Chapter 6
 Direct Methods for Solving Linear Systems

Per-Olof Persson
persson@berkeley.edu

Department of Mathematics
University of California, Berkeley
Math 128A Numerical Analysis

Direct Methods for Linear Systems

Consider solving a linear system of the form:

$$
\begin{gathered}
E_{1}: a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
E_{2}: a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
E_{n}: a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{n}
\end{gathered}
$$

for x_{1}, \ldots, x_{n}. Direct methods give an answer in a fixed number of steps, subject only to round-off errors.

We use three row operations to simplify the linear system:

1. Multiply Eq. E_{i} by $\lambda \neq 0:\left(\lambda E_{i}\right) \rightarrow\left(E_{i}\right)$
2. Multiply Eq. E_{j} by λ and add to Eq. $E_{i}:\left(E_{i}+\lambda E_{j}\right) \rightarrow\left(E_{i}\right)$
3. Exchange Eq. E_{i} and Eq. $E_{j}:\left(E_{i}\right) \leftrightarrow\left(E_{j}\right)$

Gaussian Elimination

Gaussian Elimination with Backward Substitution

- Reduce a linear system to triangular form by introducing zeros using the row operations $\left(E_{i}+\lambda E_{j}\right) \rightarrow\left(E_{i}\right)$
- Solve the triangular form using backward-substitution

Row Exchanges

- If a pivot element on the diagonal is zero, the reduction to triangular form fails
- Find a nonzero element below the diagonal and exchange the two rows

Definition

An $n \times m$ matrix is a rectangular array of elements with n rows and m columns in which both value and position of an element is important

Operation Counts

- Count the number of arithmetic operations performed
- Use the formulas

$$
\sum_{j=1}^{m} j=\frac{m(m+1)}{2}, \quad \sum_{j=1}^{m} j^{2}=\frac{m(m+1)(2 m+1)}{6}
$$

Reduction to Triangular Form

Multiplications/divisions:

$$
\sum_{i=1}^{n-1}(n-i)(n-i+2)=\cdots=\frac{2 n^{3}+3 n^{2}-5 n}{6}
$$

Additions/subtractions:

$$
\sum_{i=1}^{n-1}(n-i)(n-i+1)=\cdots=\frac{n^{3}-n}{3}
$$

Operation Counts

Backward Substitution

Multiplications/divisions:

$$
1+\sum_{i=1}^{n-1}((n-i)+1)=\frac{n^{2}+n}{2}
$$

Additions/subtractions:

$$
\sum_{i=1}^{n-1}((n-i-1)+1)=\frac{n^{2}-n}{2}
$$

Operation Counts

Gaussian Elimination Total Operation Count

Multiplications/divisions:

$$
\frac{n^{3}}{3}+n^{2}-\frac{n}{3}
$$

Additions/subtractions:

$$
\frac{n^{3}}{3}+\frac{n^{2}}{2}-\frac{5 n}{6}
$$

Partial Pivoting

- In Gaussian elimination, if a pivot element $a_{k k}^{(k)}$ is small compared to an element $a_{j k}^{(k)}$ below, the multiplier

$$
m_{j k}=\frac{a_{j k}^{(k)}}{a_{k k}^{(k)}}
$$

will be large, resulting in round-off errors

- Partial pivoting finds the smallest $p \geq k$ such that

$$
\left|a_{p k}^{(k)}\right|=\max _{k \leq i \leq n}\left|a_{i k}^{(k)}\right|
$$

and interchanges the rows $\left(E_{k}\right) \leftrightarrow\left(E_{p}\right)$

Scaled Partial Pivoting

- If there are large variations in magnitude of the elements within a row, scaled partial pivoting can be used
- Define a scale factor s_{i} for each row

$$
s_{i}=\max _{1 \leq j \leq n}\left|a_{i j}\right|
$$

- At step i, find p such that

$$
\frac{\left|a_{p i}\right|}{s_{p}}=\max _{i \leq k \leq n} \frac{\left|a_{k i}\right|}{s_{k}}
$$

and interchange the rows $\left(E_{i}\right) \leftrightarrow\left(E_{p}\right)$

Linear Algebra

Definition

Two matrices A and B are equal if they have the same number of rows and columns $n \times m$ and if $a_{i j}=b_{i j}$.

Definition

If A and B are $n \times m$ matrices, the sum $A+B$ is the $n \times m$ matrix with entries $a_{i j}+b_{i j}$.

Definition

If A is $n \times m$ and λ a real number, the scalar multiplication λA is the $n \times m$ matrix with entries $\lambda a_{i j}$.

Properties

Theorem

Let A, B, C be $n \times m$ matrices, λ, μ real numbers.
(a) $A+B=B+A$
(b) $(A+B)+C=A+(B+C)$
(c) $A+0=0+A=A$
(d) $A+(-A)=-A+A=0$
(e) $\lambda(A+B)=\lambda A+\lambda B$
(f) $(\lambda+\mu) A=\lambda A+\mu A$
(g) $\lambda(\mu A)=(\lambda \mu) A$
(h) $1 A=A$

Matrix Multiplication

Definition

Let A be $n \times m$ and B be $m \times p$. The matrix product $C=A B$ is the $n \times p$ matrix with entries

$$
c_{i j}=\sum_{k=1}^{m} a_{i k} b_{k j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i m} b_{m j}
$$

Special Matrices

Definition

- A square matrix has $m=n$
- A diagonal matrix $D=\left[d_{i j}\right]$ is square with $d_{i j}=0$ when $i \neq j$
- The identity matrix of order $n, I_{n}=\left[\delta_{i j}\right]$, is diagonal with

$$
\delta_{i j}= \begin{cases}1, & \text { if } i=j \\ 0, & \text { if } i \neq j\end{cases}
$$

Definition

- An upper-triangular $n \times n$ matrix $U=\left[u_{i j}\right]$ has

$$
u_{i j}=0, \quad \text { if } i=j+1, \ldots, n
$$

- A lower-triangular $n \times n$ matrix $L=\left[l_{i j}\right]$ has

$$
l_{i j}=0, \quad \text { if } i=1, \ldots, j-1
$$

Properties

Theorem

Let A be $n \times m, B$ be $m \times k, C$ be $k \times p, D$ be $m \times k$, and λ a real number.
(a) $A(B C)=(A B) C$
(b) $A(B+D)=A B+A D$
(c) $I_{m} B=B$ and $B I_{k}=B$
(d) $\lambda(A B)=(\lambda A) B=A(\lambda B)$

Matrix Inversion

Definition

- An $n \times n$ matrix A is nonsingular or invertible if $n \times n A^{-1}$ exists with $A A^{-1}=A^{-1} A=I$
- The matrix A^{-1} is called the inverse of A
- A matrix without an inverse is called singular or noninvertible

Theorem

For any nonsingular $n \times n$ matrix A,
(a) A^{-1} is unique
(b) A^{-1} is nonsingular and $\left(A^{-1}\right)^{-1}=A$
(c) If B is nonsingular $n \times n$, then $(A B)^{-1}=B^{-1} A^{-1}$

Matrix Transpose

Definition

- The transpose of $n \times m A=\left[a_{i j}\right]$ is $m \times n A^{t}=\left[a_{j i}\right]$
- A square matrix A is called symmetric if $A=A^{t}$

Theorem

(a) $\left(A^{t}\right)^{t}=A$
(b) $(A+B)^{t}=A^{t}+B^{t}$
(c) $(A B)^{t}=B^{t} A^{t}$
(d) if A^{-1} exists, then $\left(A^{-1}\right)^{t}=\left(A^{t}\right)^{-1}$

Determinants

Definition

(a) If $A=[a]$ is a 1×1 matrix, then $\operatorname{det} A=a$
(b) If A is $n \times n$, the minor $M_{i j}$ is the determinant of the
$(n-1) \times(n-1)$ submatrix deleting row i and column j of A
(c) The cofactor $A_{i j}$ associated with $M_{i j}$ is $A_{i j}=(-1)^{i+j} M_{i j}$
(d) The determinant of $n \times n$ matrix A for $n>1$ is

$$
\operatorname{det} A=\sum_{j=1}^{n} a_{i j} A_{i j}=\sum_{j=1}^{n}(-1)^{i+j} a_{i j} M_{i j}
$$

or

$$
\operatorname{det} A=\sum_{i=1}^{n} a_{i j} A_{i j}=\sum_{i=1}^{n}(-1)^{i+j} a_{i j} M_{i j}
$$

