Compact Finite Difference Schemes

Per-Olof Persson
persson@berkeley.edu
Department of Mathematics
University of California, Berkeley

Math 228B Numerical Solutions of Differential Equations

Approximation of First Derivative

- Consider a uniformly spaced mesh $x_{i}=h i$ with given function values $f_{i}=f\left(x_{i}\right)$. Seek approximations to the first derivative at the nodes $f_{i}^{\prime}=f^{\prime}\left(x_{i}\right)$ of the form

$$
\begin{aligned}
& \beta f_{i-2}^{\prime}+\alpha f_{i-1}^{\prime}+f_{i}^{\prime}+\alpha f_{i+1}^{\prime}+\beta f_{i+2}^{\prime} \\
& \quad=c \frac{f_{i+3}-f_{i-3}}{6 h}+b \frac{f_{i+2}-f_{i-2}}{4 h}+a \frac{f_{i+1}-f_{i-1}}{2 h}
\end{aligned}
$$

- Match Taylor series coefficients for order conditions:

$$
\begin{aligned}
a+b+c & =1+2 \alpha+2 \beta & & \text { (2nd order) } \\
a+2^{2} b+3^{2} c & =2 \frac{3!}{2!}\left(\alpha+2^{2} \beta\right) & & (4 \text { th order) } \\
a+2^{4} b+3^{4} c & =2 \frac{5!}{4!}\left(\alpha+2^{4} \beta\right) & & (6 \text { th order) } \\
a+2^{6} b+3^{6} c & =2 \frac{7!}{6!}\left(\alpha+2^{6} \beta\right) & & (\text { (8th order) } \\
a+2^{8} b+3^{8} c & =2 \frac{9!}{8!}\left(\alpha+2^{8} \beta\right) & & (10 \text { th order) }
\end{aligned}
$$

Tridiagonal Schemes

- If $\beta=0$ and α nonzero, tridiagonal systems need to be solved to obtain the derivative approximations
- If in addition $c=0$, a one-parameter (α) family of 4th order tridiagonal schemes is obtained:

$$
\beta=0, \quad a=\frac{2}{3}(\alpha+2), \quad b=\frac{1}{3}(4 \alpha-1), \quad c=0
$$

- Special cases:
- $\alpha=0$ gives the standard 4th order central difference scheme,
- $\alpha=1 / 4$ gives the classical Padé scheme.
- $\alpha=1 / 3$ gives a 6 th order accurate scheme:

$$
\alpha=\frac{1}{3}, \quad \beta=0, \quad a=\frac{14}{9}, \quad b=\frac{1}{9} \quad c=0
$$

Tridiagonal Schemes

- If $\beta=0$ and $c \neq 0$, a one-parameter (α) family of 6 th order tridiagonal schemes is obtained:

$$
\beta=0, \quad a=\frac{1}{6}(\alpha+9), \quad b=\frac{1}{15}(32 \alpha-9), \quad c=\frac{1}{10}(-3 \alpha+1)
$$

- Special cases:
- $\alpha=3 / 8$ gives an 8 th order accurate scheme:

$$
\beta=0, \quad a=\frac{25}{16}, \quad b=\frac{1}{5}, \quad c=-\frac{1}{80}
$$

Pendadiagonal Schemes

- If $\beta \neq 0$ and $c=0$, a one-parameter (α) family of 6 th order pentadiagonal schemes is obtained:

$$
\beta=\frac{1}{12}(-1+3 \alpha), \quad a=\frac{2}{9}(8-3 \alpha), \quad b=\frac{1}{18}(-17+57 \alpha), \quad c=0
$$

which becomes an 8 th order scheme if $\alpha=4 / 9$:

$$
\alpha=\frac{4}{9}, \quad \beta=\frac{1}{36}, \quad a=\frac{40}{27}, \quad b=\frac{25}{54}, \quad c=0
$$

- If $\beta \neq 0$ and $c \neq 0$, a one-parameter (α) family of 8 th order pentadiagonal schemes is obtained:
$\beta=\frac{1}{20}(-3+8 \alpha), a=\frac{1}{6}(12-7 \alpha), b=\frac{1}{150}(568 \alpha-183), c=\frac{1}{50}(9 \alpha-4)$ which becomes a 10th order scheme if $\alpha=1 / 2$:

$$
\alpha=\frac{1}{2}, \quad \beta=\frac{1}{20}, \quad a=\frac{17}{12}, \quad b=\frac{101}{150}, \quad c=\frac{1}{100}
$$

