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Lipschitz Condition and Convexity

Definition
A function 𝑓(𝑡, 𝑦) is said to satisfy a Lipschitz condition in the
variable 𝑦 on a set 𝐷 ⊂ ℝ2 if a constant 𝐿 > 0 exists with

|𝑓(𝑡, 𝑦1) − 𝑓(𝑡, 𝑦2)| ≤ 𝐿|𝑦1 − 𝑦2|,

whenever (𝑡, 𝑦1), (𝑡, 𝑦2) ∈ 𝐷. The constant 𝐿 is called a Lipschitz
constant for 𝑓.

Definition
A set 𝐷 ⊂ ℝ2 is said to be convex if whenever (𝑡1, 𝑦1) and (𝑡2, 𝑦2)
belong to 𝐷 and 𝜆 is in [0, 1], the point
((1 − 𝜆)𝑡1 + 𝜆𝑡2, (1 − 𝜆)𝑦1 + 𝜆𝑦2) also belongs to 𝐷.



Existence and Uniqueness
Theorem
Suppose 𝑓(𝑡, 𝑦) is defined on a convex set 𝐷 ⊂ ℝ2. If a constant
𝐿 > 0 exists with

∣𝜕𝑓
𝜕𝑦

(𝑡, 𝑦)∣ ≤ 𝐿, for all (𝑡, 𝑦) ∈ 𝐷,

then 𝑓 satisfies a Lipschitz condition on 𝐷 in the variable 𝑦 with
Lipschitz constant 𝐿.

Theorem
Suppose that 𝐷 = {(𝑡, 𝑦) | 𝑎 ≤ 𝑡 ≤ 𝑏, −∞ < 𝑦 < ∞} and that
𝑓(𝑡, 𝑦) is continuous on 𝐷. If 𝑓 satisfies a Lipschitz condition on 𝐷
in the variable 𝑦, then the initial-value problem

𝑦′(𝑡) = 𝑓(𝑡, 𝑦), 𝑎 ≤ 𝑡 ≤ 𝑏, 𝑦(𝑎) = 𝛼,

has a unique solution 𝑦(𝑡) for 𝑎 ≤ 𝑡 ≤ 𝑏.



Well-Posedness

Definition
The initial-value problem

𝑑𝑦
𝑑𝑡

= 𝑓(𝑡, 𝑦), 𝑎 ≤ 𝑡 ≤ 𝑏, 𝑦(𝑎) = 𝛼,

is said to be a well-posed problem if:
A unique solution, 𝑦(𝑡), to the problem exists, and
There exist constants 𝜀0 > 0 and 𝑘 > 0 such that for any 𝜀,
with 𝜀0 > 𝜀 > 0, whenever 𝛿(𝑡) is continuous with |𝛿(𝑡)| < 𝜀
for all 𝑡 in [𝑎, 𝑏], and when |𝛿0| < 𝜀, the initial-value problem

𝑑𝑧
𝑑𝑡

= 𝑓(𝑡, 𝑧) + 𝛿(𝑡), 𝑎 ≤ 𝑡 ≤ 𝑏, 𝑧(𝑎) = 𝛼 + 𝛿0,

has a unique solution 𝑧(𝑡) that satisfies

|𝑧(𝑡) − 𝑦(𝑡)| < 𝑘𝜀 for all 𝑡 in [𝑎, 𝑏].



Well-Posedness

Theorem
Suppose 𝐷 = {(𝑡, 𝑦) | 𝑎 ≤ 𝑡 ≤ 𝑏 and − ∞ < 𝑦 < ∞}. If 𝑓 is
continuous and satisfies a Lipschitz condition in the variable 𝑦 on
the set 𝐷, then the initial-value problem

𝑑𝑦
𝑑𝑡

= 𝑓(𝑡, 𝑦), 𝑎 ≤ 𝑡 ≤ 𝑏, 𝑦(𝑎) = 𝛼

is well-posed.



Euler’s Method

Suppose a well-posed initial-value problem is given:

𝑑𝑦
𝑑𝑡

= 𝑓(𝑡, 𝑦), 𝑎 ≤ 𝑡 ≤ 𝑏, 𝑦(𝑎) = 𝛼

Distribute mesh points equally throughout [𝑎, 𝑏]:

𝑡𝑖 = 𝑎 + 𝑖ℎ, for each 𝑖 = 0, 1, 2, … , 𝑁.

The step size ℎ = (𝑏 − 𝑎)/𝑁 = 𝑡𝑖+1 − 𝑡𝑖.



Euler’s Method

Use Taylor’s Theorem for 𝑦(𝑡):

𝑦(𝑡𝑖+1) = 𝑦(𝑡𝑖) + (𝑡𝑖+1 − 𝑡𝑖)𝑦′(𝑡𝑖) +
(𝑡𝑖+1 − 𝑡𝑖)2

2
𝑦″(𝜉𝑖)

for 𝜉𝑖 ∈ (𝑡𝑖, 𝑡𝑖+1). Since ℎ = 𝑡𝑖+1 − 𝑡𝑖 and 𝑦′(𝑡𝑖) = 𝑓(𝑡𝑖, 𝑦(𝑡𝑖)),

𝑦(𝑡𝑖+1) = 𝑦(𝑡𝑖) + ℎ𝑓(𝑡𝑖, 𝑦(𝑡𝑖)) + ℎ2

2
𝑦″(𝜉𝑖).

Neglecting the remainder term gives Euler’s method for 𝑤𝑖 ≈ 𝑦(𝑡𝑖):

𝑤0 = 𝛼
𝑤𝑖+1 = 𝑤𝑖 + ℎ𝑓(𝑡𝑖, 𝑤𝑖), 𝑖 = 0, 1, … , 𝑁 − 1

The well-posedness implies that

𝑓(𝑡𝑖, 𝑤𝑖) ≈ 𝑦′(𝑡𝑖) = 𝑓(𝑡𝑖, 𝑦(𝑡𝑖))



Error Bound

Theorem
Suppose 𝑓 is continuous and satisfies a Lipschitz condition with
constant 𝐿 on

𝐷 = {(𝑡, 𝑦) | 𝑎 ≤ 𝑡 ≤ 𝑏, −∞ < 𝑦 < ∞}

and that a constant 𝑀 exists with

|𝑦″(𝑡)| ≤ 𝑀, for all 𝑡 ∈ [𝑎, 𝑏].

Let 𝑦(𝑡) denote the unique solution to the initial-value problem

𝑦′ = 𝑓(𝑡, 𝑦), 𝑎 ≤ 𝑡 ≤ 𝑏, 𝑦(𝑎) = 𝛼,

and 𝑤0, 𝑤1, … , 𝑤𝑛 as in Euler’s method. Then

|𝑦(𝑡𝑖) − 𝑤𝑖| ≤ ℎ𝑀
2𝐿

[𝑒𝐿(𝑡𝑖−𝑎) − 1] .



Local Truncation Error

Definition
The difference method

𝑤0 = 𝛼
𝑤𝑖+1 = 𝑤𝑖 + ℎ𝜙(𝑡𝑖, 𝑤𝑖)

has local truncation error

𝜏𝑖+1(ℎ) =
𝑦𝑖+1 − (𝑦𝑖 + ℎ𝜙(𝑡𝑖, 𝑦𝑖))

ℎ
=

𝑦𝑖+1 − 𝑦𝑖
ℎ

− 𝜙(𝑡𝑖, 𝑦𝑖),

for each 𝑖 = 0, 1, … , 𝑁 − 1.



Higher-Order Taylor Methods

Consider initial-value problem

𝑦′ = 𝑓(𝑡, 𝑦), 𝑎 ≤ 𝑡 ≤ 𝑏, 𝑦(𝑎) = 𝛼.

Expand 𝑦(𝑡) in 𝑛th Taylor polynomial about 𝑡𝑖, evaluated at 𝑡𝑖+1:

𝑦(𝑡𝑖+1) = 𝑦(𝑡𝑖) + ℎ𝑦′(𝑡𝑖) + ℎ2

2
𝑦″(𝑡𝑖) + ⋯

+ ℎ𝑛

𝑛!
𝑦(𝑛)(𝑡𝑖) + ℎ𝑛+1

(𝑛 + 1)!
𝑦(𝑛+1)(𝜉𝑖)

= 𝑦(𝑡𝑖) + ℎ𝑓(𝑡𝑖, 𝑦(𝑡𝑖)) + ℎ2

2
𝑓 ′(𝑡𝑖, 𝑦(𝑡𝑖)) + ⋯

+ ℎ𝑛

𝑛!
𝑓 (𝑛−1)(𝑡𝑖, 𝑦(𝑡𝑖)) + ℎ𝑛+1

(𝑛 + 1)!
𝑓 (𝑛)(𝜉𝑖, 𝑦(𝜉𝑖))

for some 𝜉𝑖 ∈ (𝑡𝑖, 𝑡𝑖+1). Delete remainder term to obtain the Taylor
method of order 𝑛.



Higher-Order Taylor Methods

Taylor Method of Order 𝑛

𝑤0 = 𝛼
𝑤𝑖+1 = 𝑤𝑖 + ℎ𝑇 (𝑛)(𝑡𝑖, 𝑤𝑖), 𝑖 = 0, 1, … , 𝑁 − 1

where

𝑇 (𝑛)(𝑡𝑖, 𝑤𝑖) = 𝑓(𝑡𝑖, 𝑤𝑖) + ℎ
2

𝑓 ′(𝑡𝑖, 𝑤𝑖) + ⋯ + ℎ(𝑛−1)

𝑛!
𝑓 (𝑛−1)(𝑡𝑖, 𝑤𝑖)



Higher-Order Taylor Methods

Theorem
If Taylor’s method of order 𝑛 is used to approximate the solution to

𝑦′(𝑡) = 𝑓(𝑡, 𝑦(𝑡)), 𝑎 ≤ 𝑡 ≤ 𝑏, 𝑦(𝑎) = 𝛼,

with step size ℎ and if 𝑦 ∈ 𝐶𝑛+1[𝑎, 𝑏], then the local truncation
error is 𝑂(ℎ𝑛).



Taylor’s Theorem in Two Variables

Theorem
Suppose 𝑓(𝑡, 𝑦) and partial derivatives up to order 𝑛 + 1 continuous
on 𝐷 = {(𝑡, 𝑦) | 𝑎 ≤ 𝑡 ≤ 𝑏, 𝑐 ≤ 𝑦 ≤ 𝑑}, let (𝑡0, 𝑦0) ∈ 𝐷. For
(𝑡, 𝑦) ∈ 𝐷, there is 𝜉 ∈ [𝑡, 𝑡0] and 𝜇 ∈ [𝑦, 𝑦0] with

𝑓(𝑡, 𝑦) = 𝑃𝑛(𝑡, 𝑦) + 𝑅𝑛(𝑡, 𝑦)

𝑃𝑛(𝑡, 𝑦) = 𝑓(𝑡0, 𝑦0) + [(𝑡 − 𝑡0)𝜕𝑓
𝜕𝑡

(𝑡0, 𝑦0) + (𝑦 − 𝑦0)𝜕𝑓
𝜕𝑦

(𝑡0, 𝑦0)]

+ [(𝑡 − 𝑡0)2

2
𝜕2𝑓
𝜕𝑡2 (𝑡0, 𝑦0) + (𝑡 − 𝑡0)(𝑦 − 𝑦0) 𝜕2𝑓

𝜕𝑡𝜕𝑦
(𝑡0, 𝑦0)

+ (𝑦 − 𝑦0)2

2
𝜕2𝑓
𝜕𝑦2 (𝑡0, 𝑦0)] + ⋯

+ [ 1
𝑛!

𝑛
∑
𝑗=0

(𝑛
𝑗
)(𝑡 − 𝑡0)𝑛−𝑗(𝑦 − 𝑦0)𝑗 𝜕𝑛𝑓

𝜕𝑡𝑛−𝑗𝜕𝑦𝑗 (𝑡0, 𝑦0)]



Taylor’s Theorem in Two Variables

Theorem
(cont’d)

𝑅𝑛(𝑡, 𝑦) = 1
(𝑛 + 1)!

𝑛+1

∑
𝑗=0

(𝑛 + 1
𝑗

)(𝑡 − 𝑡0)𝑛+1−𝑗(𝑦 − 𝑦0)𝑗⋅

⋅ 𝜕𝑛+1𝑓
𝜕𝑡𝑛+1−𝑗𝜕𝑦𝑗 (𝜉, 𝜇)

𝑃𝑛(𝑡, 𝑦) is the 𝑛th Taylor polynomial in two variables.



