# Chapter 2 <br> Solutions of Equations in One Variable 

Per-Olof Persson<br>persson@berkeley.edu

Department of Mathematics
University of California, Berkeley
Math 128A Numerical Analysis

## The Bisection Method

## The Bisection Method

- Suppose $f$ continuous on $[a, b]$, and $f(a), f(b)$ opposite signs
- By the IVT, there exists an $x$ in $(a, b)$ with $f(x)=0$
- Divide the interval $[a, b]$ by computing the midpoint

$$
p=(a+b) / 2
$$

- If $f(p)$ has same sign as $f(a)$, consider new interval $[p, b]$
- If $f(p)$ has same sign as $f(b)$, consider new interval $[a, p]$
- Repeat until interval small enough to approximate $x$ well


## The Bisection Method - Implementation

```
MATLAB Implementation
function p = bisection(f, a, b, tol)
% Solve f(p) = O using the bisection method.
while 1
    p = (a+b) / 2;
    if p-a < tol, break; end
    if f(a)*f(p) > 0
        a = p;
    else
        b = p;
    end
end
```


## Bisection Method

## Termination Criteria

- Many ways to decide when to stop:

$$
\begin{array}{r}
\left|p_{N}-p_{N-1}\right|<\varepsilon \\
\frac{\left|p_{N}-p_{N-1}\right|}{\left|p_{N}\right|}<\varepsilon \\
\left|f\left(p_{N}\right)\right|<\varepsilon
\end{array}
$$

- None is perfect, use a combination in real software


## Convergence

## Theorem

Suppose that $f \in C[a, b]$ and $f(a) \cdot f(b)<0$. The Bisection method generates a sequence $\left\{p_{n}\right\}_{n=1}^{\infty}$ approximating a zero $p$ of $f$ with

$$
\left|p_{n}-p\right| \leq \frac{b-a}{2^{n}}, \quad \text { when } n \geq 1
$$

## Convergence Rate

- The sequence $\left\{p_{n}\right\}_{n=1}^{\infty}$ converges to $p$ with rate of convergence $O\left(1 / 2^{n}\right)$ :

$$
p_{n}=p+O\left(\frac{1}{2^{n}}\right)
$$

## Fixed Points

## Fixed Points and Root-Finding

- A number $p$ is a fixed point for a given function $g$ if $g(p)=p$
- Given a root-finding problem $f(p)=0$, there are many $g$ with fixed points at $p$ :

$$
\begin{aligned}
& g(x)=x-f(x) \\
& g(x)=x+3 f(x)
\end{aligned}
$$

- If $g$ has fixed point at $p$, then $f(x)=x-g(x)$ has a zero at $p$


## Existence and Uniqueness of Fixed Points

## Theorem

a. If $g \in C[a, b]$ and $g(x) \in[a, b]$ for all $x \in[a, b]$, then $g$ has a fixed point in $[a, b]$
b. If, in addition, $g^{\prime}(x)$ exists on $(a, b)$ and a positive constant $k<1$ exists with

$$
\left|g^{\prime}(x)\right| \leq k, \quad \text { for all } x \in(a, b)
$$

then the fixed point in $[a, b]$ is unique.

## Fixed-Point Iteration

## Fixed-Point Iteration

- For initial $p_{0}$, generate sequence $\left\{p_{n}\right\}_{n=0}^{\infty}$ by $p_{n}=g\left(p_{n-1}\right)$.
- If the sequence converges to $p$, then

$$
p=\lim _{n \rightarrow \infty} p_{n}=\lim _{n \rightarrow \infty} g\left(p_{n-1}\right)=g\left(\lim _{n \rightarrow \infty} p_{n-1}\right)=g(p)
$$

## MATLAB Implementation

```
function p = fixedpoint(g, p0, tol)
% Solve g(p) = p using fixed-point iteration.
while 1
    p = g(p0);
    if abs(p-p0) < tol, break; end
    p0 = p;
end
```


## Convergence of Fixed-Point Iteration

## Theorem (Fixed-Point Theorem)

Let $g \in C[a, b]$ be such that $g(x) \in[a, b]$, for all $x$ in $[a, b]$. Suppose, in addition, that $g^{\prime}$ exists on $(a, b)$ and that a constant $0<k<1$ exists with

$$
\left|g^{\prime}(x)\right| \leq k, \quad \text { for all } x \in(a, b)
$$

Then, for any number $p_{0}$ in $[a, b]$, the sequence defined by $p_{n}=g\left(p_{n-1}\right)$ converges to the unique fixed point $p$ in $[a, b]$.