Approximation of Second Derivative

- Seek approximations to the second derivative at the nodes $f_{i}^{\prime \prime}=f^{\prime \prime}\left(x_{i}\right)$ of the form

$$
\begin{aligned}
& \beta f_{i-2}^{\prime \prime}+\alpha f_{i-1}^{\prime \prime}+f_{i}^{\prime \prime}+\alpha f_{i+1}^{\prime \prime}+\beta f_{i+2}^{\prime \prime} \\
& \quad=c \frac{f_{i+3}-2 f_{i}+f_{i-3}}{9 h^{2}}+b \frac{f_{i+2}-2 f_{i}+f_{i-2}}{4 h^{2}}+a \frac{f_{i+1}-2 f_{i}+f_{i-1}}{h^{2}}
\end{aligned}
$$

- Match Taylor series coefficients for order conditions:

$$
\begin{aligned}
a+b+c & =1+2 \alpha+2 \beta & & \text { (2nd order) } \\
a+2^{2} b+3^{2} c & =2 \frac{4!}{2!}\left(\alpha+2^{2} \beta\right) & & (4 \text { th order }) \\
a+2^{4} b+3^{4} c & =2 \frac{6!}{4!}\left(\alpha+2^{4} \beta\right) & & (6 \text { th order) } \\
a+2^{6} b+3^{6} c & =2 \frac{8!}{6!}\left(\alpha+2^{6} \beta\right) & & (8 \text { th order) } \\
a+2^{8} b+3^{8} c & =2 \frac{10!}{8!}\left(\alpha+2^{8} \beta\right) & & (10 \text { th order })
\end{aligned}
$$

Tridiagonal Schemes

- If $\beta=0$ and $c=0$, a one-parameter (α) family of 4 th order tridiagonal schemes is obtained:

$$
\beta=0, \quad c=0, \quad a=\frac{4}{3}(1-\alpha), \quad b=\frac{1}{3}(-1+10 \alpha)
$$

- Special cases:
- $\alpha=0$ gives the standard 4th order central difference scheme,
- $\alpha=1 / 10$ gives the classical Padé scheme.
- $\alpha=2 / 11$ gives a 6 th order accurate scheme:

$$
\alpha=\frac{2}{11}, \quad \beta=0, \quad a=\frac{12}{11}, \quad b=\frac{3}{11}, \quad c=0
$$

- Similarly to before, higher order and pentadiagonal schemes can be derived

Fourier Analysis

- Assume periodic domain $[0, L]$ with $f_{1}=f_{N+1}$ and $h=L / N$
- Decompose variables into fourier coefficients

$$
f(x)=\sum_{k=-N / 2}^{n=N / 2} \hat{f}_{k} \exp \left(\frac{2 \pi i k x}{L}\right)
$$

- Introduced scaled wavenumber $w=2 \pi k h / L=2 \pi k / N$ in the domain $[0, \pi]$, and the scaled coordinate $s=x / h$, giving Fourier modes $\exp (i w s)$
- The exact first derivative generates Fourier coefficients $\hat{f}_{k}^{\prime}=i w \hat{f}_{k}$
- Compare with the coefficients $\left(\hat{f}_{k}^{\prime}\right)_{f d}=i w^{\prime} \hat{f}_{k}$ obtained from the differencing scheme

Modified wavenumber, first derivatives

- The first derivative approximations:

$$
\begin{aligned}
& \beta f_{i-2}^{\prime}+\alpha f_{i-1}^{\prime}+f_{i}^{\prime}+\alpha f_{i+1}^{\prime}+\beta f_{i+2}^{\prime} \\
& \quad=c \frac{f_{i+3}-f_{i-3}}{6 h}+b \frac{f_{i+2}-f_{i-2}}{4 h}+a \frac{f_{i+1}-f_{i-1}}{2 h}
\end{aligned}
$$

corresponds to

$$
w^{\prime}(w)=\frac{a \sin (w)+(b / 2) \sin (2 w)+(c / 3) \sin (3 w)}{1+2 \alpha \cos (w)+2 \beta \cos (2 w)}
$$

