0. The Bisection
method generates a sequence {𝑝𝑛}∞

𝑛=1 approximating a zero 𝑝 of 𝑓
with

|𝑝𝑛 − 𝑝| ≤ 𝑏 − 𝑎
2𝑛 , when 𝑛 ≥ 1.

Convergence Rate
The sequence {𝑝𝑛}∞

𝑛=1 converges to 𝑝 with rate of
convergence 𝑂(1/2𝑛):

𝑝𝑛 = 𝑝 + 𝑂 ( 1
2𝑛 ) .



Fixed Points

Fixed Points and Root-Finding
A number 𝑝 is a fixed point for a given function 𝑔 if 𝑔(𝑝) = 𝑝
Given a root-finding problem 𝑓(𝑝) = 0, there are many 𝑔 with
fixed points at 𝑝:

𝑔(𝑥) = 𝑥 − 𝑓(𝑥)
𝑔(𝑥) = 𝑥 + 3𝑓(𝑥)

…

If 𝑔 has fixed point at 𝑝, then 𝑓(𝑥) = 𝑥 − 𝑔(𝑥) has a zero at 𝑝



Existence and Uniqueness of Fixed Points

Theorem
a. If 𝑔 ∈ 𝐶[𝑎, 𝑏] and 𝑔(𝑥) ∈ [𝑎, 𝑏] for all 𝑥 ∈ [𝑎, 𝑏], then 𝑔 has a

fixed point in [𝑎, 𝑏]
b. If, in addition, 𝑔′(𝑥) exists on (𝑎, 𝑏) and a positive constant

𝑘 < 1 exists with

|𝑔′(𝑥)| ≤ 𝑘, for all 𝑥 ∈ (𝑎, 𝑏),

then the fixed point in [𝑎, 𝑏] is unique.



Fixed-Point Iteration

Fixed-Point Iteration
For initial 𝑝0, generate sequence {𝑝𝑛}∞

𝑛=0 by 𝑝𝑛 = 𝑔(𝑝𝑛−1).
If the sequence converges to 𝑝, then

𝑝 = lim
𝑛→∞

𝑝𝑛 = lim
𝑛→∞

𝑔(𝑝𝑛−1) = 𝑔 ( lim
𝑛→∞

𝑝𝑛−1) = 𝑔(𝑝).

MATLAB Implementation
function p = fixedpoint(g, p0, tol)
% Solve g(p) = p using fixed-point iteration.

while 1
p = g(p0);
if abs(p-p0) < tol, break; end
p0 = p;

end



Convergence of Fixed-Point Iteration

Theorem (Fixed-Point Theorem)
Let 𝑔 ∈ 𝐶[𝑎, 𝑏] be such that 𝑔(𝑥) ∈ [𝑎, 𝑏], for all 𝑥 in [𝑎, 𝑏].
Suppose, in addition, that 𝑔′ exists on (𝑎, 𝑏) and that a constant
0 < 𝑘 < 1 exists with

|𝑔′(𝑥)| ≤ 𝑘, for all 𝑥 ∈ (𝑎, 𝑏).

Then, for any number 𝑝0 in [𝑎, 𝑏], the sequence defined by
𝑝𝑛 = 𝑔(𝑝𝑛−1) converges to the unique fixed point 𝑝 in [𝑎, 𝑏].

Corollary
If 𝑔 satisfies the hypotheses above, then bounds for the error are
given by

|𝑝𝑛 − 𝑝| ≤ 𝑘𝑛 max{𝑝0 − 𝑎, 𝑏 − 𝑝0}

|𝑝𝑛 − 𝑝| ≤ 𝑘𝑛

1 − 𝑘
|𝑝1 − 𝑝0|



Newton’s Method

Taylor Polynomial Derivation
Suppose 𝑓 ∈ 𝐶2[𝑎, 𝑏] and 𝑝0 ∈ [𝑎, 𝑏] approximates solution 𝑝 of
𝑓(𝑥) = 0 with 𝑓 ′(𝑝0) ≠ 0. Expand 𝑓(𝑥) about 𝑝0:

𝑓(𝑝) = 𝑓(𝑝0) + (𝑝 − 𝑝0)𝑓 ′(𝑝0) + (𝑝 − 𝑝0)2

2
𝑓″(𝜉(𝑝))

Set 𝑓(𝑝) = 0, assume (𝑝 − 𝑝0)2 negligible:

𝑝 ≈ 𝑝1 = 𝑝0 − 𝑓(𝑝0)
𝑓 ′(𝑝0)

This gives the sequence {𝑝𝑛}∞
𝑛=0:

𝑝𝑛 = 𝑝𝑛−1 − 𝑓(𝑝𝑛−1)
𝑓 ′(𝑝𝑛−1)



Newton’s Method

MATLAB Implementation
function p = newton(f, df, p0, tol)
% Solve f(p) = 0 using Newton's method.

while 1
p = p0 - f(p0)/df(p0);
if abs(p-p0) < tol, break; end
p0 = p;

end



Newton’s Method – Convergence

Fixed Point Formulation
Newton’s method is fixed point iteration 𝑝𝑛 = 𝑔(𝑝𝑛−1) with

𝑔(𝑥) = 𝑥 − 𝑓(𝑥)
𝑓 ′(𝑥)

Theorem
Let 𝑓 ∈ 𝐶2[𝑎, 𝑏]. If 𝑝 ∈ [𝑎, 𝑏] is such that 𝑓(𝑝) = 0 and 𝑓 ′(𝑝) ≠ 0,
then there exists a 𝛿 > 0 such that Newton’s method generates a
sequence {𝑝𝑛}∞

𝑛=1 converging to 𝑝 for any initial approximation
𝑝0 ∈ [𝑝 − 𝛿, 𝑝 + 𝛿].



Variations without Derivatives

The Secant Method
Replace the derivative in Newton’s method by

𝑓 ′(𝑝𝑛−1) ≈ 𝑓(𝑝𝑛−2) − 𝑓(𝑝𝑛−1)
𝑝𝑛−2 − 𝑝𝑛−1

to get

𝑝𝑛 = 𝑝𝑛−1 − 𝑓(𝑝𝑛−1)(𝑝𝑛−1 − 𝑝𝑛−2)
𝑓(𝑝𝑛−1) − 𝑓(𝑝𝑛−2)

The Method of False Position (Regula Falsi)
Like the Secant method, but with a test to ensure the root is
bracketed between iterations.



Order of Convergence

Definition
Suppose {𝑝𝑛}∞

𝑛=0 is a sequence that converges to 𝑝, with 𝑝𝑛 ≠ 𝑝
for all 𝑛. If positive constants 𝜆 and 𝛼 exist with

lim
𝑛→∞

|𝑝𝑛+1 − 𝑝|
|𝑝𝑛 − 𝑝|𝛼

= 𝜆,

then {𝑝𝑛}∞
𝑛=0 converges to 𝑝 of order 𝛼, with asymptotic error

constant 𝜆.
An iterative technique 𝑝𝑛 = 𝑔(𝑝𝑛−1) is said to be of order 𝛼 if the
sequence {𝑝𝑛}∞

𝑛=0 converges to the solution 𝑝 = 𝑔(𝑝) of order 𝛼.

Special cases
If 𝛼 = 1 (and 𝜆 < 1), the sequence is linearly convergent
If 𝛼 = 2, the sequence is quadratically convergent



Fixed Point Convergence

Theorem
Let 𝑔 ∈ 𝐶[𝑎, 𝑏] be such that 𝑔(𝑥) ∈ [𝑎, 𝑏], for all 𝑥 ∈ [𝑎, 𝑏].
Suppose 𝑔′ is continuous on (𝑎, 𝑏) and that 0 < 𝑘 < 1 exists with
|𝑔′(𝑥)| ≤ 𝑘 for all 𝑥 ∈ (𝑎, 𝑏). If 𝑔′(𝑝) ≠ 0, then for any number 𝑝0
in [𝑎, 𝑏], the sequence 𝑝𝑛 = 𝑔(𝑝𝑛−1) converges only linearly to the
unique fixed point 𝑝 in [𝑎, 𝑏].

Theorem
Let 𝑝 be solution of 𝑥 = 𝑔(𝑥). Suppose 𝑔′(𝑝) = 0 and 𝑔″

continuous with |𝑔″(𝑥)| < 𝑀 on open interval 𝐼 containing 𝑝.
Then there exists 𝛿 > 0 s.t. for 𝑝0 ∈ [𝑝 − 𝛿, 𝑝 + 𝛿], the sequence
defined by 𝑝𝑛 = 𝑔(𝑝𝑛−1) converges at least quadratically to 𝑝, and

|𝑝𝑛+1 − 𝑝| < 𝑀
2

|𝑝𝑛 − 𝑝|2.



Newton’s Method as Fixed-Point Problem

Derivation
Seek 𝑔 of the form

𝑔(𝑥) = 𝑥 − 𝜙(𝑥)𝑓(𝑥).

Find differentiable 𝜙 giving 𝑔′(𝑝) = 0 when 𝑓(𝑝) = 0:

𝑔′(𝑥) = 1 − 𝜙′(𝑥)𝑓(𝑥) − 𝑓 ′(𝑥)𝜙(𝑥)
𝑔′(𝑝) = 1 − 𝜙′(𝑝) ⋅ 0 − 𝑓 ′(𝑝)𝜙(𝑝)

and 𝑔′(𝑝) = 0 if and only if 𝜙(𝑝) = 1/𝑓 ′(𝑝). This gives Newton’s
method

𝑝𝑛 = 𝑔(𝑝𝑛−1) = 𝑝𝑛−1 − 𝑓(𝑝𝑛−1)
𝑓 ′(𝑝𝑛−1)



Multiplicity of Zeros

Definition
A solution 𝑝 of 𝑓(𝑥) = 0 is a zero of multiplicity 𝑚 of 𝑓 if for 𝑥 ≠ 𝑝,
we can write 𝑓(𝑥) = (𝑥 − 𝑝)𝑚𝑞(𝑥), where lim𝑥→𝑝 𝑞(𝑥) ≠ 0.

Theorem
𝑓 ∈ 𝐶1[𝑎, 𝑏] has a simple zero at 𝑝 in (𝑎, 𝑏) if and only if 𝑓(𝑝) = 0,
but 𝑓 ′(𝑝) ≠ 0.

Theorem
The function 𝑓 ∈ 𝐶𝑚[𝑎, 𝑏] has a zero of multiplicity 𝑚 at point 𝑝
in (𝑎, 𝑏) if and only if

0 = 𝑓(𝑝) = 𝑓 ′(𝑝) = 𝑓″(𝑝) = ⋯ = 𝑓 (𝑚−1)(𝑝), but 𝑓 (𝑚)(𝑝) ≠ 0.



Variants for Multiple Roots

Newton’s Method for Multiple Roots
Define 𝜇(𝑥) = 𝑓(𝑥)/𝑓 ′(𝑥). If 𝑝 is a zero of 𝑓 of multiplicity 𝑚 and
𝑓(𝑥) = (𝑥 − 𝑝)𝑚𝑞(𝑥), then

𝜇(𝑥) = (𝑥 − 𝑝) 𝑞(𝑥)
𝑚𝑞(𝑥) + (𝑥 − 𝑝)𝑞′(𝑥)

also has a zero at 𝑝. But 𝑞(𝑝) ≠ 0, so

𝑞(𝑝)
𝑚𝑞(𝑝) + (𝑝 − 𝑝)𝑞′(𝑝)

= 1
𝑚

≠ 0,

and 𝑝 is a simple zero of 𝜇. Newton’s method can then be applied
to 𝜇 to give

𝑔(𝑥) = 𝑥 − 𝑓(𝑥)𝑓 ′(𝑥)
[𝑓 ′(𝑥)]2 − 𝑓(𝑥)𝑓″(𝑥)