## Corollary

If $g$ satisfies the hypotheses above, then bounds for the error are given by

$$
\begin{aligned}
& \left|p_{n}-p\right| \leq k^{n} \max \left\{p_{0}-a, b-p_{0}\right\} \\
& \left|p_{n}-p\right| \leq \frac{k^{n}}{1-k}\left|p_{1}-p_{0}\right|
\end{aligned}
$$

## Newton's Method

## Taylor Polynomial Derivation

Suppose $f \in C^{2}[a, b]$ and $p_{0} \in[a, b]$ approximates solution $p$ of $f(x)=0$ with $f^{\prime}\left(p_{0}\right) \neq 0$. Expand $f(x)$ about $p_{0}$ :

$$
f(p)=f\left(p_{0}\right)+\left(p-p_{0}\right) f^{\prime}\left(p_{0}\right)+\frac{\left(p-p_{0}\right)^{2}}{2} f^{\prime \prime}(\xi(p))
$$

Set $f(p)=0$, assume $\left(p-p_{0}\right)^{2}$ negligible:

$$
p \approx p_{1}=p_{0}-\frac{f\left(p_{0}\right)}{f^{\prime}\left(p_{0}\right)}
$$

This gives the sequence $\left\{p_{n}\right\}_{n=0}^{\infty}$ :

$$
p_{n}=p_{n-1}-\frac{f\left(p_{n-1}\right)}{f^{\prime}\left(p_{n-1}\right)}
$$

## Newton's Method

```
MATLAB Implementation
function p = newton(f, df, p0, tol)
% Solve f(p) = O using Newton's method.
while 1
    p = p0 - f(p0)/df(p0);
    if abs(p-p0) < tol, break; end
    p0 = p;
end
```


## Newton's Method - Convergence

## Fixed Point Formulation

Newton's method is fixed point iteration $p_{n}=g\left(p_{n-1}\right)$ with

$$
g(x)=x-\frac{f(x)}{f^{\prime}(x)}
$$

## Theorem

Let $f \in C^{2}[a, b]$. If $p \in[a, b]$ is such that $f(p)=0$ and $f^{\prime}(p) \neq 0$, then there exists a $\delta>0$ such that Newton's method generates a sequence $\left\{p_{n}\right\}_{n=1}^{\infty}$ converging to $p$ for any initial approximation $p_{0} \in[p-\delta, p+\delta]$.

## Variations without Derivatives

## The Secant Method

Replace the derivative in Newton's method by

$$
f^{\prime}\left(p_{n-1}\right) \approx \frac{f\left(p_{n-2}\right)-f\left(p_{n-1}\right)}{p_{n-2}-p_{n-1}}
$$

to get

$$
p_{n}=p_{n-1}-\frac{f\left(p_{n-1}\right)\left(p_{n-1}-p_{n-2}\right)}{f\left(p_{n-1}\right)-f\left(p_{n-2}\right)}
$$

## The Method of False Position (Regula Falsi)

Like the Secant method, but with a test to ensure the root is bracketed between iterations.

## Order of Convergence

## Definition

Suppose $\left\{p_{n}\right\}_{n=0}^{\infty}$ is a sequence that converges to $p$, with $p_{n} \neq p$ for all $n$. If positive constants $\lambda$ and $\alpha$ exist with

$$
\lim _{n \rightarrow \infty} \frac{\left|p_{n+1}-p\right|}{\left|p_{n}-p\right|^{\alpha}}=\lambda
$$

then $\left\{p_{n}\right\}_{n=0}^{\infty}$ converges to $p$ of order $\alpha$, with asymptotic error constant $\lambda$.
An iterative technique $p_{n}=g\left(p_{n-1}\right)$ is said to be of order $\alpha$ if the sequence $\left\{p_{n}\right\}_{n=0}^{\infty}$ converges to the solution $p=g(p)$ of order $\alpha$.

## Special cases

- If $\alpha=1$ (and $\lambda<1$ ), the sequence is linearly convergent
- If $\alpha=2$, the sequence is quadratically convergent


## Fixed Point Convergence

## Theorem

Let $g \in C[a, b]$ be such that $g(x) \in[a, b]$, for all $x \in[a, b]$. Suppose $g^{\prime}$ is continuous on $(a, b)$ and that $0<k<1$ exists with $\left|g^{\prime}(x)\right| \leq k$ for all $x \in(a, b)$. If $g^{\prime}(p) \neq 0$, then for any number $p_{0}$ in $[a, b]$, the sequence $p_{n}=g\left(p_{n-1}\right)$ converges only linearly to the unique fixed point $p$ in $[a, b]$.

## Theorem

Let $p$ be solution of $x=g(x)$. Suppose $g^{\prime}(p)=0$ and $g^{\prime \prime}$ continuous with $\left|g^{\prime \prime}(x)\right|<M$ on open interval $I$ containing $p$. Then there exists $\delta>0$ s.t. for $p_{0} \in[p-\delta, p+\delta]$, the sequence defined by $p_{n}=g\left(p_{n-1}\right)$ converges at least quadratically to $p$, and

$$
\left|p_{n+1}-p\right|<\frac{M}{2}\left|p_{n}-p\right|^{2}
$$

## Newton's Method as Fixed-Point Problem

## Derivation

Seek $g$ of the form

$$
g(x)=x-\phi(x) f(x)
$$

Find differentiable $\phi$ giving $g^{\prime}(p)=0$ when $f(p)=0$ :

$$
\begin{aligned}
g^{\prime}(x) & =1-\phi^{\prime}(x) f(x)-f^{\prime}(x) \phi(x) \\
g^{\prime}(p) & =1-\phi^{\prime}(p) \cdot 0-f^{\prime}(p) \phi(p)
\end{aligned}
$$

and $g^{\prime}(p)=0$ if and only if $\phi(p)=1 / f^{\prime}(p)$. This gives Newton's method

$$
p_{n}=g\left(p_{n-1}\right)=p_{n-1}-\frac{f\left(p_{n-1}\right)}{f^{\prime}\left(p_{n-1}\right)}
$$

## Multiplicity of Zeros

## Definition

A solution $p$ of $f(x)=0$ is a zero of multiplicity $m$ of $f$ if for $x \neq p$, we can write $f(x)=(x-p)^{m} q(x)$, where $\lim _{x \rightarrow p} q(x) \neq 0$.

## Theorem

$f \in C^{1}[a, b]$ has a simple zero at $p$ in $(a, b)$ if and only if $f(p)=0$, but $f^{\prime}(p) \neq 0$.

## Theorem

The function $f \in C^{m}[a, b]$ has a zero of multiplicity $m$ at point $p$ in $(a, b)$ if and only if

$$
0=f(p)=f^{\prime}(p)=f^{\prime \prime}(p)=\cdots=f^{(m-1)}(p), \text { but } f^{(m)}(p) \neq 0
$$

## Variants for Multiple Roots

Newton's Method for Multiple Roots
Define $\mu(x)=f(x) / f^{\prime}(x)$. If $p$ is a zero of $f$ of multiplicity $m$ and $f(x)=(x-p)^{m} q(x)$, then

$$
\mu(x)=(x-p) \frac{q(x)}{m q(x)+(x-p) q^{\prime}(x)}
$$

also has a zero at $p$. But $q(p) \neq 0$, so

$$
\frac{q(p)}{m q(p)+(p-p) q^{\prime}(p)}=\frac{1}{m} \neq 0
$$

and $p$ is a simple zero of $\mu$. Newton's method can then be applied to $\mu$ to give

$$
g(x)=x-\frac{f(x) f^{\prime}(x)}{\left[f^{\prime}(x)\right]^{2}-f(x) f^{\prime \prime}(x)}
$$

