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Due February 2

1. (a) Show that the 9-point Laplacian in LeVeque (3.17) has the truncation error derived in Section
3.5. Hint: To simplify the computation, note that the 9-point Laplacian can be written as the
5-point Laplacian (with known truncation error) plus a �nite di�erence approximation that models
1
6h

2uxxyy +O(h4).

(b) Modify the Julia function assemblePoisson in the Julia notebook on the course webpage, to use
the 9-point Laplacian (3.17) instead of the 5-point Laplacian and form the linear system (3.18)
where fij is given by (3.19). You can test your function using exactly the same testPoisson

function from the notebook. Perform a grid re�nement study to verify that fourth order accuracy
is achieved.

2. We consider the problem of �nding the �owrate through a cross section of a channel of trapezoidal shape.
The cross section, shown in Figure 1, is assumed to have a constant perimeter L = B + 2D, which
is directly proportional to the amount of material required (for this problem L is assumed constant.)
Therefore, the shape can be described in terms of two parameters, the size of the base in the trapezoid
B and the height of the cross section H.
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Figure 1: Trapezoidal cross section and �ow channel.

Given B and H, the geometrical parameters A and D can be calculated from:

D =
1

2
(L−B), and A =

√
1

4
(L−B)2 −H2. (1)

We are interested in the �owrate Q de�ned as the integral of the velocity u (normal to the cross section)
over the cross section Φ:

Q =

∫
Φ
u dx dy. (2)

The channel is at a slope of angle α, as shown in Figure 1, and the horizontal components of the
gravitational force creates the pressure gradient for the downward �ow. The governing equations are
the Navier-Stokes equations,

u · ∇u+∇p = f + ν∇2u. (3)
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With the assumption of fully developed �ow, these can be reduced to Poisson's equation for the velocity
component u normal to the channel cross section,

−∇2u =
g sinα

ν
. (4)

Here, g is the gravitational constant, and ν is the kinematic viscosity of the �uid. For simplicity, we
assume that

g sinα

ν
= 1. (5)

Along the walls of the channel the velocity is zero, and on the free surface a zero-stress condition
(∂u∂n = 0) is assumed.

We will solve Poisson's equation using a �nite di�erence procedure. Due to symmetry we only consider
half the channel section, as shown in Figure 2. The following boundary conditions are applied on the
original domain: {

∂u
∂n = 0, in P1P4 and P4P3

u = 0, in P1P2 and P2P3

(6)

To solve the problem, we map the half domain Ω to a rectangular domain Ω̂ and then solve the equations
numerically using the �nite di�erence method on Ω̂. We use a regular grid with (n+1)× (n+1) points
in the computational domain, giving square cells of size ∆ξ = ∆η = 1/n.
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Figure 2: Geometrical transformation from the physical space to the computational domain.

(a) Introduce a mapping T to transform the original domain Ω (with coordinates x, y) to the unit
square Ω̂ (with coordinates ξ, η). Derive the equations and the boundary conditions in the new
domain.

(b) In the transformed domain, write down second-order accurate �nite-di�erence schemes for the
discretization of all the derivative terms in the interior of the domain, as well as for the boundary
points. You do not have to derive special schemes for the corner points, use the left boundary
scheme at corner P ′

4, and u = 0 at the other three corners. Also show how to evaluate the integral
in the approximate �owrate Q̂ numerically in the computational domain.
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(c) Write a Julia function with the calling syntax

Q, x, y, u = channelflow(L, B, H, n)

that solves the problem for given values of L, B, and H, and grid size n. To debug your program,
calculate the solution and Q̂ using a grid size n = 20, for L = 3.0, B = 0.5, and H = 1.0, and
compare your results with the sample solution in Figure 3.
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Figure 3: Sample solution, for L = 3.0, B = 0.5, H = 1.0, and n = 20. The plots show the grid (left) and
contour lines of the solution (right).

(d) Make convergence plots and calculate the convergence rates for the error in the output Q̂. Do
the calculation for L = 3.0, H = 1.0, and B = 0.0, 0.5, 1.0 (3 convergence plots). Verify that
you obtain approximately second-order convergence. Use the grid sizes n = 10, 20, 40, 80, 160, 320.
Since we don't know the exact solution, use the solution for n = 320 as a reference.

3. Consider the PDE

ut = κuxx − γu, (7)

which models a di�usion with decay provided κ > 0 and γ > 0. Consider methods of the form

Un+1
j = Un

j +
kκ

2h2
[Un

j−1 − 2Un
j + Un

j+1 + Un+1
j−1 − 2Un+1

j + Un+1
j+1 ]− kγ[(1− θ)Un

j + θUn+1
j ] (8)

where θ is a parameter. In particular, if θ = 1/2 then the decay term is modeled with the same
centered-in-time approach as the di�usion term and the method can be obtained by applying the
Trapezoidal method to the MOL formulation of the PDE. If θ = 0 then the decay term is handled
explicitly. For more general reaction-di�usion equations it may be advantageous to handle the reaction
terms explicitly since these terms are generally nonlinear, so making them implicit would require solving
nonlinear systems in each time step (whereas handling the di�usion term implicitly only gives a linear
system to solve in each time step).

(a) By computing the local truncation error, show that this method is O(kp + h2) accurate, where
p = 2 if θ = 1/2 and p = 1 otherwise.

(continued in PS2)

Code Submission: Your Julia �le needs to de�ne the functions assemblePoisson and channelflow, and
any other supporting functions and variables.
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