Chapter 6 Direct Methods for Solving Linear Systems

Per-Olof Persson persson@berkeley.edu

Department of Mathematics University of California, Berkeley

Math 128A Numerical Analysis

Consider solving a linear system of the form:

$$E_{1}: a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} = b_{1},$$

$$E_{2}: a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n} = b_{2},$$

$$\vdots$$

$$E_{n}: a_{n1}x_{1} + a_{n2}x_{2} + \dots + a_{nn}x_{n} = b_{n},$$

for x_1, \ldots, x_n . Direct methods give an answer in a fixed number of steps, subject only to round-off errors.

We use three row operations to simplify the linear system:

- 1. Multiply Eq. E_i by $\lambda \neq 0 \text{:} \ (\lambda E_i) \rightarrow (E_i)$
- 2. Multiply Eq. E_j by λ and add to Eq. E_i : $(E_i + \lambda E_j) \rightarrow (E_i)$
- 3. Exchange Eq. E_i and Eq. E_j : $(E_i) \leftrightarrow (E_j)$

Gaussian Elimination

Gaussian Elimination with Backward Substitution

- Reduce a linear system to triangular~form by introducing zeros using the row operations $(E_i+\lambda E_j)\to (E_i)$
- Solve the triangular form using *backward-substitution*

Row Exchanges

- If a *pivot element* on the diagonal is zero, the reduction to triangular form fails
- Find a nonzero element below the diagonal and exchange the two rows

Definition

An $n \times m$ matrix is a rectangular array of elements with n rows and m columns in which both value and position of an element is important

Operation Counts

- Count the number of arithmetic operations performed
- Use the formulas

$$\sum_{j=1}^{m} j = \frac{m(m+1)}{2}, \quad \sum_{j=1}^{m} j^2 = \frac{m(m+1)(2m+1)}{6}$$

Reduction to Triangular Form

Multiplications/divisions:

$$\sum_{i=1}^{n-1} (n-i)(n-i+2) = \dots = \frac{2n^3 + 3n^2 - 5n}{6}$$

Additions/subtractions:

$$\sum_{i=1}^{n-1} (n-i)(n-i+1) = \dots = \frac{n^3-n}{3}$$

Backward Substitution

Multiplications/divisions:

$$1 + \sum_{i=1}^{n-1} ((n-i) + 1) = \frac{n^2 + n}{2}$$

Additions/subtractions:

$$\sum_{i=1}^{n-1}((n-i-1)+1)=\frac{n^2-n}{2}$$

Gaussian Elimination Total Operation Count

Multiplications/divisions:

$$\frac{n^3}{3} + n^2 - \frac{n}{3}$$

Additions/subtractions:

$$\frac{n^3}{3} + \frac{n^2}{2} - \frac{5n}{6}$$

• In Gaussian elimination, if a pivot element $a_{kk}^{(k)}$ is small compared to an element $a_{jk}^{(k)}$ below, the multiplier

$$m_{jk} = \frac{a_{jk}^{(k)}}{a_{kk}^{(k)}}$$

will be large, resulting in round-off errors

• Partial pivoting finds the smallest $p \ge k$ such that

$$|a_{pk}^{(k)}| = \max_{k \le i \le n} |a_{ik}^{(k)}|$$

and interchanges the rows $(E_k) \leftrightarrow (E_p)$

- If there are large variations in magnitude of the elements within a row, *scaled partial pivoting* can be used
- Define a scale factor s_i for each row

$$s_i = \max_{1 \le j \le n} |a_{ij}|$$

• At step *i*, find *p* such that

$$\frac{a_{pi}|}{s_p} = \max_{i \le k \le n} \frac{|a_{ki}|}{s_k}$$

and interchange the rows $(E_i) \leftrightarrow (E_p)$

Two matrices A and B are equal if they have the same number of rows and columns $n \times m$ and if $a_{ij} = b_{ij}$.

Definition

If A and B are $n\times m$ matrices, the sum A+B is the $n\times m$ matrix with entries $a_{ij}+b_{ij}.$

Definition

If A is $n \times m$ and λ a real number, the scalar multiplication λA is the $n \times m$ matrix with entries λa_{ij} .

