## UC Berkeley Math 228B, Spring 2024: Problem Set 4

## Prof. Per-Olof Persson (persson@berkeley.edu)

## Due March 15

1. Consider the boundary value problem

$$
\begin{align*}
u^{\prime \prime \prime \prime}(x) & =f(x) \equiv 480 x-120, \quad \text { for } x \in(0,1)  \tag{1}\\
u(0) & =u^{\prime}(0)=u(1)=u^{\prime}(1)=0 \tag{2}
\end{align*}
$$

(a) Derive the following Galerkin formulation for the problem (1)-(2) on some appropriate function space $V_{h}$ : Find $u_{h} \in V_{h}$ such that

$$
\begin{equation*}
\int_{0}^{1} u_{h}^{\prime \prime}(x) v^{\prime \prime}(x) d x=\int_{0}^{1} f(x) v(x) d x, \quad \forall v \in V_{h} \tag{3}
\end{equation*}
$$

(b) Define the triangulation $T_{h}=\left\{K_{1}, K_{2}\right\}$, where $K_{1}=\left[0, \frac{1}{2}\right]$ and $K_{2}=\left[\frac{1}{2}, 1\right]$, and the function space

$$
\begin{equation*}
V_{h}=\left\{v \in C^{1}([0,1]):\left.v\right|_{K} \in \mathbb{P}_{3}(K) \forall K \in T_{h}, v(0)=v^{\prime}(0)=v(1)=v^{\prime}(1)=0\right\} \tag{4}
\end{equation*}
$$

Find a basis $\left\{\varphi_{i}\right\}$ for $V_{h}$. Hint: Consider Hermite polynomials on each element.
(c) Solve the Galerkin problem (3) using your basis functions. Plot the numerical solution $u_{h}(x)$ and the true solution $u(x)$.
2. Implement a Julia function with the syntax

```
u = fempoi(p,t,e)
```

that solves Poissons's equation $-\nabla^{2} u(x, y)=1$ on the domain described by the unstructured triangular mesh $\mathrm{p}, \mathrm{t}$. The boundary conditions are homogeneous Neumann $(n \cdot \nabla u=0)$ except for the nodes in the array e which are homogeneous Dirichlet ( $u=0$ ).
Here are a few examples for testing the function:

```
# Square, Dirichlet left/bottom
pv = Float64[0 0; 1 0; 1 1; 0 1; 0 0]
p, t, e = pmesh(pv, 0.15, 0)
e = e[@. (p[e,1] < le-6) | (p[e,2] < 1e-6)]
u = fempoi(p, t, e)
tplot(p, t, u)
# Circle, all Dirichlet
n = 32; phi = 2pi*(0:n)/n
pv = [cos.(phi) sin.(phi)]
p, t, e = pmesh(pv, 2pi/n, 0)
u = fempoi(p, t, e)
tplot(p, t, u)
# Generic polygon geometry, mixed Dirichlet/Neumann
x = 0:.1:1
y = 0.1*(-1).^(0:10)
pv = [x y; .5 .6; 0 .1]
p, t, e = pmesh(pv, 0.04, 0)
e = e[@. p[e,2] > (.6 - abs(p[e,1] - 0.5) - le-6)]
u = fempoi(p, t, e)
tplot(p, t, u)
```


3. Implement a Julia function with the syntax

```
errors = poiconv(pv, hmax, nrefmax)
```

that solves the all-Dirichlet Poisson problem for the polygon pv, using the mesh parameters hmax and nref $=0,1, \ldots$, nrefmax. Consider the solution on the finest mesh the exact solution, and compute the max-norm of the errors at the nodes for all the other solutions (note that this is easy given how the meshes were refined - the common nodes appear first in each mesh). The output errors is a vector of length nrefmax containing all the errors.
Test the function using the commands below, which makes a convergence plot and estimates the rates:

```
hmax = 0.15
pv_square = Float64[0 0; 1 0; 1 1; 0 1; 0 0]
pv_polygon = Float64[0 0; 1 0; .5 .5; 1 1; 0 1; 0 0]
errors_square = poiconv(pv_square, hmax, 3)
errors_polygon = poiconv(pv_polygon, hmax, 3)
errors = [errors_square errors_polygon]
clf()
loglog(hmax ./ [1,2,4], errors)
rates = @. log2(errors[end-1,:]) - log2(errors[end,:])
```

Code Submission: Your Julia file needs to define the functions fempoi and poiconv, with exactly the requested names and input/output arguments, as well as any other supporting functions and variables that are required for your functions to run correctly.