Aitken’s Δ2 Method

Accelerating linearly convergent sequences
Suppose {𝑝𝑛}∞

𝑛=0 linearly convergent with limit 𝑝
Assume that 𝑝𝑛+1 − 𝑝

𝑝𝑛 − 𝑝
≈

𝑝𝑛+2 − 𝑝
𝑝𝑛+1 − 𝑝

Solving for 𝑝 gives

𝑝 ≈
𝑝𝑛+2𝑝𝑛 − 𝑝2

𝑛+1
𝑝𝑛+2 − 2𝑝𝑛+1 + 𝑝𝑛

= ⋯ = 𝑝𝑛 −
(𝑝𝑛+1 − 𝑝𝑛)2

𝑝𝑛+2 − 2𝑝𝑛+1 + 𝑝𝑛

Use this for new more rapidly converging sequence { ̂𝑝𝑛}∞
𝑛=0:

̂𝑝𝑛 = 𝑝𝑛 −
(𝑝𝑛+1 − 𝑝𝑛)2

𝑝𝑛+2 − 2𝑝𝑛+1 + 𝑝𝑛



Delta Notation

Definition
For a given sequence {𝑝𝑛}∞

𝑛=0, the forward difference Δ𝑝𝑛 is
defined by

Δ𝑝𝑛 = 𝑝𝑛+1 − 𝑝𝑛, for 𝑛 ≥ 0

Higher powers of the operator Δ are defined recursively by

Δ𝑘𝑝𝑛 = Δ(Δ𝑘−1𝑝𝑛), for 𝑘 ≥ 2

Aitken’s Δ2 method using delta notation
Since Δ2𝑝𝑛 = 𝑝𝑛+2 − 2𝑝𝑛+1 + 𝑝𝑛, we can write

̂𝑝𝑛 = 𝑝𝑛 − (Δ𝑝𝑛)2

Δ2𝑝𝑛
, for 𝑛 ≥ 0



Convergence of Aitken’s Δ2 Method

Theorem
Suppose that {𝑝𝑛}∞

𝑛=0 converges linearly to 𝑝 and that

lim
𝑛→∞

𝑝𝑛+1 − 𝑝
𝑝𝑛 − 𝑝

< 1

Then { ̂𝑝𝑛}∞
𝑛=0 converges to 𝑝 faster than {𝑝𝑛}∞

𝑛=0 in the sense that

lim
𝑛→∞

̂𝑝𝑛 − 𝑝
𝑝𝑛 − 𝑝

= 0



Steffensen’s Method

Accelerating fixed-point iteration
Aitken’s Δ2 method for fixed-point iteration gives

𝑝0, 𝑝1 = 𝑔(𝑝0), 𝑝2 = 𝑔(𝑝1), ̂𝑝0 = {Δ2}(𝑝0),
𝑝3 = 𝑔(𝑝2), ̂𝑝1 = {Δ2}(𝑝1), …

Steffensen’s method assumes ̂𝑝0 is better than 𝑝2:

𝑝(0)
0 , 𝑝(0)

1 = 𝑔(𝑝(0)
0 ), 𝑝(0)

2 = 𝑔(𝑝(0)
1 ), 𝑝(1)

0 = {Δ2}(𝑝(0)
0 ),

𝑝(1)
1 = 𝑔(𝑝(1)

0 ), …

Theorem
Suppose 𝑥 = 𝑔(𝑥) has solution 𝑝 with 𝑔′(𝑝) ≠ 1. If exists 𝛿 > 0 s.t.
𝑔 ∈ 𝐶3[𝑝 − 𝛿, 𝑝 + 𝛿], then Steffensen’s method gives quadratic
convergence for 𝑝0 ∈ [𝑝 − 𝛿, 𝑝 + 𝛿].



Steffensen’s Method

MATLAB Implementation
function p = steffensen(g, p0, tol)
% Solve g(p) = p using Steffensen's method.

while 1
p1 = g(p0);
p2 = g(p1);
p = p0 - (p1-p0)^2 / (p2-2*p1+p0);
if abs(p-p0) < tol, break; end
p0 = p;

end



Zeros of Polynomials
Polynomial
A polynomial of degree 𝑛 has the form 𝑃 (𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1+
⋯ + 𝑎1𝑥 + 𝑎0 with coefficients 𝑎𝑖 and 𝑎𝑛 ≠ 0.

