
UC Berkeley Math 228B, Spring 2024: Problem Set 8
Prof. Per-Olof Persson (persson@berkeley.edu)

Optional, not graded

1. In this problem, you will write a multigrid solver for the linear system of equations generated by
fempoi and pmesh from previous problem sets. Note that in 2-D it is very hard to be faster than the
built-in backslash function, at least without using a compiled language. However, for large problems in
3-D, any multigrid solver should be superior to Gaussian elimination, so here we are more concerned
about getting the right convergence behavior rather than a fast solver. To begin with, add two output
arguments to the fempoi function to get access to the matrices A, b in the linear system:

function [u, A, b] = fempoi(p, t, e)

(a) Write a MATLAB function

function [u, res] = gauss_seidel(A, b, u, niter)

that makes niter iterations using the Gauss-Seidel method for Au = b:

um+1 = um + (D − L)−1(b−Aum),

starting from the input u and returning the last iterate u. D−L is the lower triangular part of A,
including the diagonal (see the tril command). The output res is a vector of length niter+1
with the infinity norms of the residuals b − Aum at each iteration (including the initial and the
final iterates). Try the function using the commands:� �

pv = [0,0; 2,0; 1.5,1; .5,1; 0,0];
[p, t, e] = pmesh(pv, 0.5, 3);
[u0, A, b] = fempoi(p, t, e);
[u, res] = gauss_seidel(A, b, 0*b, 1000);
semilogy(0:1000, res)� �

(b) Write a MATLAB function

function data = mginit(pv, hmax, nref)

that computes all the required arrays for a multigrid solution of the Poisson problem using the
mesh parameters pv,hmax,nref. Start from the pmesh function, and make appropriate modifi-
cations and additions.
(a) data(i).p, data(i).t, data(i).e contain the mesh arrays p, t, e after i−1 refinements, for

i− 1 = 0, . . . , nref .
(b) data(i).T contains the interpolation matrix T (i) from grid i to grid i+1, for i = 1 . . . , nref .

Use linear interpolation for all the new midpoints (that is, averaging of the neighboring nodes).
The second output argument of unique might be useful.

(c) data(i).R contains the restriction matrix R(i) from grid i + 1 to grid i. Use the transpose
of T (i), but with the rows scaled to have sums of 1.

(d) data(nref+1).A, data(nref+1).b contain A, b for the finest grid (the actual linear system)
(e) data(i).A contains the projected matrices A(i) = R(i)A(i+1)T (i) for i = 1, . . . , nref .

This content is protected and may not be shared, uploaded, or distributed. Page 1/ 2



(c) Write a MATLAB function

function [u, res] = mgsolve(data, vdown, vup, tol)

that solves the problem precomputed in data, using multigrid V-cycles with vdown/vup pre/post-
smoothing iterations using Gauss-Seidel, until the infinite norm of the residual is less than tol.
The outputs are the solution u and the residuals res after each V-cycle (including the residual
for the initial solution u = 0).
Test the function using the commands� �

pv = [0,0; 2,0; 1.5,1; .5,1; 0,0];
for iref = 1:5

data = mginit(pv, 0.5, iref);
[u, res] = mgsolve(data, 2, 2, 1e-10);
semilogy(res), hold on

end
hold off� �

If everything works correctly, you should see a very fast convergence compared to pure Gauss-
Seidel. More importantly, the number of iterations should not increase much when the grid is
refined. This leads to the optimal O(n) computational cost of the algorithm.

This content is protected and may not be shared, uploaded, or distributed. Page 2/ 2