## Aitken's $\Delta^{2}$ Method

## Accelerating linearly convergent sequences

- Suppose $\left\{p_{n}\right\}_{n=0}^{\infty}$ linearly convergent with limit $p$
- Assume that

$$
\frac{p_{n+1}-p}{p_{n}-p} \approx \frac{p_{n+2}-p}{p_{n+1}-p}
$$

- Solving for $p$ gives

$$
p \approx \frac{p_{n+2} p_{n}-p_{n+1}^{2}}{p_{n+2}-2 p_{n+1}+p_{n}}=\cdots=p_{n}-\frac{\left(p_{n+1}-p_{n}\right)^{2}}{p_{n+2}-2 p_{n+1}+p_{n}}
$$

- Use this for new more rapidly converging sequence $\left\{\hat{p}_{n}\right\}_{n=0}^{\infty}$ :

$$
\hat{p}_{n}=p_{n}-\frac{\left(p_{n+1}-p_{n}\right)^{2}}{p_{n+2}-2 p_{n+1}+p_{n}}
$$

## Delta Notation

## Definition

For a given sequence $\left\{p_{n}\right\}_{n=0}^{\infty}$, the forward difference $\Delta p_{n}$ is defined by

$$
\Delta p_{n}=p_{n+1}-p_{n}, \quad \text { for } n \geq 0
$$

Higher powers of the operator $\Delta$ are defined recursively by

$$
\Delta^{k} p_{n}=\Delta\left(\Delta^{k-1} p_{n}\right), \quad \text { for } k \geq 2
$$

Aitken's $\Delta^{2}$ method using delta notation
Since $\Delta^{2} p_{n}=p_{n+2}-2 p_{n+1}+p_{n}$, we can write

$$
\hat{p}_{n}=p_{n}-\frac{\left(\Delta p_{n}\right)^{2}}{\Delta^{2} p_{n}}, \quad \text { for } n \geq 0
$$

## Convergence of Aitken's $\Delta^{2}$ Method

## Theorem

Suppose that $\left\{p_{n}\right\}_{n=0}^{\infty}$ converges linearly to $p$ and that

$$
\lim _{n \rightarrow \infty} \frac{p_{n+1}-p}{p_{n}-p}<1
$$

Then $\left\{\hat{p}_{n}\right\}_{n=0}^{\infty}$ converges to $p$ faster than $\left\{p_{n}\right\}_{n=0}^{\infty}$ in the sense that

$$
\lim _{n \rightarrow \infty} \frac{\hat{p}_{n}-p}{p_{n}-p}=0
$$

## Steffensen's Method

## Accelerating fixed-point iteration

Aitken's $\Delta^{2}$ method for fixed-point iteration gives

$$
\begin{aligned}
& p_{0}, p_{1}=g\left(p_{0}\right), p_{2}=g\left(p_{1}\right), \hat{p}_{0}=\left\{\Delta^{2}\right\}\left(p_{0}\right) \\
& p_{3}=g\left(p_{2}\right), \hat{p}_{1}=\left\{\Delta^{2}\right\}\left(p_{1}\right), \ldots
\end{aligned}
$$

Steffensen's method assumes $\hat{p}_{0}$ is better than $p_{2}$ :

$$
\begin{aligned}
& p_{0}^{(0)}, p_{1}^{(0)}=g\left(p_{0}^{(0)}\right), p_{2}^{(0)}=g\left(p_{1}^{(0)}\right), p_{0}^{(1)}=\left\{\Delta^{2}\right\}\left(p_{0}^{(0)}\right) \\
& p_{1}^{(1)}=g\left(p_{0}^{(1)}\right), \ldots
\end{aligned}
$$

## Theorem

Suppose $x=g(x)$ has solution $p$ with $g^{\prime}(p) \neq 1$. If exists $\delta>0$ s.t. $g \in C^{3}[p-\delta, p+\delta]$, then Steffensen's method gives quadratic convergence for $p_{0} \in[p-\delta, p+\delta]$.

