Implementation of Finite Element Methods

Per-Olof Persson
persson@berkeley.edu
Department of Mathematics
University of California, Berkeley

Math 228B Numerical Solutions of Differential Equations

- Consider the problem

$$
\begin{aligned}
-\nabla^{2} u & =f \text { in } \Omega \\
n \cdot \nabla u & =g \text { on } \Gamma
\end{aligned}
$$

for a domain Ω with boundary Γ

- Seek solution $\hat{u} \in \hat{X}$, multiply by a test function $v \in \hat{X}$, and integrate:

$$
\int_{\Omega}-\nabla^{2} \hat{u} v d \Omega=\int_{\Omega} f v d \Omega
$$

- Apply the divergence theorem and use the Neumann condition, to get the Galerkin form

$$
\int_{\Omega} \nabla \hat{u} \nabla v d \Omega=\int_{\Omega} f v d \Omega+\oint_{\Gamma} g v d s
$$

- Expand in basis $\hat{u}=\sum_{i} \hat{u}_{i} \phi_{i}(x)$, insert into the Galerkin form, and set $v=\phi_{i}, i=1, \ldots, n$:

$$
\int_{\Omega}\left[\sum_{j=1}^{n} \hat{u}_{j} \nabla \phi_{j}\right] \cdot \nabla \phi_{i} d \Omega=\int_{\Omega} f \phi_{i} d \Omega+\oint_{\Gamma} g \phi_{i} d s
$$

Switch order of integration and summation to get the finite element formulation:

$$
\sum_{j=1}^{n} A_{i j} \hat{u}_{j}=b_{i}, \quad \text { or } \quad A \hat{u}=b
$$

where

$$
A_{i j}=\int_{\Omega} \nabla \phi_{i} \cdot \nabla \phi_{j} d \Omega, \quad b_{i}=\int_{\Omega} f \phi_{i}+\oint_{\Gamma} g \phi_{i} d s
$$

Discretization

- Find a tringulation of the domain Ω into triangular elements $T^{k}, k=1, \ldots, K$ and nodes $x_{i}, i=1, \ldots, n$
- Consider the space \hat{X} of continuous functions that are linear within each element
- Use a nodal basis $\hat{X}=\operatorname{span}\left\{\phi_{1}, \ldots, \phi_{n}\right\}$ defined by

$$
\phi_{i} \in \hat{X}, \quad \phi_{i}\left(x_{j}\right)=\delta_{i j}, \quad 1 \leq i, j \leq n
$$

- A function $v \in \hat{X}$ can then be written

$$
v=\sum_{i=1}^{n} v_{i} \phi_{i}(x)
$$

with the nodal interpretation

$$
v\left(x_{j}\right)=\sum_{i=1}^{n} v_{i} \phi_{i}(x)=\sum_{i=1}^{n} v_{i} \delta_{i j}=v_{j}
$$

Local Basis Functions

- Consider a triangular element T^{k} with local nodes $x_{1}^{k}, x_{2}^{k}, x_{3}^{k}$
- The local basis functions $\mathcal{H}_{1}^{k}, \mathcal{H}_{2}^{k}, \mathcal{H}_{3}^{k}$ are linear functions:

$$
\mathcal{H}_{\alpha}^{k}=c_{\alpha}^{k}+c_{x, \alpha}^{k} x+c_{y, \alpha}^{k} y, \quad \alpha=1,2,3
$$

with the property that $\mathcal{H}_{\alpha}^{k}\left(x_{\beta}\right)=\delta_{\alpha \beta}, \beta=1,2,3$

- This leads to linear systems of equations for the coefficients:

$$
\left(\begin{array}{ccc}
1 & x_{1}^{k} & y_{1}^{k} \\
1 & x_{2}^{k} & y_{2}^{k} \\
1 & x_{3}^{k} & y_{3}^{k}
\end{array}\right)\left(\begin{array}{c}
c_{\alpha}^{k} \\
c_{x, \alpha}^{k} \\
x_{y, \alpha}^{k}
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \text { or }\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \text { or }\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

or $C=V^{-1}$ with coefficient matrix C and V andermonde matrix V

Elementary Matrices and Loads

- The elementary matrix for an element T^{k} becomes

$$
\begin{aligned}
A_{\alpha \beta}^{k} & =\int_{T^{k}} \frac{\partial \mathcal{H}_{\alpha}^{k}}{\partial x} \frac{\partial \mathcal{H}_{\beta}^{k}}{\partial x}+\frac{\partial \mathcal{H}_{\alpha}^{k}}{\partial y} \frac{\partial \mathcal{H}_{\beta}^{k}}{\partial y} d \Omega \\
& =\operatorname{Area}^{k}\left(c_{x, \alpha}^{k} c_{x, \beta}^{k}+c_{y, \alpha}^{k} c_{y, \beta}^{k}\right), \quad \alpha, \beta=1,2,3
\end{aligned}
$$

- The elementary load becomes

$$
\begin{aligned}
b_{\alpha}^{k} & =\int_{T^{k}} f \mathcal{H}_{\alpha}^{k} d \Omega \\
& =(\text { if } f \text { constant }) \\
& =\frac{\text { Area }^{k}}{3} f, \quad \alpha=1,2,3
\end{aligned}
$$

Assembly, The Stamping Method

- Assume a local-to-global mapping $t(k, \alpha)$, giving the global node number for local node number α in element k
- The global linear system is then obtained from the elementary matrices and loads by the stamping method:

$$
\begin{aligned}
& A=0, b=0 \\
& \text { for } k=1, \ldots, K \\
& \quad A(t(k,:), t(k,:))=A(t(k,:), t(k,:))+A^{k} \\
& \quad b(t(k,:))=b(t(k,:))+b^{k}
\end{aligned}
$$

Dirichlet Conditions

- Suppose Dirichlet conditions $u=u_{D}$ are imposed on part of the boundary Γ_{D}
- Enforce $\hat{u}_{i}=u_{D}$ for all nodes i on Γ_{D} directly in the linear system of equations:
i

$$
i\left(\begin{array}{ccccccc}
0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\
& & & & & &
\end{array}\right) \hat{u}=\left(u_{D}\right)
$$

