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Approximation of First Derivative

Consider a uniformly spaced mesh xi = hi with given function
values fi = f(xi). Seek approximations to the first derivative
at the nodes f ′i = f ′(xi) of the form

βf ′i−2 + αf ′i−1 + f ′i + αf ′i+1 + βf ′i+2

=c
fi+3 − fi−3

6h
+ b

fi+2 − fi−2
4h

+ a
fi+1 − fi−1

2h

Match Taylor series coefficients for order conditions:

a+ b+ c = 1 + 2α+ 2β (2nd order)

a+ 22b+ 32c = 2
3!

2!
(α+ 22β) (4th order)

a+ 24b+ 34c = 2
5!

4!
(α+ 24β) (6th order)

a+ 26b+ 36c = 2
7!

6!
(α+ 26β) (8th order)

a+ 28b+ 38c = 2
9!

8!
(α+ 28β) (10th order)



Tridiagonal Schemes

If β = 0 and α nonzero, tridiagonal systems need to be solved
to obtain the derivative approximations

If in addition c = 0, a one-parameter (α) family of 4th order
tridiagonal schemes is obtained:

β = 0, a =
2

3
(α+ 2), b =

1

3
(4α− 1), c = 0

Special cases:

α = 0 gives the standard 4th order central difference scheme,
α = 1/4 gives the classical Padé scheme.
α = 1/3 gives a 6th order accurate scheme:

α =
1

3
, β = 0, a =

14

9
, b =

1

9
c = 0



Tridiagonal Schemes

If β = 0 and c 6= 0, a one-parameter (α) family of 6th order
tridiagonal schemes is obtained:

β = 0, a =
1

6
(α+ 9), b =

1

15
(32α− 9), c =

1

10
(−3α+ 1)

Special cases:

α = 3/8 gives an 8th order accurate scheme:

β = 0, a =
25

16
, b =

1

5
, c = − 1

80



Pendadiagonal Schemes

If β 6= 0 and c = 0, a one-parameter (α) family of 6th order
pentadiagonal schemes is obtained:

β =
1

12
(−1 + 3α), a =

2

9
(8− 3α), b =

1

18
(−17 + 57α), c = 0

which becomes an 8th order scheme if α = 4/9:

α =
4

9
, β =

1

36
, a =

40

27
, b =

25

54
, c = 0

If β 6= 0 and c 6= 0, a one-parameter (α) family of 8th order
pentadiagonal schemes is obtained:

β =
1

20
(−3 + 8α), a =

1

6
(12− 7α), b =

1

150
(568α− 183), c =

1

50
(9α− 4)

which becomes a 10th order scheme if α = 1/2:

α =
1

2
, β =

1

20
, a =

17

12
, b =

101

150
, c =

1

100



Approximation of Second Derivative

Seek approximations to the second derivative at the nodes
f ′′i = f ′′(xi) of the form

βf ′′i−2 + αf ′′i−1 + f ′′i + αf ′′i+1 + βf ′′i+2

= c
fi+3 − 2fi + fi−3

9h2
+ b

fi+2 − 2fi + fi−2
4h2

+ a
fi+1 − 2fi + fi−1

h2

Match Taylor series coefficients for order conditions:

a+ b+ c = 1 + 2α+ 2β (2nd order)

a+ 22b+ 32c = 2
4!

2!
(α+ 22β) (4th order)

a+ 24b+ 34c = 2
6!

4!
(α+ 24β) (6th order)

a+ 26b+ 36c = 2
8!

6!
(α+ 26β) (8th order)

a+ 28b+ 38c = 2
10!

8!
(α+ 28β) (10th order)



Tridiagonal Schemes

If β = 0 and c = 0, a one-parameter (α) family of 4th order
tridiagonal schemes is obtained:

β = 0, c = 0, a =
4

3
(1− α), b =

1

3
(−1 + 10α)

Special cases:

α = 0 gives the standard 4th order central difference scheme,
α = 1/10 gives the classical Padé scheme.
α = 2/11 gives a 6th order accurate scheme:

α =
2

11
, β = 0, a =

12

11
, b =

3

11
, c = 0

Similarly to before, higher order and pentadiagonal schemes
can be derived



Fourier Analysis

Assume periodic domain [0, L] with f1 = fN+1 and h = L/N

Decompose variables into fourier coefficients

f(x) =

n=N/2∑
k=−N/2

f̂k exp

(
2πikx

L

)

Introduced scaled wavenumber w = 2πkh/L = 2πk/N in the
domain [0, π], and the scaled coordinate s = x/h, giving
Fourier modes exp(iws)

The exact first derivative generates Fourier coefficients
f̂ ′k = iwf̂k

Compare with the coefficients (f̂ ′k)fd = iw′f̂k obtained from
the differencing scheme



Modified wavenumber, first derivatives

The first derivative approximations:

βf ′i−2 + αf ′i−1 + f ′i + αf ′i+1 + βf ′i+2

=c
fi+3 − fi−3

6h
+ b

fi+2 − fi−2
4h

+ a
fi+1 − fi−1

2h
corresponds to

w′(w) =
a sin(w) + (b/2) sin(2w) + (c/3) sin(3w)

1 + 2α cos(w) + 2β cos(2w)
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Modified wavenumber, second derivatives

The exact second derivative generates Fourier coefficients
f̂ ′′k = −w2f̂k

Compare with the coefficients (f̂ ′′k )fd = −w′′f̂k obtained from
the differencing scheme

The second derivative approximations:

βf ′′i−2 + αf ′′i−1 + f ′′i + αf ′′i+1 + βf ′′i+2

= c
fi+3 − 2fi + fi−3

9h2
+ b

fi+2 − 2fi + fi−2
4h2

+ a
fi+1 − 2fi + fi−1

h2

corresponds to

w′′(w) =
2a(1− cos(w)) + (b/2)(1− cos(2w)) + (2c/9)(1− cos(3w))

1 + 2α cos(w) + 2β cos(2w)



Non-Periodic Boundaries

Find first derivative at the boundary i = 1 by one-sided
approximation:

f ′1 + αf ′2 =
1

h
(af1 + bf2 + cf3 + df4)

2nd order accuracy requires

a = −3 + α+ 2d

2
, b = 2 + 3d, c = −1− α+ 6d

2

Third and fourth order schemes can also be derived

Harder to study using Fourier analysis



Filtering

Find filtered values f̂i from an approximation

βf̂i−2 + αf̂i−1 + f̂i + αf̂i+1 + βf̂i+2

=afi +
d

2
(fi+3 + fi−3) +

c

2
(fi+2 + fi−2) +

b

2
(fi+1 + fi−1)

with transfer function

T (w) =
a+ b cos(w) + c cos(2w) + d cos(3w)

1 + 2α cos(w) + 2β cos(2w)

Impose T (π) = 0, and possibly higher order derivatives

Match Taylor series coefficients for high formal accuracy



Filtering

Set β = 0 for tridiagonal system, use one free parameter
−0.5 < α ≤ 0.5:

(F2) a =
1

2
+ α, b =

1

2
+ α

(F4) a =
5

8
+

3α

4
, b =

1

2
+ α c = −1

8
+
α

4

(F6) a =
11

16
+

5α

8
, b =

15

32
+

17α

16
, c = − 3

16
+

3α

8
, d =

1

32
− α

16
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