## Steffensen's Method

```
MATLAB Implementation
function p = steffensen(g, p0, tol)
% Solve g(p) = p using Steffensen's method.
while 1
    p1 = g(p0);
    p2 = g(p1);
    p = p0 - (p1-p0)^2 / (p2-2*p1+p0);
    if abs(p-pO) < tol, break; end
    p0 = p;
end
```


## Zeros of Polynomials

## Polynomial

A polynomial of degree $n$ has the form $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+$ $\cdots+a_{1} x+a_{0}$ with coefficients $a_{i}$ and $a_{n} \neq 0$.

## Theorem (Fundamental Theorem of Algebra)

If $P(x)$ polynomial of degree $n \geq 1$, with real or complex coefficients, $P(x)=0$ has at least one root.

## Corollary

Exists unique $x_{1}, \ldots, x_{k}$ and $m_{1}, \ldots, m_{k}$, with $\sum_{i=1}^{k} m_{i}=n$ and

$$
P(x)=a_{n}\left(x-x_{1}\right)^{m_{1}}\left(x-x_{2}\right)^{m_{2}} \cdots\left(x-x_{k}\right)^{m_{k}} .
$$

## Corollary

$P(x), Q(x)$ polynomials of degree at most $n$. If $P\left(x_{i}\right)=Q\left(x_{i}\right)$ for $i=1,2, \ldots, k$, with $k>n$, then $P(x)=Q(x)$.

## Horner's Method

Theorem (Horner's Method)
Let $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$. If $b_{n}=a_{n}$ and

$$
b_{k}=a_{k}+b_{k+1} x_{0}, \quad \text { for } k=n-1, n-2, \ldots, 1,0,
$$

then $b_{0}=P\left(x_{0}\right)$. Moreover, if

$$
Q(x)=b_{n} x^{n-1}+b_{n-1} x^{n-2}+\cdots+b_{2} x+b_{1},
$$

then $P(x)=\left(x-x_{0}\right) Q(x)+b_{0}$.

## Computing Derivatives

Differentiation gives

$$
P^{\prime}(x)=Q(x)+\left(x-x_{0}\right) Q^{\prime}(x) \quad \text { and } \quad P^{\prime}\left(x_{0}\right)=Q\left(x_{0}\right)
$$

## Horner's Method

## MATLAB Implementation

```
function [y, z] = horner(a, x0)
% Evaluate polynomial:
% P(x) = a(1) x^n + a(2) x^ (n-1) + . . + a(n)x +a(n+1)
% and its derivative at x0 using Horner's method.
% Outputs: y = P(x0), z = P'(x0).
n = length(a)-1;
y = a(1);
z = a(1);
for j = 2:n
    y = x0*y + a(j);
    z = x0*z + y;
end
y = x0*y + a(n+1);
```


## Deflation

## Deflation

- Compute approximate root $\hat{x}_{1}$ using Newton. Then

$$
P(x) \approx\left(x-\hat{x}_{1}\right) Q_{1}(x)
$$

- Apply recursively on $Q_{1}(x)$ until the quadratic factor $Q_{n-2}(x)$ can be solved directly.
- Improve accuracy with Newton's method on original $P(x)$.


## Müller's Method

## Müller's Method

- Similar to the Secant method, but parabola instead of line
- Fit quadratic polynomial $P(x)=a\left(x-p_{2}\right)^{2}+b\left(x-p_{2}\right)+c$ that passes through $\left(p_{0}, f\left(p_{0}\right)\right),\left(p_{1}, f\left(p_{1}\right)\right),\left(p_{2}, f\left(p_{2}\right)\right)$.
- Solve $P(x)=0$ for $p_{3}$, choose root closest to $p_{2}$ :

$$
p_{3}=p_{2}-\frac{2 c}{b+\operatorname{sgn}(b) \sqrt{b^{2}-4 a c}}
$$

- Repeat until convergence
- Relatively insensitive to initial $p_{0}, p_{1}, p_{2}$, but e.g. $f\left(p_{i}\right)=f\left(p_{i+1}\right)=f\left(p_{i+2}\right) \neq 0$ gives problems

