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Approximation of First Derivative

@ Consider a uniformly spaced mesh x; = ht with given function
values f; = f(z;). Seek approximations to the first derivative
at the nodes f!/ = f'(x;) of the form

Bfio+afi +fi+afii+Bfie

:cfi+3 - fz;3 fz+2 fi—2 n afi+1 — fi1
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@ Match Taylor series coefficients for order conditions:
a+b+c=14+2a+25 (2nd order)

3!
a+ 2%+ 3% = 22' (o +22p) (4th order)
a+2*% 4 3= 22 (a+21p) (6th order)
a+ 2504 3% = 22 (o +25p) (8th order)
a+2%+ 3% = 29 (o + 283) (10th order)

8!



Tridiagonal Schemes

e If 8 =0 and « nonzero, tridiagonal systems need to be solved
to obtain the derivative approximations

e If in addition ¢ = 0, a one-parameter («) family of 4th order
tridiagonal schemes is obtained:

=0, a= g(044-2), b= 1(404—1), c=0
3 3
@ Special cases:
e a = 0 gives the standard 4th order central difference scheme,
e a = 1/4 gives the classical Padé scheme.
o a = 1/3 gives a 6th order accurate scheme:



Tridiagonal Schemes

e If 5 =0 and ¢ # 0, a one-parameter («) family of 6th order
tridiagonal schemes is obtained:

1 1 1
=0, a 6(a+9), b= 15(3 a—19), c= 10( 3a+1)

@ Special cases:
e a = 3/8 gives an 8th order accurate scheme:



Pendadiagonal Schemes

e If 3 0 and ¢ =0, a one-parameter («) family of 6th order
pentadiagonal schemes is obtained:

1 2 1
B = 12( 1+ 3a), a—§(8—3a), b= 18( 17+ 57a), ¢=0
which becomes an 8th order scheme if o = 4/9:
4 1 40 25
= — = — = — b = — =
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e If 3#0 and ¢ # 0, a one-parameter («) family of 8th order
pentadiagonal schemes is obtained:

1
B = 20( 3+8a), a 6(12—704), b= 150(56804—183) 50(9a—4)
which becomes a 10th order scheme if o = 1/2:
1 1 17 101 1
=2 P T T T



Approximation of Second Derivative

@ Seek approximations to the second derivative at the nodes
[ = f"(z;) of the form

Bfilg+afl i+ fi +afiii+ B

:cfz'+3 —2fi + fi-3 bfi+2 —2fi + fi—o n afi+1 —2fi+ fi1
9h2 4h? h2

@ Match Taylor series coefficients for order conditions:

a+b+c=1+4+2a+203 (2nd order)

4!

a+ 2%+ 3% = 2—(04 +2%3) (4th order)

a+2'+4 3% = 22 (a+2'3) (6th order)
8!

a+ 2% + 3% = 26 (a4 2°3) (8th order)
10!

a+ 280+ 3% =2—"(a +2°p) (10th order)

8!



Tridiagonal Schemes

e If 3 =0 and ¢ =0, a one-parameter («) family of 4th order
tridiagonal schemes is obtained:

=0, c=0, a:é(l—a), bzl(—l—i-lOa)
3 3
@ Special cases:
e a = 0 gives the standard 4th order central difference scheme,
e a = 1/10 gives the classical Padé scheme.
o a = 2/11 gives a 6th order accurate scheme:

12
b:i, c=0

2
o= ——, 5_07 a_ﬁv 11

11

@ Similarly to before, higher order and pentadiagonal schemes
can be derived



Fourier Analysis

@ Assume periodic domain [0, L] with f; = fy4+1 and h = L/N

@ Decompose variables into fourier coefficients

e/ 2mikr
f@y= > fkexp( 7 )
k=-N/2

@ Introduced scaled wavenumber w = 2wkh/L = 27wk /N in the
domain [0, 7], and the scaled coordinate s = z/h, giving
Fourier modes exp(iws)

@ The exact first derivative generates Fourier coefficients
fr=iwfi

o Compare with the coefficients (f,'f)fd = iw' f}, obtained from
the differencing scheme



Modified wavenumber, first derivatives

@ The first derivative approximations:

Bfia+afiy+ fi+afii+Bfis
_ firs—fiez  fire — fi2 fit1 — fi1
= en VT T

corresponds to
W (w) = asin(w) + (b/2) sin(2w) + (¢/3) sin(3w)
1 4 2a cos(w) + 23 cos(2w)
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From bottom to top: 2nd order cen-
tral, 4th order central, 4th order cen-
tral, standard Padé, 6th order tridiag-
onal, 8th order tridiagonal, 8th order
pentadiagonal, 10th order pentadiago-
nal, spectral-like, exact differentiation
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Modified wavenumber, second derivatives

@ The exact second derivative generates Fourier coefficients

=
e Compare with the coefficients (]E;g)fd — —w" f; obtained from

the differencing scheme

@ The second derivative approximations:

BfiLa+afiy + fi' +afly +Bfls
_ fis=2fi+ fies | fire —2fi+ fice | fir1 —2fi+ fia

=c o2 +b 12 +a 2

corresponds to

2a(1 — cos(w)) + (b/2)(1 — cos(2w)) + (2¢/9)(1 — cos(3w))
1+ 2a.cos(w) + 2 cos(2w)

w//(w) —



Non-Periodic Boundaries

o Find first derivative at the boundary i = 1 by one-sided
approximation:

Fit afs = (afi+ b2+ cfs + dfa)

@ 2nd order accuracy requires

2
a:_W’ b=2+3d, c=

_1—a+6d
2

@ Third and fourth order schemes can also be derived

@ Harder to study using Fourier analysis



@ Find filtered values fl from an approximation
Bfico + afim1 + fi + afiy1 + Bfisa
d c b
=afi + §(fi+3 + fi—3) + §(fi+2 + fi—2) + §(fi+1 + fi-1)

with transfer function

a + beos(w) + ccos(2w) + d cos(3w)
1+ 2accos(w) + 25 cos(2w)

T(w) =

@ Impose T'(m) = 0, and possibly higher order derivatives

@ Match Taylor series coefficients for high formal accuracy



@ Set 8 = 0 for tridiagonal system, use one free parameter

0.5 < a<0.5:
1 1
5 3« 1 1 «
F4 = - —_— = — [ g— P
(F4) a 8+4’ b 2+a c 8+4
11 576" 15 17« 3 3a 1 «
F = — —_— = — _ = —— _ _
(F6) a= e+ 2 16 T 32 16
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From left to right:

(F2) a=0, (F4) a=0, (F6) a =0,
(F2) a =0.45, (F4) a = 0.45,

(F6) o = 0.45,
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