
UC Berkeley Math 228B, Spring 2024: Problem Set 4
Prof. Per-Olof Persson (persson@berkeley.edu)

Due March 15

1. Consider the boundary value problem

u′′′′(x) = f(x) ≡ 480x− 120, for x ∈ (0, 1) (1)
u(0) = u′(0) = u(1) = u′(1) = 0 (2)

(a) Derive the following Galerkin formulation for the problem (1)-(2) on some appropriate function
space Vh: Find uh ∈ Vh such that∫ 1

0
u′′h(x)v

′′(x) dx =

∫ 1

0
f(x)v(x) dx, ∀v ∈ Vh. (3)

(b) Define the triangulation Th = {K1,K2}, where K1 = [0, 12 ] and K2 = [12 , 1], and the function space

Vh = {v ∈ C1([0, 1]) : v
∣∣
K

∈ P3(K) ∀K ∈ Th, v(0) = v′(0) = v(1) = v′(1) = 0}. (4)

Find a basis {ϕi} for Vh. Hint: Consider Hermite polynomials on each element.
(c) Solve the Galerkin problem (3) using your basis functions. Plot the numerical solution uh(x) and

the true solution u(x).

2. Implement a Julia function with the syntax

u = fempoi(p,t,e)

that solves Poissons’s equation −∇2u(x, y) = 1 on the domain described by the unstructured triangular
mesh p,t. The boundary conditions are homogeneous Neumann (n · ∇u = 0) except for the nodes in
the array e which are homogeneous Dirichlet (u = 0).
Here are a few examples for testing the function:

� �
# Square, Dirichlet left/bottom
pv = Float64[0 0; 1 0; 1 1; 0 1; 0 0]
p, t, e = pmesh(pv, 0.15, 0)
e = e[@. (p[e,1] < 1e-6) | (p[e,2] < 1e-6)]
u = fempoi(p, t, e)
tplot(p, t, u)

# Circle, all Dirichlet
n = 32; phi = 2pi*(0:n)/n
pv = [cos.(phi) sin.(phi)]
p, t, e = pmesh(pv, 2pi/n, 0)
u = fempoi(p, t, e)
tplot(p, t, u)

# Generic polygon geometry, mixed Dirichlet/Neumann
x = 0:.1:1
y = 0.1*(-1).ˆ(0:10)
pv = [x y; .5 .6; 0 .1]
p, t, e = pmesh(pv, 0.04, 0)
e = e[@. p[e,2] > (.6 - abs(p[e,1] - 0.5) - 1e-6)]
u = fempoi(p, t, e)
tplot(p, t, u)� �

This content is protected and may not be shared, uploaded, or distributed. Page 1/ 2



3. Implement a Julia function with the syntax

errors = poiconv(pv, hmax, nrefmax)

that solves the all-Dirichlet Poisson problem for the polygon pv, using the mesh parameters hmax and
nref = 0,1,...,nrefmax. Consider the solution on the finest mesh the exact solution, and compute
the max-norm of the errors at the nodes for all the other solutions (note that this is easy given how the
meshes were refined – the common nodes appear first in each mesh). The output errors is a vector
of length nrefmax containing all the errors.
Test the function using the commands below, which makes a convergence plot and estimates the rates:� �

hmax = 0.15
pv_square = Float64[0 0; 1 0; 1 1; 0 1; 0 0]
pv_polygon = Float64[0 0; 1 0; .5 .5; 1 1; 0 1; 0 0]

errors_square = poiconv(pv_square, hmax, 3)
errors_polygon = poiconv(pv_polygon, hmax, 3)
errors = [errors_square errors_polygon]

clf()
loglog(hmax ./ [1,2,4], errors)
rates = @. log2(errors[end-1,:]) - log2(errors[end,:])� �

Code Submission: Your Julia file needs to define the functions fempoi and poiconv, with exactly the
requested names and input/output arguments, as well as any other supporting functions and variables that
are required for your functions to run correctly.

This content is protected and may not be shared, uploaded, or distributed. Page 2/ 2