Theorem (Fundamental Theorem of Algebra)
If 𝑃(𝑥) polynomial of degree 𝑛 ≥ 1, with real or complex
coefficients, 𝑃(𝑥) = 0 has at least one root.

Corollary

Exists unique 𝑥1, … , 𝑥𝑘 and 𝑚1, … , 𝑚𝑘, with ∑𝑘
𝑖=1 𝑚𝑖 = 𝑛 and

𝑃(𝑥) = 𝑎𝑛(𝑥 − 𝑥1)𝑚1(𝑥 − 𝑥2)𝑚2 ⋯ (𝑥 − 𝑥𝑘)𝑚𝑘 .

Corollary
𝑃(𝑥), 𝑄(𝑥) polynomials of degree at most 𝑛. If 𝑃(𝑥𝑖) = 𝑄(𝑥𝑖) for
𝑖 = 1, 2, … , 𝑘, with 𝑘 > 𝑛, then 𝑃 (𝑥) = 𝑄(𝑥).



Horner’s Method

Theorem (Horner’s Method)
Let 𝑃(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎1𝑥 + 𝑎0. If 𝑏𝑛 = 𝑎𝑛 and

𝑏𝑘 = 𝑎𝑘 + 𝑏𝑘+1𝑥0, for 𝑘 = 𝑛 − 1, 𝑛 − 2, … , 1, 0,

then 𝑏0 = 𝑃(𝑥0). Moreover, if

𝑄(𝑥) = 𝑏𝑛𝑥𝑛−1 + 𝑏𝑛−1𝑥𝑛−2 + ⋯ + 𝑏2𝑥 + 𝑏1,

then 𝑃(𝑥) = (𝑥 − 𝑥0)𝑄(𝑥) + 𝑏0.

Computing Derivatives
Differentiation gives

𝑃 ′(𝑥) = 𝑄(𝑥) + (𝑥 − 𝑥0)𝑄′(𝑥) and 𝑃 ′(𝑥0) = 𝑄(𝑥0).



Horner’s Method

MATLAB Implementation
function [y, z] = horner(a, x0)
% Evaluate polynomial:
% P(x) = a(1)x^n + a(2)x^(n-1) + ... + a(n)x + a(n+1)
% and its derivative at x0 using Horner's method.
% Outputs: y = P(x0), z = P'(x0).

n = length(a)-1;
y = a(1);
z = a(1);
for j = 2:n

y = x0*y + a(j);
z = x0*z + y;

end
y = x0*y + a(n+1);



Deflation

Deflation
Compute approximate root ̂𝑥1 using Newton. Then

𝑃 (𝑥) ≈ (𝑥 − ̂𝑥1)𝑄1(𝑥).

Apply recursively on 𝑄1(𝑥) until the quadratic factor 𝑄𝑛−2(𝑥)
can be solved directly.
Improve accuracy with Newton’s method on original 𝑃(𝑥).



Müller’s Method

Müller’s Method
Similar to the Secant method, but parabola instead of line
Fit quadratic polynomial 𝑃 (𝑥) = 𝑎(𝑥 − 𝑝2)2 + 𝑏(𝑥 − 𝑝2) + 𝑐
that passes through (𝑝0, 𝑓(𝑝0)),(𝑝1, 𝑓(𝑝1)),(𝑝2, 𝑓(𝑝2)).
Solve 𝑃(𝑥) = 0 for 𝑝3, choose root closest to 𝑝2:

𝑝3 = 𝑝2 − 2𝑐
𝑏 + sgn(𝑏)

√
𝑏2 − 4𝑎𝑐

.

Repeat until convergence
Relatively insensitive to initial 𝑝0, 𝑝1, 𝑝2, but e.g.
𝑓(𝑝𝑖) = 𝑓(𝑝𝑖+1) = 𝑓(𝑝𝑖+2) ≠ 0 gives problems


