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The Finite Volume Method = Galerkin FEM

@ Consider the 1-D conservation law
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ot ox =0

@ Look for solutions in space of piecewise constant functions V},
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The Finite Volume Method = Galerkin FEM

@ Galerkin formulation: Find u;, € V}, such that

1 1
/ %v x —I—/ 8f<uh)vd:n =0, YWweW
0 0 81’

1 z € [rp_1, Tk

0 otherwise

T oun e ofun) 4 / un e
[ e [T 2 gm0 [T S as s oz, =0

k-1

oSetfu:gak:{

@ Since uy, is discontinuous at x; and xj_1, use a numerical flux
function F(ug,ur,) to obtain:
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haitk + F(uk+1,uk) — F(uk,uk_l) =0

@ This is a standard finite volume method on a uniform grid



The Discontinuous Galerkin Method

@ Generalize the Galerkin FEM approach to the space of
piecewise polynomials of degree p

o Nodal representation with values u} for local node i in
element £:




The Discontinuous Galerkin Method

@ Galerkin formulation: Find u; € V}, such that
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@ Setwv = <pf and integrate by parts
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@ Use a numerical flux function F'(ugr,ur) at the discontinuities
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The Discontinuous Galerkin Method

e Example: f(u) =u, F(ug,ur) = ur,
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@ Rearrange to obtain a linear system of equations
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for element k, with elementary matrices
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Calculating Elementary Matrices

@ Consider an element of degree p, width h, and a nodal basis
for the points s;, i =0,...,p
e Equidistant points s; = ih/p only good for low p
o Better choice: Chebyshev or Gauss-Lobatto nodes
o Write basis functions as ¢;(s) = > 7_ ¢/ P;(s), where P; is a
basis for the polynomials of degree p
o Monomial basis P;j(s) = s’ only good for low p
o Better choice: Orthogonal polynomials, e.g. Legendre

@ Nodal basis functions are A
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Calculating Elementary Matrices

@ The linear system of equations has the form

Po(so) Pi(so) -+ Pp(so) g 02 1
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or VC = I, which gives the coefficient matrix C = V!

@ Use Gaussian quadrature or explicit polynomial integration to
compute the elementary matrices
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The DG method — General systems of conservation laws

(Reed/Hill 1973, Lesaint/Raviart 1974, Cockburn/Shu 1989-)

Consider a first-order system of conservation laws:

u+V-F(u)=0

Triangulate domain  into elements k € T},

Seek approximate solution uy, in space of element-wise
polynomials:

VP ={veL*):v|, € P(k) Yk € T),}

Multiply by test function v, € VP, integrate over element :

/ (wn)e + V - F(uy)] op dz = 0



The DG method — General systems of conservation laws

@ Integrate by parts:

/ [(up)i]) v do — / F(up)Vv, dx + ﬁ‘(uz, u; , R)v) ds =0
K K Ok

with numerical flux function F'(ur,ug, 7) for left/right
states ur,uR in direction n (Godunov, Roe, Osher, Van Leer,
Lax-Friedrichs, etc)

@ Global problem: Find uy € V,f K
such that this weighted residual is ‘
zero for all vy, € V}f » :

e Error = O(hP*1) for smooth S '
solutions



The DG Method — Observations

@ Reduces to the finite volume method for p = 0:

(up)iAp + | F(u),u,,n)ds =0
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@ Boundary conditions enforced naturally for any degree p

@ Block-diagonal mass matrix (no overlap between basis
functions)

@ Block-wise compact stencil — neighboring elements connected

Mass Matrix Jacobian




Convection-Diffusion, the LDG method

o Consider the convection-diffusion equation

ou n Of(u) 0%u

ot T ow Mo =0
@ Split into system of first order equations:
ou  Of(u) do

o Tor Faw !
ox

@ Galerkin formulation: Find uy, oy, € V3, such that
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Convection-Diffusion, the LDG method

@ Set v, 7= gof and integrate by parts
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e Use numerical flux functions f(ug,uz), 6(cr,or), t(ug, ur)
at the discontinuities

o Example: f(u) =u, f(ug,ur) =ur, 5(or,0L) = o1,
U(ug,ur) = ur (upwinding for the convection, LDG
upwinding/downwinding for the diffusion)



Convection-Diffusion, the LDG method

@ After discretization, this leads to the ODEs
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@ For each element k, first solve for o*, then insert into main
equation as before



