
UC Berkeley Math 228B, Spring 2024: Problem Set 4
Prof. Per-Olof Persson (persson@berkeley.edu)

Due March 15

1. Consider the boundary value problem

u′′′′(x) = f(x) ≡ 480x− 120, for x ∈ (0, 1) (1)
u(0) = u′(0) = u(1) = u′(1) = 0 (2)

(a) Derive the following Galerkin formulation for the problem (1)-(2) on some appropriate function
space Vh: Find uh ∈ Vh such that∫ 1

0
u′′h(x)v

′′(x) dx =

∫ 1

0
f(x)v(x) dx, ∀v ∈ Vh. (3)

(b) Define the triangulation Th = {K1,K2}, where K1 = [0, 12 ] and K2 = [12 , 1], and the function space

Vh = {v ∈ C1([0, 1]) : v
∣∣
K

∈ P3(K) ∀K ∈ Th, v(0) = v′(0) = v(1) = v′(1) = 0}. (4)

Find a basis {ϕi} for Vh. Hint: Consider Hermite polynomials on each element.
(c) Solve the Galerkin problem (3) using your basis functions. Plot the numerical solution uh(x) and

the true solution u(x).

2. Implement a Julia function with the syntax

u = fempoi(p,t,e)

that solves Poissons’s equation −∇2u(x, y) = 1 on the domain described by the unstructured triangular
mesh p,t. The boundary conditions are homogeneous Neumann (n · ∇u = 0) except for the nodes in
the array e which are homogeneous Dirichlet (u = 0).
Here are a few examples for testing the function:

� �
# Square, Dirichlet left/bottom
pv = Float64[0 0; 1 0; 1 1; 0 1; 0 0]
p, t, e = pmesh(pv, 0.15, 0)
e = e[@. (p[e,1] < 1e-6) | (p[e,2] < 1e-6)]
u = fempoi(p, t, e)
tplot(p, t, u)

# Circle, all Dirichlet
n = 32; phi = 2pi*(0:n)/n
pv = [cos.(phi) sin.(phi)]
p, t, e = pmesh(pv, 2pi/n, 0)
u = fempoi(p, t, e)
tplot(p, t, u)

# Generic polygon geometry, mixed Dirichlet/Neumann
x = 0:.1:1
y = 0.1*(-1).ˆ(0:10)
pv = [x y; .5 .6; 0 .1]
p, t, e = pmesh(pv, 0.04, 0)
e = e[@. p[e,2] > (.6 - abs(p[e,1] - 0.5) - 1e-6)]
u = fempoi(p, t, e)
tplot(p, t, u)� �
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3. Implement a Julia function with the syntax

errors = poiconv(pv, hmax, nrefmax)

that solves the all-Dirichlet Poisson problem for the polygon pv, using the mesh parameters hmax and
nref = 0,1,...,nrefmax. Consider the solution on the finest mesh the exact solution, and compute
the max-norm of the errors at the nodes for all the other solutions (note that this is easy given how the
meshes were refined – the common nodes appear first in each mesh). The output errors is a vector
of length nrefmax containing all the errors.
Test the function using the commands below, which makes a convergence plot and estimates the rates:� �

hmax = 0.15
pv_square = Float64[0 0; 1 0; 1 1; 0 1; 0 0]
pv_polygon = Float64[0 0; 1 0; .5 .5; 1 1; 0 1; 0 0]

errors_square = poiconv(pv_square, hmax, 3)
errors_polygon = poiconv(pv_polygon, hmax, 3)
errors = [errors_square errors_polygon]

clf()
loglog(hmax ./ [1,2,4], errors)
rates = @. log2(errors[end-1,:]) - log2(errors[end,:])� �

Code Submission: Your Julia file needs to define the functions fempoi and poiconv, with exactly the
requested names and input/output arguments, as well as any other supporting functions and variables that
are required for your functions to run correctly.
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