Runge-Kutta Methods

Obtain high-order accuracy of Taylor methods without
knowledges of derivatives of 𝑓
Determine 𝑎1, 𝛼1, 𝛽1 such that

𝑎1𝑓(𝑡 + 𝛼1, 𝑦 + 𝛽1) ≈ 𝑓(𝑡, 𝑦) + ℎ
2

𝑓 ′(𝑡, 𝑦) = 𝑇 (2)(𝑡, 𝑦).

with 𝑂(ℎ2) error.
Since

𝑓 ′(𝑡, 𝑦) = 𝑑𝑓
𝑑𝑡

(𝑡, 𝑦) = 𝜕𝑓
𝜕𝑡

(𝑡, 𝑦) + 𝜕𝑓
𝜕𝑦

(𝑡, 𝑦) ⋅ 𝑦′(𝑡)

and 𝑦′(𝑡) = 𝑓(𝑡, 𝑦), we have

𝑇 (2)(𝑡, 𝑦) = 𝑓(𝑡, 𝑦) + ℎ
2

𝜕𝑓
𝜕𝑡

(𝑡, 𝑦) + ℎ
2

𝜕𝑓
𝜕𝑦

(𝑡, 𝑦) ⋅ 𝑓(𝑡, 𝑦)



Runge-Kutta Methods

Expand 𝑓(𝑡 + 𝛼1, 𝑦 + 𝛽1) in 1st degree Taylor polynomial:

𝑎1𝑓(𝑡 + 𝛼1, 𝑦 + 𝛽1) = 𝑎1𝑓(𝑡, 𝑦) + 𝑎1𝛼1
𝜕𝑓
𝜕𝑡

(𝑡, 𝑦)

+ 𝑎1𝛽1
𝜕𝑓
𝜕𝑦

(𝑡, 𝑦) + 𝑎1 ⋅ 𝑅1(𝑡 + 𝛼1, 𝑦 + 𝛽1)

Matching coefficients gives

𝑎1 = 1 𝑎1𝛼1 = ℎ
2

, 𝑎1𝛽1 = ℎ
2

𝑓(𝑡, 𝑦)

with unique solution

𝑎1 = 1, 𝛼1 = ℎ
2

, 𝛽1 = ℎ
2

𝑓(𝑡, 𝑦)



Runge-Kutta Methods

This gives

𝑇 (2)(𝑡, 𝑦) = 𝑓 (𝑡 + ℎ
2

, 𝑦 + ℎ
2

𝑓(𝑡, 𝑦)) − 𝑅1 (𝑡 + ℎ
2

, 𝑦 + ℎ
2

𝑓(𝑡, 𝑦))

with 𝑅1(⋅, ⋅) = 𝑂(ℎ2)

Midpoint Method

𝑤0 = 𝛼,

𝑤𝑖+1 = 𝑤𝑖 + ℎ𝑓 (𝑡 + ℎ
2

, 𝑤𝑖 + ℎ
2

𝑓(𝑡𝑖, 𝑤𝑖)) , 𝑖 = 0, 1, … , 𝑁 − 1

Local truncation error of order two.



Runge-Kutta Methods

Runge-Kutta Order Four

𝑤0 = 𝛼
𝑘1 = ℎ𝑓(𝑡𝑖, 𝑤𝑖)

𝑘2 = ℎ𝑓 (𝑡𝑖 + ℎ
2

, 𝑤𝑖 + 1
2

𝑘1)

𝑘3 = ℎ𝑓 (𝑡𝑖 + ℎ
2

, 𝑤𝑖 + 1
2

𝑘2)

𝑘4 = ℎ𝑓(𝑡𝑖+1, 𝑤𝑖 + 𝑘3)

𝑤𝑖+1 = 𝑤𝑖 + 1
6

(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)

Local truncation error 𝑂(ℎ4)



Runge-Kutta Order Four

MATLAB Implementation
function [t, w] = rk4(f, a, b, alpha, N)
% Solve ODE y'(t) = f(t, y(t)) using Runge-Kutta 4.

h = (b-a) / N;
t = (a:h:b)';
w = zeros(N+1, length(alpha));
w(1,:) = alpha(:)';
for i = 1:N

k1 = h*f(t(i), w(i,:));
k2 = h*f(t(i) + h/2, w(i,:) + k1/2);
k3 = h*f(t(i) + h/2, w(i,:) + k2/2);
k4 = h*f(t(i) + h, w(i,:) + k3);
w(i+1,:) = w(i,:) + (k1 + 2*k2 + 2*k3 + k4)/6;

end



Multistep Methods

Definition
An 𝑚-step multistep method for solving the initial-value problem

𝑦′ = 𝑓(𝑡, 𝑦), 𝑎 ≤ 𝑡 ≤ 𝑏, 𝑦(𝑎) = 𝛼,

has a difference equation for approximate 𝑤𝑖+1 at 𝑡𝑖+1:

𝑤𝑖+1 = 𝑎𝑚−1𝑤𝑖 + 𝑎𝑚−2𝑤𝑖−1 + ⋯ + 𝑎0𝑤𝑖+1−𝑚

+ ℎ[𝑏𝑚𝑓(𝑡𝑖+1, 𝑤𝑖+1) + 𝑏𝑚−1𝑓(𝑡𝑖, 𝑤𝑖) + ⋯
+ 𝑏0𝑓(𝑡𝑖+1−𝑚, 𝑤𝑖+1−𝑚)],

where ℎ = (𝑏 − 𝑎)/𝑁, and starting values are specified:

𝑤0 = 𝛼, 𝑤1 = 𝛼1, … , 𝑤𝑚−1 = 𝛼𝑚−1

Explicit method if 𝑏𝑚 = 0, implicit method if 𝑏𝑚 ≠ 0.



Multistep Methods

Fourth-Order Adams-Bashforth Technique

𝑤0 = 𝛼, 𝑤1 = 𝛼1, 𝑤2 = 𝛼2, 𝑤3 = 𝛼3,

𝑤𝑖+1 = 𝑤𝑖 + ℎ
24

[55𝑓(𝑡𝑖, 𝑤𝑖) − 59𝑓(𝑡𝑖−1, 𝑤𝑖−1)

+ 37𝑓(𝑡𝑖−2, 𝑤𝑖−2) − 9𝑓(𝑡𝑖−3, 𝑤𝑖−3)]

Fourth-Order Adams-Moulton Technique

𝑤0 = 𝛼, 𝑤1 = 𝛼1, 𝑤2 = 𝛼2,

𝑤𝑖+1 = 𝑤𝑖 + ℎ
24

[9𝑓(𝑡𝑖+1, 𝑤𝑖+1) + 19𝑓(𝑡𝑖, 𝑤𝑖)

− 5𝑓(𝑡𝑖−1, 𝑤𝑖−1) + 𝑓(𝑡𝑖−2, 𝑤𝑖−2)]



Derivation of Multistep Methods

Integrate the initial-value problem

𝑦′ = 𝑓(𝑡, 𝑦), 𝑎 ≤ 𝑡 ≤ 𝑏, 𝑦(𝑎) = 𝛼

over [𝑡𝑖, 𝑡𝑖+1]:

𝑦(𝑡𝑖+1) = 𝑦(𝑡𝑖) + ∫
𝑡𝑖+1

𝑡𝑖

𝑓(𝑡, 𝑦(𝑡)) 𝑑𝑡

Replace 𝑓 by polynomial 𝑃 (𝑡) interpolating (𝑡0, 𝑤0), … , (𝑡𝑖, 𝑤𝑖),
and approximate 𝑦(𝑡𝑖) ≈ 𝑤𝑖:

𝑦(𝑡𝑖+1) ≈ 𝑤𝑖 + ∫
𝑡𝑖+1

𝑡𝑖

𝑃(𝑡) 𝑑𝑡



Derivation of Multistep Methods

Adams-Bashforth explicit 𝑚-step: Newton backward-difference
polynomial through
(𝑡𝑖, 𝑓(𝑡𝑖, 𝑦(𝑡𝑖))), … , (𝑡𝑖+1−𝑚, 𝑓(𝑡𝑖+1−𝑚, 𝑦(𝑡𝑖+1−𝑚))).

∫
𝑡𝑖+1

𝑡𝑖

𝑓(𝑡, 𝑦(𝑡)) 𝑑𝑡 ≈ ∫
𝑡𝑖+1

𝑡𝑖

𝑚−1
∑
𝑘=0

(−1)𝑘(−𝑠
𝑘

)∇𝑘𝑓(𝑡𝑖, 𝑦(𝑡𝑖)) 𝑑𝑡

=
𝑚−1
∑
𝑘=0

∇𝑘𝑓(𝑡𝑖, 𝑦(𝑡𝑖))ℎ(−1)𝑘 ∫
1

0
(−𝑠

𝑘
) 𝑑𝑠

𝑘 0 1 2 3 4 5
(−1)𝑘 ∫1

0
(−𝑠

𝑘 ) 𝑑𝑠 1 1
2

5
12

3
8

251
720

95
288



Derivation of Multistep Methods

Three-step Adams-Bashforth:

𝑦(𝑡𝑖+1) ≈ 𝑦(𝑡𝑖) + ℎ [𝑓(𝑡𝑖, 𝑦(𝑡𝑖)) + 1
2

∇𝑓(𝑡𝑖, 𝑦(𝑡𝑖)) + 5
12

∇2𝑓(𝑡𝑖, 𝑦(𝑡𝑖))]

= 𝑦(𝑡𝑖) + ℎ
12

[23𝑓(𝑡𝑖, 𝑦(𝑡𝑖)) − 16𝑓(𝑡𝑖−1, 𝑦(𝑡𝑖−1)) + 5𝑓(𝑡𝑖−2, 𝑦(𝑡𝑖−2))]

The method is:

𝑤0 = 𝛼, 𝑤1 = 𝛼1, 𝑤2 = 𝛼2,

𝑤𝑖+1 = 𝑤𝑖 + ℎ
12

[23𝑓(𝑡𝑖, 𝑤𝑖) − 16𝑓(𝑡𝑖−1, 𝑤𝑖−1) + 5𝑓(𝑡𝑖−2, 𝑤𝑖−2)]



Local Truncation Error

Definition
If 𝑦(𝑡) solves

𝑦′ = 𝑓(𝑡, 𝑦), 𝑎 ≤ 𝑡 ≤ 𝑏, 𝑦(𝑎) = 𝛼,

and

𝑤𝑖+1 =𝑎𝑚−1𝑤𝑖 + ⋯ + 𝑎0𝑤𝑖+1−𝑚

+ ℎ[𝑏𝑚𝑓(𝑡𝑖+1, 𝑤𝑖+1) + ⋯ + 𝑏0𝑓(𝑡𝑖+1−𝑚, 𝑤𝑖+1−𝑚)],

the local truncation error is

𝜏𝑖+1(ℎ) =
𝑦(𝑡𝑖+1) − 𝑎𝑚−1𝑦(𝑡𝑖) − ⋯ − 𝑎0𝑦(𝑡𝑖+1−𝑚)

ℎ
− [𝑏𝑚𝑓(𝑡𝑖+1, 𝑦(𝑡𝑖+1)) + ⋯ + 𝑏0𝑓(𝑡𝑖+1−𝑚, 𝑦(𝑡𝑖+1−𝑚))].



High-Order Systems of Initial-Value Problems

An 𝑚th-order system of first-order initial-value problems has the
form

𝑑𝑢1
𝑑𝑡

(𝑡) = 𝑓1(𝑡, 𝑢1, 𝑢2, … , 𝑢𝑚),

𝑑𝑢2
𝑑𝑡

(𝑡) = 𝑓2(𝑡, 𝑢1, 𝑢2, … , 𝑢𝑚),

⋮
𝑑𝑢𝑚
𝑑𝑡

(𝑡) = 𝑓𝑚(𝑡, 𝑢1, 𝑢2, … , 𝑢𝑚),

for 𝑎 ≤ 𝑡 ≤ 𝑏, with the initial conditions

𝑢1(𝑎) = 𝛼1, 𝑢2(𝑎) = 𝛼2, … , 𝑢𝑚(𝑎) = 𝛼𝑚.



Existence and Uniqueness

Definition
The function 𝑓(𝑡, 𝑦1, … , 𝑦𝑚), defined on the set

𝐷 = {(𝑡, 𝑢1, … , 𝑢𝑚) | 𝑎 ≤ 𝑡 ≤ 𝑏, −∞ < 𝑢𝑖 < ∞, 𝑖 = 1, 2, … , 𝑚}

is said to satisfy a Lipschitz condition on 𝐷 in the variables
𝑢1, 𝑢2, … , 𝑢𝑚 if a constant 𝐿 > 0 exists with

|𝑓(𝑡, 𝑢1, … , 𝑢𝑚) − 𝑓(𝑡, 𝑧1, … , 𝑧𝑚)| ≤ 𝐿
𝑚

∑
𝑗=1

|𝑢𝑗 − 𝑧𝑗|,

for all (𝑡, 𝑢1, … , 𝑢𝑚) and (𝑡, 𝑧1, … , 𝑧𝑚) in 𝐷.



Existence and Uniqueness

Theorem
Suppose

𝐷 = {(𝑡, 𝑢1, … , 𝑢𝑚) | 𝑎 ≤ 𝑡 ≤ 𝑏, −∞ < 𝑢𝑖 < ∞, 𝑖 = 1, 2, … , 𝑚}

and let 𝑓𝑖(𝑡, 𝑢1, … , 𝑢𝑚), for each 𝑖 = 1, 2, … , 𝑚, be continuous on
𝐷 and satisfy a Lipschitz condition there. The system of first-order
differential equations

𝑑𝑢𝑘
𝑑𝑡

(𝑡) = 𝑓𝑘(𝑡, 𝑢1, … , 𝑢𝑚), 𝑢𝑘(𝑎) = 𝛼𝑘, 𝑘 = 1, … , 𝑚

has a unique solution 𝑢1(𝑡), … , 𝑢𝑚(𝑡) for 𝑎 ≤ 𝑡 ≤ 𝑏.



Numerical Methods

Numerical methods for systems of first-order differential equations
are vector-valued generalizations of methods for single equations.

Fourth order Runge-Kutta for systems

w0 =
k1 = ℎf(𝑡𝑖, w𝑖)

k2 = ℎf(𝑡𝑖 + ℎ
2

, w𝑖 + 1
2

k1)

k3 = ℎf(𝑡𝑖 + ℎ
2

, w𝑖 + 1
2

k2)

k4 = ℎf(𝑡𝑖+1, w𝑖 + k3)

w𝑖+1 = w𝑖 + 1
6

(k1 + 2k2 + 2k3 + k4)

where w𝑖 = (𝑤𝑖,1, … , 𝑤𝑖,𝑚) is the vector of unknowns.



Consistency and Convergence

Definition
A one-step difference-equation with local truncation error 𝜏𝑖(ℎ) is
said to be consistent if

lim
ℎ→0

max
1≤𝑖≤𝑁

|𝜏𝑖(ℎ)| = 0

Definition
A one-step difference equation is said to be convergent if

lim
ℎ→0

max
1≤𝑖≤𝑁

|𝑤𝑖 − 𝑦(𝑡𝑖)| = 0,

where 𝑦𝑖 = 𝑦(𝑡𝑖) is the exact solution and 𝑤𝑖 the approximation.



Convergence of One-Step Methods
Theorem
Suppose the initial-value problem 𝑦′ = 𝑓(𝑡, 𝑦), 𝑎 ≤ 𝑡 ≤ 𝑏,
𝑦(𝑎) = 𝛼 is approximated by a one-step difference method in the
form 𝑤0 = 𝛼, 𝑤𝑖+1 = 𝑤𝑖 + ℎ𝜙(𝑡𝑖, 𝑤𝑖, ℎ). Suppose also that
ℎ0 > 0 exists and 𝜙(𝑡, 𝑤, ℎ) is continuous with a Lipschitz
condition in 𝑤 with constant 𝐿 on 𝐷, then:

𝐷 = {(𝑡, 𝑤, ℎ) | 𝑎 ≤ 𝑡 ≤ 𝑏, −∞ < 𝑤 < ∞, 0 ≤ ℎ ≤ ℎ0}.

1. The method is stable;
2. The method is convergent if and only if it is consistent:

𝜙(𝑡, 𝑦, 0) = 𝑓(𝑡, 𝑦)

3. If 𝜏 exists s.t. |𝜏𝑖(ℎ)| ≤ 𝜏(ℎ) when 0 ≤ ℎ ≤ ℎ0, then

|𝑦(𝑡𝑖) − 𝑤𝑖| ≤ 𝜏(ℎ)
𝐿

𝑒𝐿(𝑡𝑖−𝑎).



Root Condition

Definition
Let 𝜆1, … , 𝜆𝑚 denote the roots of the characteristic equation

𝑃(𝜆) = 𝜆𝑚 − 𝑎𝑚−1𝜆𝑚−1 − ⋯ − 𝑎1𝜆 − 𝑎0 = 0

associated with the multistep method

𝑤𝑖+1 =𝑎𝑚−1𝑤𝑖 + 𝑎𝑚−2𝑤𝑖−1 + ⋯ + 𝑎0𝑤𝑖+1−𝑚

+ ℎ𝐹(𝑡𝑖, ℎ, 𝑤𝑖+1, 𝑤𝑖, … , 𝑤𝑖+1−𝑚).

