
UC Berkeley Math 228B, Spring 2024: Problem Set 7
Prof. Per-Olof Persson (persson@berkeley.edu)

Due May 3

1. (a) The dgconvect0 function on the course web page has several shortcomings. Write a new version
named dgconvect which incorporates the following improvements:

1. Replace the equidistant node positions in an element by the Chebyshev nodes si = cos(πi/p),
i = 0, . . . , p, scaled and translated to [0, h] and in increasing order.

2. Implement support for arbitrary polynomial degrees p, by computing the mass matrix Mel and
the stiffness matrix Kel using Gaussian quadrature of degree 2p (see function gauss_quad
on the course web page). Form the nodal basis functions using Legendre polynomials (see
function legendre_poly on the course web page).

3. The original version plots the solution using straight lines between each nodal value. Improve
this by evaluating the function (that is, the polynomials in each elements) at a grid with 3p
equidistant nodes, and draw straight lines between those points.

4. Replace the discrete max-norm in the computation of the error by the continuous L2-norm
‖u‖2 =

(∫ 1
0 u(x)2 dx

)1/2
.

(b) Write a function with the syntax errors, slopes = dgconvect_convergence() which runs
your function dgconvect using p = 1, 2, 4, 8, 16, ∆t = 2 · 10−4, T = 1, and number of elements
n chosen such that the total number of nodes n · p equals 16, 32, 64, 128, 256. Return the corre-
sponding errors in the 5-by-5 array errors, and estimate 5 slopes in the array slopes making
sure to exclude points that appear to be affected by rounding errors. Also make a log-log plot of
the errors vs. the number of nodes n · p.

2. (a) Write a function with the syntax u, error = dgconvdiff(; n=10, p=1, T=1.0, dt=1e-3,
k=1e-3) which is a modification of your dgconvect function from the previous problem to solve
the convection-diffusion equation

∂u

∂t
+

∂u

∂x
− k

∂2u

∂x2
= 0, (1)

on x ∈ [0, 1] with the same initial condition as before, u(x, 0) = exp
{
−100(x− 0.5)2

}
, and

periodic boundary conditions. Use the LDG method for the second-order derivative with C11 = 0
and C12 = 1/2 (pure upwinding/downwinding). For the error computation, use the exact solution

u(x, t) =
N∑

i=−N

1√
1 + 400kt

exp

{
−100

(x− 0.5− t+ i)2

1 + 400kt

}
(2)

where N should be infinity but N = 2 is sufficient here.
(b) Write a function with the syntax

errors, slopes = dgconvdiff_convergence()

that performs a convergence study for your dgconvdiff function exactly as in problem 1, using
a diffusion coefficient of k = 10−3.

Code Submission: Your Julia file needs to define the four requested functions, with exactly the requested
names and input/output arguments, as well as any other supporting functions and variables that are
required for your functions to run correctly.

This content is protected and may not be shared, uploaded, or distributed. Page 1/ 1