From bottom to top: 2nd order central, 4th order central, 4th order central, standard Padé, 6th order tridiagonal, 8th order tridiagonal, 8th order pentadiagonal, 10th order pentadiagonal, spectral-like, exact differentiation

Modified wavenumber, second derivatives

- The exact second derivative generates Fourier coefficients $\hat{f}_{k}^{\prime \prime}=-w^{2} \hat{f}_{k}$
- Compare with the coefficients $\left(\hat{f}_{k}^{\prime \prime}\right)_{f d}=-w^{\prime \prime} \hat{f}_{k}$ obtained from the differencing scheme
- The second derivative approximations:

$$
\begin{aligned}
& \beta f_{i-2}^{\prime \prime}+\alpha f_{i-1}^{\prime \prime}+f_{i}^{\prime \prime}+\alpha f_{i+1}^{\prime \prime}+\beta f_{i+2}^{\prime \prime} \\
& \quad=c \frac{f_{i+3}-2 f_{i}+f_{i-3}}{9 h^{2}}+b \frac{f_{i+2}-2 f_{i}+f_{i-2}}{4 h^{2}}+a \frac{f_{i+1}-2 f_{i}+f_{i-1}}{h^{2}}
\end{aligned}
$$

corresponds to

$$
w^{\prime \prime}(w)=\frac{2 a(1-\cos (w))+(b / 2)(1-\cos (2 w))+(2 c / 9)(1-\cos (3 w))}{1+2 \alpha \cos (w)+2 \beta \cos (2 w)}
$$

Non-Periodic Boundaries

- Find first derivative at the boundary $i=1$ by one-sided approximation:

$$
f_{1}^{\prime}+\alpha f_{2}^{\prime}=\frac{1}{h}\left(a f_{1}+b f_{2}+c f_{3}+d f_{4}\right)
$$

- 2nd order accuracy requires

$$
a=-\frac{3+\alpha+2 d}{2}, \quad b=2+3 d, \quad c=-\frac{1-\alpha+6 d}{2}
$$

- Third and fourth order schemes can also be derived
- Harder to study using Fourier analysis

Filtering

- Find filtered values \hat{f}_{i} from an approximation

$$
\begin{aligned}
& \beta \hat{f}_{i-2}+\alpha \hat{f}_{i-1}+\hat{f}_{i}+\alpha \hat{f}_{i+1}+\beta \hat{f}_{i+2} \\
& \quad=a f_{i}+\frac{d}{2}\left(f_{i+3}+f_{i-3}\right)+\frac{c}{2}\left(f_{i+2}+f_{i-2}\right)+\frac{b}{2}\left(f_{i+1}+f_{i-1}\right)
\end{aligned}
$$

with transfer function

$$
T(w)=\frac{a+b \cos (w)+c \cos (2 w)+d \cos (3 w)}{1+2 \alpha \cos (w)+2 \beta \cos (2 w)}
$$

- Impose $T(\pi)=0$, and possibly higher order derivatives
- Match Taylor series coefficients for high formal accuracy

Filtering

- Set $\beta=0$ for tridiagonal system, use one free parameter

$$
-0.5<\alpha \leq 0.5:
$$

(F2) $\quad a=\frac{1}{2}+\alpha, \quad b=\frac{1}{2}+\alpha$
(F4) $\quad a=\frac{5}{8}+\frac{3 \alpha}{4}, \quad b=\frac{1}{2}+\alpha \quad c=-\frac{1}{8}+\frac{\alpha}{4}$
(F6) $\quad a=\frac{11}{16}+\frac{5 \alpha}{8}, \quad b=\frac{15}{32}+\frac{17 \alpha}{16}, \quad c=-\frac{3}{16}+\frac{3 \alpha}{8}, \quad d=\frac{1}{32}-\frac{\alpha}{16}$

From left to right:

$$
\begin{aligned}
& (F 2) \alpha=0,(F 4) \alpha=0,(F 6) \alpha=0, \\
& (F 2) \alpha=0.45,(F 4) \alpha=0.45, \\
& (F 6) \alpha=0.45,
\end{aligned}
$$