If |𝜆𝑖| ≤ 1 and all roots with absolute value 1 are simple, the
method is said to satisfy the root condition.



Stability

Definition
1. Methods that satisfy the root condition and have 𝜆 = 1 as the

only root of magnitude one are called strongly stable.
2. Methods that satisfy the root condition and have more than

one distinct root with magnitude one are called weakly stable.
3. Methods that do not satisfy the root condition are unstable.

Theorem
A multistep method

𝑤𝑖+1 =𝑎𝑚−1𝑤𝑖 + 𝑎𝑚−2𝑤𝑖−1 + ⋯ + 𝑎0𝑤𝑖+1−𝑚

+ ℎ𝐹(𝑡𝑖, ℎ, 𝑤𝑖+1, 𝑤𝑖, … , 𝑤𝑖+1−𝑚)

is stable if and and only if it satisfies the root condition. If it is also
consistent, then it is stable if and only if it is convergent.



Stiff Equations

A stiff differential equation is numerically unstable unless the
step size is extremely small
Large derivatives give error terms that are dominating the
solution
Example: The initial-value problem

𝑦′ = −30𝑦, 0 ≤ 𝑡 ≤ 1.5, 𝑦(0) = 1
3

has exact solution 𝑦 = 1
3𝑒−30𝑡. But RK4 is unstable with step

size ℎ = 0.1.



Euler’s Method for Test Equation

Consider the simple test equation

𝑦′ = 𝜆𝑦, 𝑦(0) = 𝛼, where 𝜆 < 0

with solution 𝑦(𝑡) = 𝛼𝑒𝜆𝑡.
Euler’s method gives 𝑤0 = 𝛼 and

𝑤𝑗+1 = 𝑤𝑗 + ℎ(𝜆𝑤𝑗) = (1 + ℎ𝜆)𝑤𝑗 = (1 + ℎ𝜆)𝑗+1𝛼.

The absolute error is

|𝑦(𝑡𝑗) − 𝑤𝑗| = ∣𝑒𝑗ℎ𝜆 − (1 + ℎ𝜆)𝑗∣ |𝛼|
= ∣(𝑒ℎ𝜆)𝑗 − (1 + ℎ𝜆)𝑗∣ |𝛼|

Stability requires |1 + ℎ𝜆| < 1, or ℎ < 2/|𝜆|.



Multistep Methods

Apply a multistep method to the test equation:

𝑤𝑗+1 =𝑎𝑚−1𝑤𝑗 + ⋯ + 𝑎0𝑤𝑗+1−𝑚

+ ℎ𝜆(𝑏𝑚𝑤𝑗+1 + 𝑏𝑚−1𝑤𝑗 + ⋯ + 𝑏0𝑤𝑗+1−𝑚)

or

(1 − ℎ𝜆𝑏𝑚)𝑤𝑗+1 − (𝑎𝑚−1 + ℎ𝜆𝑏𝑚−1)𝑤𝑗 − ⋯ − (𝑎0 + ℎ𝜆𝑏0)𝑤𝑗+1−𝑚 = 0

Let 𝛽1, … , 𝛽𝑚 be the zeros of the characteristic polynomial

𝑄(𝑧, ℎ𝜆) = (1 − ℎ𝜆𝑏𝑚)𝑧𝑚 − (𝑎𝑚−1 + ℎ𝜆𝑏𝑚−1)𝑧𝑚−1 − ⋯ − (𝑎0 + ℎ𝜆𝑏0)

Then 𝑐1, … , 𝑐𝑚 exist with

𝑤𝑗 =
𝑚

∑
𝑘=1

𝑐𝑘(𝛽𝑘)𝑗

and |𝛽𝑘| < 1 is required for stability.



Region of Stability

Definition
The region 𝑅 of absolute stability for a one-step method is
𝑅 = {ℎ𝜆 ∈ 𝒞 | |𝑄(ℎ𝜆)| < 1}, and for a multistep method, it is
𝑅 = {ℎ𝜆 ∈ 𝒞 | |𝛽𝑘| < 1, for all zeros 𝛽𝑘 of 𝑄(𝑧, ℎ𝜆)}.

A numerical method is said to be A-stable if its region 𝑅 of absolute
stability contains the entire left half-plane.


