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The Poisson Problem in 2-D

@ Consider the problem
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for a domain €2 with boundary I"
o Seek solution @ € X, multiply by a test function v € X, and

integrate:
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@ Apply the divergence theorem and use the Neumann
condition, to get the Galerkin form
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Finite Element Formulation

e Expand in basis & = ), 4;¢;(x), insert into the Galerkin form,
andsetv=¢;,1=1,...,n:

/Q jéﬁjV% 'V‘ﬁidQ_/ﬂf@dQ-Fégqbids

Switch order of integration and summation to get the finite
element formulation:
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where
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@ Find a tringulation of the domain € into triangular elements
TF k=1,...,K and nodes z;, i =1,...,n

o Consider the space X of continuous functions that are linear
within each element

e Use a nodal basis X = span{¢1, ..., ¢y} defined by
¢i € X, ¢i(z;) =0y, 1<ij<n

@ A function v € X can then be
written

v=Y vigi()
=1

with the nodal interpretation
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Local Basis Functions

o Consider a triangular element T* with local nodes z¥, z%, %

o The local basis functions HY, 5, HY are linear functions:
’Hi = CZ + cgax + c];’ay, a=1,2,3

with the property that 7—[’;(3:5) =008, 3=1,2,3
@ This leads to linear systems of equations for the coefficients:
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or C' = V1 with coefficient matrix C' and Vandermonde
matrix V'



Elementary Matrices and Loads

@ The elementary matrix for an element T* becomes
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@ The elementary load becomes \\\
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Assembly, The Stamping Method

@ Assume a local-to-global mapping t(k, ), giving the global
node number for local node number « in element &k

@ The global linear system is then obtained from the elementary
matrices and loads by the stamping method:

A=0,b=0

fork=1,.... K
A(t(k,:), t(k,:)) = A(t(k,:), t(k,:)) + A*
b(t(k,:)) = b(t(k,:)) + bF




Dirichlet Conditions

@ Suppose Dirichlet conditions u = up are imposed on part of
the boundary I'p

@ Enforce u; = up for all nodes ¢ on I'p directly in the linear
system of equations:



