The Level Set Method

Per-Olof Persson
persson@berkeley.edu

Math 228B Numerical Solutions of Differential Equations

Evolving Curves and Surfaces

  • Propagate curve according to speed function \(\boldsymbol{v}=F\boldsymbol{n}\)

  • \(F\) depends on space, time, and the curve itself

  • Surfaces in three dimensions

image
 

Geometry Representations  

Explicit Geometry
Parameterized boundaries
 
image

Implicit Geometry
Boundaries given by zero levelset
 
image

Explicit Techniques

  • Simple approach: Represent curve explicitly by a set of nodes \(\{\boldsymbol{x}^{(i)}\}\), connected by lines or splines

  • Propagate curve by solving ODEs \[\begin{aligned} \frac{d\boldsymbol{x}^{(i)}}{dt} = \boldsymbol{v}(\boldsymbol{x}^{(i)},t),\quad \boldsymbol{x}^{(i)}(0) = \boldsymbol{x}^{(i)}_0, \end{aligned}\]

  • Calculate normal vectors, curvatures, etc by difference approximations, e.g.: \[\begin{aligned} \frac{d\boldsymbol{x}^{(i)}}{ds}\approx \frac{\boldsymbol{x}^{(i+1)}-\boldsymbol{x}^{(i-1)}}{2\Delta s} \end{aligned}\]

  • MATLAB Demo

Explicit Techniques - Drawbacks

  • Node redistribution required, introduces errors

  • No entropy solution, sharp corners handled incorrectly

  • Need special treatment for topology changes

  • Stability constraints for curvature dependent speed functions

Node distribution
image

Sharp corners
image

Topology changes
image

The Level Set Method

  • Implicit geometries, evolve interface by solving PDEs

  • Invented in 1988 by Osher and Sethian:

    • Stanley Osher and James A. Sethian. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton- Jacobi formulations. J. Comput. Phys., 79(1):12–49, 1988.

  • Introductory books:

    • James A. Sethian. Level set methods and fast marching methods. Cambridge University Press, Cambridge, second edition, 1999.

    • Stanley Osher and Ronald Fedkiw. Level set methods and dynamic implicit surfaces. Springer-Verlag, New York, 2003.

Implicit Geometries

  • Represent curve by zero level set of a function, \(\phi(\boldsymbol{x})=0\)

  • Special case: Signed distance function:

    • \(|\nabla\phi|=1\)

    • \(|\phi(\boldsymbol{x})|\) gives (shortest) distance from \(\boldsymbol{x}\) to curve

    image

Discretized Implicit Geometries

  • Discretize implicit function \(\phi\) on background grid

  • Obtain \(\phi(\boldsymbol{x})\) for general \(\boldsymbol{x}\) by interpolation

Cartesian image

        

Quadtree/Octree image

 

Geometric Variables

  • Normal vector \(\boldsymbol{n}\) (without assuming distance function): \[\begin{aligned} \boldsymbol{n}=\frac{\nabla\phi}{|\nabla\phi|} \end{aligned}\]

  • Curvature (in two dimensions): \[\begin{aligned} \kappa=\nabla\cdot \frac{\nabla \phi}{|\nabla \phi|} = \frac{\phi_{xx}\phi_y^2-2\phi_y\phi_x\phi_{xy}+\phi_{yy}\phi_x^2}{(\phi_x^2+\phi_y^2)^{3/2}}. \end{aligned}\]

  • Write material parameters, etc, in terms of \(\phi\): \[\begin{aligned} \rho(\boldsymbol{x}) = \rho_1 + (\rho_2-\rho_1)\theta(\phi(\boldsymbol{x})) \end{aligned}\] Smooth Heaviside function \(\theta\) over a few grid cells.

The Level Set Equation

  • Solve convection equation to propagate \(\phi=0\) by velocities \(\boldsymbol{v}\) \[\begin{aligned} \phi_t + \boldsymbol{v}\cdot \nabla\phi = 0. \end{aligned}\]

  • For \(\boldsymbol{v}=F\boldsymbol{n}\), use \(\boldsymbol{n}=\nabla\phi/|\nabla\phi|\) and \(\nabla\phi\cdot\nabla\phi=|\nabla\phi|^2\) to obtain the Level Set Equation \[\begin{aligned} \phi_t+F|\nabla\phi|=0. \end{aligned}\]

  • Nonlinear, hyperbolic equation (Hamilton-Jacobi).