Let A, B, C be $n \times m$ matrices, λ, μ real numbers. (a) A + B = B + A(b) (A + B) + C = A + (B + C)(c) A + 0 = 0 + A = A(d) A + (-A) = -A + A = 0(e) $\lambda(A + B) = \lambda A + \lambda B$ (f) $(\lambda + \mu)A = \lambda A + \mu A$ (g) $\lambda(\mu A) = (\lambda \mu)A$ (h) 1A = A

Let A be $n\times m$ and B be $m\times p.$ The matrix product C=AB is the $n\times p$ matrix with entries

$$c_{ij} = \sum_{k=1}^{m} a_{ik} b_{kj} = a_{i1} b_{1j} + a_{i2} b_{2j} + \dots + a_{im} b_{mj}$$

Special Matrices

Definition

- A square matrix has m = n
- A diagonal matrix $D = [d_{ij}]$ is square with $d_{ij} = 0$ when $i \neq j$
- The identity matrix of order n, $I_n = [\delta_{ij}]$, is diagonal with

$$\delta_{ij} = \begin{cases} 1, & \text{if } i = j, \\ 0, & \text{if } i \neq j. \end{cases}$$

Definition

• An upper-triangular $n \times n$ matrix $U = [u_{ij}]$ has

$$u_{ij}=0,\qquad \text{if}\ i=j+1,\ldots,n.$$

• A lower-triangular $n \times n$ matrix $L = [l_{ij}]$ has

$$l_{ij}=0,\qquad \text{if}\ i=1,\ldots,j-1.$$

Let A be $n\times m,$ B be $m\times k,$ C be $k\times p,$ D be $m\times k,$ and λ a real number.

$$\begin{array}{ll} \text{(a)} & A(BC) = (AB)C \\ \text{(b)} & A(B+D) = AB + AD \\ \text{(c)} & I_mB = B \text{ and } BI_k = B \\ \text{(d)} & \lambda(AB) = (\lambda A)B = A(\lambda B) \end{array}$$

- An $n \times n$ matrix A is nonsingular or invertible if $n \times n \ A^{-1}$ exists with $AA^{-1} = A^{-1}A = I$
- The matrix A^{-1} is called the *inverse* of A
- A matrix without an inverse is called singular or noninvertible

Theorem

For any nonsingular $n \times n$ matrix A,

(a) A^{-1} is unique (b) A^{-1} is nonsingular and $(A^{-1})^{-1} = A$ (c) If B is nonsingular $n \times n$, then $(AB)^{-1} = B^{-1}A^{-1}$

- The transpose of $n \times m$ $A = [a_{ij}]$ is $m \times n$ $A^t = [a_{ji}]$ A square matrix A is called symmetric if $A = A^t$

Theorem

(a)
$$(A^t)^t = A$$

(b) $(A + B)^t = A^t + B^t$
(c) $(AB)^t = B^t A^t$
(d) if A^{-1} exists, then $(A^{-1})^t = (A^t)^{-1}$

$$\det A = \sum_{j=1}^{n} a_{ij} A_{ij} = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} M_{ij}$$

or

$$\det A = \sum_{i=1}^{n} a_{ij} A_{ij} = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} M_{ij}$$

(a) If any row or column of A has all zeros, then det A = 0(b) If A has two rows or two columns equal, then $\det A = 0$ (c) If \tilde{A} comes from $(E_i) \leftrightarrow (E_i)$ on A, then $\det \tilde{A} = -\det A$ (d) If \tilde{A} comes from $(\lambda E_i) \leftrightarrow (E_i)$ on A, then det $\tilde{A} = \lambda \det A$ (e) If A comes from $(E_i + \lambda E_i) \leftrightarrow (E_i)$ on A, with $i \neq j$, then $\det \tilde{A} = \det A$ (f) If B is also $n \times n$, then det $AB = \det A \det B$ (g) det $A^t = \det A$ (h) When A^{-1} exists, $\det A^{-1} = (\det A)^{-1}$ (i) If A is upper/lower triangular or diagonal, then $\det A = \prod_{i=1}^{n} a_{ii}$

The following statements are equivalent for any $n \times n$ matrix A:

- (a) The equation $A\mathbf{x} = \mathbf{0}$ has the unique solution $\mathbf{x} = \mathbf{0}$
- (b) The system $A\mathbf{x} = \mathbf{b}$ has a unique solution for any \mathbf{b}
 - (c) The matrix A is nonsingular; that is, A^{-1} exists
- (d) det $A \neq 0$
- (e) Gaussian elimination with row interchanges can be performed on the system $A\mathbf{x} = \mathbf{b}$ for any \mathbf{b}

The *kth Gaussian transformation matrix* is defined by

Gaussian elimination can be written as

$$A^{(n)} = M^{(n-1)} \cdots M^{(1)} A = \begin{bmatrix} a_{11}^{(1)} & a_{12}^{(1)} & \cdots & a_{1n}^{(1)} \\ 0 & a_{22}^{(2)} & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_{n-1,n}^{(n-1)} \\ 0 & \cdots & 0 & a_{nn}^{(n)} \end{bmatrix}$$