Properties

Theorem

(a) If any row or column of A has all zeros, then $\operatorname{det} A=0$
(b) If A has two rows or two columns equal, then $\operatorname{det} A=0$
(c) If \tilde{A} comes from $\left(E_{i}\right) \leftrightarrow\left(E_{j}\right)$ on A, then $\operatorname{det} \tilde{A}=-\operatorname{det} A$
(d) If \tilde{A} comes from $\left(\lambda E_{i}\right) \leftrightarrow\left(E_{i}\right)$ on A, then $\operatorname{det} \tilde{A}=\lambda \operatorname{det} A$
(e) If \tilde{A} comes from $\left(E_{i}+\lambda E_{j}\right) \leftrightarrow\left(E_{i}\right)$ on A, with $i \neq j$, then $\operatorname{det} \tilde{A}=\operatorname{det} A$
(f) If B is also $n \times n$, then $\operatorname{det} A B=\operatorname{det} A \operatorname{det} B$
(g) $\operatorname{det} A^{t}=\operatorname{det} A$
(h) When A^{-1} exists, $\operatorname{det} A^{-1}=(\operatorname{det} A)^{-1}$
(i) If A is upper/lower triangular or diagonal, then $\operatorname{det} A=\prod_{i=1}^{n} a_{i i}$

Linear Systems and Determinants

Theorem

The following statements are equivalent for any $n \times n$ matrix A :
(a) The equation $A \mathbf{x}=\mathbf{0}$ has the unique solution $\mathbf{x}=\mathbf{0}$
(b) The system $A \mathbf{x}=\mathbf{b}$ has a unique solution for any \mathbf{b}
(c) The matrix A is nonsingular; that is, A^{-1} exists
(d) $\operatorname{det} A \neq 0$
(e) Gaussian elimination with row interchanges can be performed on the system $A \mathbf{x}=\mathbf{b}$ for any \mathbf{b}

LU Factorization

The $k t h$ Gaussian transformation matrix is defined by

$$
M^{(k)}=\left[\begin{array}{cccccccc}
1 & 0 & & \cdots & & \cdots & & 0 \\
0 & \ddots & \ddots & & & & & \vdots \\
\vdots & \ddots & \ddots & \ddots & & & & \vdots \\
\vdots & & 0 & \ddots & \ddots & & & \vdots \\
\vdots & & \vdots & -m_{k+1, k} & \ddots & \ddots & & \vdots \\
\vdots & & \vdots & \vdots & 0 & \ddots & & \vdots \\
\vdots & & \vdots & \vdots & \vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & -m_{n, k} & 0 & \cdots & 0 & 1
\end{array}\right]
$$

LU Factorization

Gaussian elimination can be written as

$$
A^{(n)}=M^{(n-1)} \cdots M^{(1)} A=\left[\begin{array}{cccc}
a_{11}^{(1)} & a_{12}^{(1)} & \cdots & a_{1 n}^{(1)} \\
0 & a_{22}^{(2)} & \ddots & \vdots \\
\vdots & \ddots & \ddots & a_{n-1, n}^{(n-1)} \\
0 & \cdots & 0 & a_{n n}^{(n)}
\end{array}\right]
$$

LU Factorization

Reversing the elimination steps gives the inverses:

$$
L^{(k)}=\left[M^{(k)}\right]^{-1}=\left[\begin{array}{cccccccc}
1 & 0 & & \cdots & & \cdots & & 0 \\
0 & \ddots & \ddots & & & & & \vdots \\
\vdots & \ddots & \ddots & \ddots & & & & \vdots \\
\vdots & & 0 & \ddots & \ddots & & & \vdots \\
\vdots & & \vdots & m_{k+1, k} & \ddots & \ddots & & \vdots \\
\vdots & & \vdots & \vdots & 0 & \ddots & & \vdots \\
\vdots & & \vdots & \vdots & \vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & m_{n, k} & 0 & \cdots & 0 & 1
\end{array}\right]
$$

and we have

$$
\begin{aligned}
L U & =L^{(1)} \cdots L^{(n-1)} \cdots M^{(n-1)} \cdots M^{(1)} A \\
& =\left[M^{(1)}\right]^{-1} \cdots\left[M^{(n-1)}\right]^{-1} \cdots M^{(n-1)} \cdots M^{(1)} A=A
\end{aligned}
$$

LU Factorization

Theorem

If Gaussian elimination can be performed on the linear system $A \mathbf{x}=\mathbf{b}$ without row interchanges, A can be factored into the product of lower-triangular L and upper-triangular U as $A=L U$, where $m_{j i}=a_{j i}^{(i)} / a_{i i}^{(i)}$:

$$
U=\left[\begin{array}{cccc}
a_{11}^{(1)} & a_{12}^{(1)} & \ldots & a_{1 n}^{(1)} \\
0 & a_{22}^{(2)} & \ddots & \vdots \\
\vdots & \ddots & \ddots & a_{n-1, n}^{(n-1)} \\
0 & \cdots & 0 & a_{n n}^{(n)}
\end{array}\right], L=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
m_{21} & 1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
m_{n 1} & \cdots & m_{n, n-1} & 1
\end{array}\right]
$$

Permutation Matrices

Suppose k_{1}, \ldots, k_{n} is a permutation of $1, \ldots, n$. The permutation matrix $P=\left(p_{i j}\right)$ is defined by

$$
p_{i j}= \begin{cases}1, & \text { if } j=k_{i} \\ 0, & \text { otherwise }\end{cases}
$$

(i) $P A$ permutes the rows of A :

$$
P A=\left[\begin{array}{ccc}
a_{k_{1} 1} & \cdots & a_{k_{1} n} \\
\vdots & \ddots & \vdots \\
a_{k_{n} 1} & \cdots & a_{k_{n} n}
\end{array}\right]
$$

(ii) P^{-1} exists and $P^{-1}=P^{t}$

Gaussian elimination with row interchanges then becomes:

$$
A=P^{-1} L U=\left(P^{t} L\right) U
$$

Diagonally Dominant Matrices

Definition

The $n \times n$ matrix A is said to be strictly diagonally dominant when

$$
\left|a_{i i}\right|>\sum_{j \neq i}\left|a_{i j}\right|
$$

Theorem

A strictly diagonally dominant matrix A is nonsingular, Gaussian elimination can be performed on $A \mathbf{x}=\mathbf{b}$ without row interchanges, and the computations will be stable.

Positive Definite Matrices

Definition

A matrix A is positive definite if it is symmetric and if $\mathbf{x}^{t} A \mathbf{x}>0$ for every $\mathbf{x} \neq \mathbf{0}$.

Theorem

If A is an $n \times n$ positive definite matrix, then
(a) A has an inverse
(b) $a_{i i}>0$
(c) $\max _{1 \leq k, j \leq n}\left|a_{k j}\right| \leq \max _{1 \leq i \leq n}\left|a_{i i}\right|$
(d) $\left(a_{i j}\right)^{2}<a_{i i} a_{j j}$ for $i \neq j$

Principal Submatrices

Definition

A leading principal submatrix of a matrix A is a matrix of the form

$$
A_{k}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 k} \\
a_{21} & a_{22} & \cdots & a_{2 k} \\
\vdots & \vdots & & \vdots \\
a_{k 1} & a_{k 2} & \cdots & a_{k k}
\end{array}\right]
$$

for some $1 \leq k \leq n$.

Theorem

A symmetric matrix A is positive definite if and only if each of its leading principal submatrices has a positive determinant.

SPD and Gaussian Elimination

Theorem

The symmetric matrix A is positive definite if and only if Gaussian elimination without row interchanges can be done on $A \mathbf{x}=\mathbf{b}$ with all pivot elements positive, and the computations are then stable.

Corollary

The matrix A is positive definite if and only if it can be factored $A=L D L^{t}$ where L is lower triangular with 1 's on its diagonal and D is diagonal with positive diagonal entries.

Corollary

The matrix A is positive definite if and only if it can be factored $A=L L^{t}$, where L is lower triangular with nonzero diagonal entries.

Band Matrices

Definition

An $n \times n$ matrix is called a band matrix if p, q exist with $1<p, q<n$ and $a_{i j}=0$ when $p \leq j-i$ or $q \leq i-j$. The bandwidth is $w=p+q-1$.

A tridiagonal matrix has $p=q=2$ and bandwidth 3 .

Theorem

Suppose $A=\left[a_{i j}\right]$ is tridiagonal with $a_{i, i-1} a_{i, i+1} \neq 0$. If $\left|a_{11}\right|>\left|a_{12}\right|,\left|a_{i i}\right| \geq\left|a_{i, i-1}\right|+\left|a_{i, i+1}\right|$, and $\left|a_{n n}\right|>\left|a_{n, n-1}\right|$, then A is nonsingular.