Discretization

  • Use upwinded finite difference approximations for convection

  • For the level set equation \(\phi_t+F|\nabla\phi|=0\): \[\begin{aligned} \phi_{ijk}^{n+1}\ &= \phi_{ijk}^n - \Delta t \left( \max(F,0)\nabla^{+}_{ijk} + \min(F,0)\nabla^{-}_{ijk} \right), \end{aligned}\] where \[\begin{aligned} \nabla^{+}_{ijk} = \big[ & \max(D^{-x}\phi_{ijk}^n,0)^2+ \min(D^{+x}\phi_{ijk}^n,0)^2 + \nonumber \\ & \max(D^{-y}\phi_{ijk}^n,0)^2+ \min(D^{+y}\phi_{ijk}^n,0)^2 + \nonumber \\ & \max(D^{-z}\phi_{ijk}^n,0)^2+ \min(D^{+z}\phi_{ijk}^n,0)^2 \big] ^{1/2}, \end{aligned}\]

Discretization

and \[\begin{aligned} \nabla^{-}_{ijk} = \big[ & \min(D^{-x}\phi_{ijk}^n,0)^2+ \max(D^{+x}\phi_{ijk}^n,0)^2 + \nonumber \\ & \min(D^{-y}\phi_{ijk}^n,0)^2+ \max(D^{+y}\phi_{ijk}^n,0)^2 + \nonumber \\ & \min(D^{-z}\phi_{ijk}^n,0)^2+ \max(D^{+z}\phi_{ijk}^n,0)^2 \big] ^{1/2}. \end{aligned}\]

  • \(D^{-x}\) backward difference operator in the \(x\)-direction, etc

  • For curvature dependent part of \(F\), use central differences

  • Higher order schemes available

  • MATLAB Demo

Reinitialization

  • Even if the initial level set function is a distance function, general speed functions \(F\) will give large variations in \(|\nabla\phi|\)

  • This gives poor accuracy and performance, and requires smaller timesteps for stability

  • Reinitialize the level set function by finding a new \(\phi\) with same zero level set but \(|\nabla\phi|=1\)

  • Different approaches:

    1. Integrate the reinitialization equation for a few time steps \[\begin{aligned} \phi_t + \mathrm{sign}(\phi) ( |\nabla \phi| - 1 ) = 0 \end{aligned}\]

    2. Compute distances from \(\phi=0\) explicitly for nodes close to boundary, use Fast Marching Method for remaining nodes

The Boundary Value Formulation

  • For \(F>0\), formulate evolution by an arrival function \(T\)

  • \(T(\boldsymbol{x})\) gives time to reach \(\boldsymbol{x}\) from initial \(\Gamma\)

  • time * rate = distance gives the Eikonal equation: \[\begin{aligned} |\nabla T|F = 1, \quad T=0\text{ on }\Gamma. \end{aligned}\]

  • Special case: \(F=1\) gives distance functions

image

The Fast Marching Method

  • Discretize the Eikonal equation \(|\nabla T|F=1\) by \[\begin{aligned} \left[ \begin{array}{r} \max(D_{ijk}^{-x}T,0)^2+\min(D_{ijk}^{+x}T,0)^2 \\ +\max(D_{ijk}^{-y}T,0)^2+\min(D_{ijk}^{+y}T,0)^2 \\ +\max(D_{ijk}^{-z}T,0)^2+\min(D_{ijk}^{+z}T,0)^2 \\ \end{array} \right]^{1/2} = \frac{1}{F_{ijk}} \end{aligned}\] or \[\begin{aligned} \label{fmmdisc} \left[ \begin{array}{r} \max(D_{ijk}^{-x}T,-D_{ijk}^{+x}T,0)^2 \\ +\max(D_{ijk}^{-y}T,-D_{ijk}^{+y}T,0)^2 \\ +\max(D_{ijk}^{-z}T,-D_{ijk}^{+z}T,0)^2 \\ \end{array} \right]^{1/2} = \frac{1}{F_{ijk}} \end{aligned}\]

The Fast Marching Method

  • Use the fact that the front propagates outward

  • Tag known values and update neighboring \(T\) values (using the difference approximation)

  • Pick unknown with smallest \(T\) (will not be affected by other unknowns)

  • Update new neighbors and repeat until all nodes are known

  • Store unknowns in priority queue, \(\mathcal{O}(n\log n)\) performance for \(n\) nodes with heap implementation

Application: First arrivals and shortest geodesic paths

image image image
 
image image image
Visibility around obstacles

Application: Structural Vibration Control

  • Consider eigenvalue problem \[\begin{aligned} -\Delta u &= \lambda \rho(\boldsymbol{x})u, & x &\in \Omega \\ u &= 0, & x &\in \partial \Omega. \text{with} \rho(\boldsymbol{x}) &= \begin{cases} \rho_1 & \textrm{for }x \notin S \\ \rho_2 & \textrm{for }x \in S. \end{cases} \end{aligned}\]

  • Solve the optimization \[\begin{aligned} \min_S \lambda_1 \textrm{ or } \lambda_2 \textrm{ subject to } \|S\|=K. \end{aligned}\]

Application: Structural Vibration Control

  • Level set formulation by Osher and Santosa:

    • Finite difference approximations for Laplacian

    • Sparse eigenvalue solver for solutions \(\lambda_i, u_i\)

    • Calculate descent direction \(\delta \phi=-v(\boldsymbol{x})|\nabla \phi|\) with \(v(\boldsymbol{x})\) from shape sensitivity analysis

    • Find a Lagrange multiplier that enforces the area constraint using Newton’s method

    • Represent interface implicitly, propagate using level set method