LU Factorization

Reversing the elimination steps gives the inverses:

$$L^{(k)} = [M^{(k)}]^{-1} = \begin{bmatrix} 1 & 0 & \cdots & \cdots & 0 \\ 0 & \ddots & \ddots & & & \vdots \\ \vdots & \ddots & \ddots & \ddots & & \vdots \\ \vdots & 0 & \ddots & \ddots & & \vdots \\ \vdots & \vdots & m_{k+1,k} & \ddots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & m_{n,k} & 0 & \cdots & 0 & 1 \end{bmatrix}$$

and we have

$$\begin{split} LU &= L^{(1)} \cdots L^{(n-1)} \cdots M^{(n-1)} \cdots M^{(1)} A \\ &= [M^{(1)}]^{-1} \cdots [M^{(n-1)}]^{-1} \cdots M^{(n-1)} \cdots M^{(1)} A = A \end{split}$$

If Gaussian elimination can be performed on the linear system $A{\bf x}={\bf b}$ without row interchanges, A can be factored into the product of lower-triangular L and upper-triangular U as A=LU, where $m_{ji}=a_{ji}^{(i)}/a_{ii}^{(i)}$:

$$U = \begin{bmatrix} a_{11}^{(1)} & a_{12}^{(1)} & \cdots & a_{1n}^{(1)} \\ 0 & a_{22}^{(2)} & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_{n-1,n}^{(n-1)} \\ 0 & \cdots & 0 & a_{nn}^{(n)} \end{bmatrix}, \ L = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ m_{21} & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ m_{n1} & \cdots & m_{n,n-1} & 1 \end{bmatrix}$$

Permutation Matrices

Suppose k_1,\ldots,k_n is a permutation of $1,\ldots,n.$ The permutation matrix $P=(p_{ij})$ is defined by

$$p_{ij} = \begin{cases} 1, & \text{if } j = k_i, \\ 0, & \text{otherwise.} \end{cases}$$

(i) PA permutes the rows of A:

$$PA = \begin{bmatrix} a_{k_11} & \cdots & a_{k_1n} \\ \vdots & \ddots & \vdots \\ a_{k_n1} & \cdots & a_{k_nn} \end{bmatrix}$$

(ii) P^{-1} exists and $P^{-1} = P^t$ Gaussian elimination with row interchanges then becomes:

$$A = P^{-1}LU = (P^tL)U$$

The $n \times n$ matrix A is said to be *strictly diagonally dominant* when

$$a_{ii}| > \sum_{j \neq i} |a_{ij}|$$

Theorem

A strictly diagonally dominant matrix A is nonsingular, Gaussian elimination can be performed on $A\mathbf{x} = \mathbf{b}$ without row interchanges, and the computations will be stable.

A matrix A is *positive definite* if it is symmetric and if $\mathbf{x}^t A \mathbf{x} > 0$ for every $\mathbf{x} \neq \mathbf{0}$.

Theorem

If A is an $n \times n$ positive definite matrix, then (a) A has an inverse (b) $a_{ii} > 0$ (c) $\max_{1 \le k, j \le n} |a_{kj}| \le \max_{1 \le i \le n} |a_{ii}|$ (d) $(a_{ij})^2 < a_{ii}a_{jj}$ for $i \ne j$

A leading principal submatrix of a matrix \boldsymbol{A} is a matrix of the form

$$A_{k} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots & \vdots & & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kk} \end{bmatrix}$$

for some $1 \le k \le n$.

Theorem

A symmetric matrix A is positive definite if and only if each of its leading principal submatrices has a positive determinant.

The symmetric matrix A is positive definite if and only if Gaussian elimination without row interchanges can be done on $A\mathbf{x} = \mathbf{b}$ with all pivot elements positive, and the computations are then stable.

Corollary

The matrix A is positive definite if and only if it can be factored $A = LDL^t$ where L is lower triangular with 1's on its diagonal and D is diagonal with positive diagonal entries.

Corollary

The matrix A is positive definite if and only if it can be factored $A = LL^t$, where L is lower triangular with nonzero diagonal entries.

An $n \times n$ matrix is called a *band matrix* if p, q exist with 1 < p, q < n and $a_{ij} = 0$ when $p \le j - i$ or $q \le i - j$. The *bandwidth* is w = p + q - 1.

A tridiagonal matrix has p = q = 2 and bandwidth 3.

Theorem

Suppose $A = [a_{ij}]$ is tridiagonal with $a_{i,i-1}a_{i,i+1} \neq 0$. If $|a_{11}| > |a_{12}|, |a_{ii}| \ge |a_{i,i-1}| + |a_{i,i+1}|$, and $|a_{nn}| > |a_{n,n-1}|$, then A is nonsingular.