Finite Difference Methods for PDEs

Per-Olof Persson

persson@berkeley.edu

Department of Mathematics
University of California, Berkeley

Math 228B Numerical Solutions of Differential Equations

Finite Difference Approximations

Finite Difference Approximations

Dyu(z) = UEF h]?b —u@ _)+ gu"(:i) +Oh?)
D_u(@) =D=M _ iz L) + o)
u(x —u(x — 2
Dyu(@) = “EEN M) iy Wiz 1 ogny
Du(z) = u(T —h) — 212(;%) +u(Z + h)
h2
_ u"(f) + 1—2u""(rﬁ) + O(h4)

Method of Undetermined Coefficients

Find approximation to u(¥)(Z) based on u(z) at x1,za, ..., x,

Write u(x;) as Taylor series centered at Z:

l(l’l — f)ku(k) (j-) dk oo

u(@i) = u(@) + (2 = 2)'(7) + - + o

Seek approximation of the form
u®(z) = cru(zr) + cou(xz) + - - - + cpu(an) + O(hP)

o Collect terms multiplying w(Z), «/(Z), etc, to obtain:

1 < (1) 1 ifi—-1=k
|
(i —1)! i

0 otherwise.

Nonsingular Vandermonde system if x; are distinct

Finite difference stencils, Julia implementation

¢ = mkfdstencil(x, xbar, k)

Compute the coefficients "¢’ in a finite difference approximation of a function
defined at the grid points "x°, evaluated at “xbar”™, of order “k”.
nnn
function mkfdstencil(x, xbar, k)
n = length(x)

A =0. (x[:]'" - xbar) ~ (0:n-1) / factorial(0O:n-1)
b = (1:n) .== k+1
c=A\Db
end
Examples:

julia> println(mkfdstencil([-1 0 1], 0, 2)) # Centered 2nd derivative
[1.0, -2.0, 1.0]

julia> println(mkfdstencil([0 1 2], 0, 1)) # One-sided (right) 1st derivative
[-1.5, 2.0, -0.5]

julia> println(mkfdstencil(-2:2, 0//1, 2)) # 4th order 5-point stencil, rational
Rational{Int64}[-1//12, 4//3, -5//2, 4//3, -1//12]

Boundary Value Problems

The Finite Difference Method

o Consider the Poisson equation with Dirichlet conditions:
u'(z) = f(z), 0<z<l1l, wu0)=«a, u(l)=4
@ Introduce n uniformly spaced grid points x; = jh,
h=1/(n+1)

@ Set ug = «, uny1 = [, and use the three-point difference
approximation to get the discretization

1 .
ﬁ(ujfl_2uj+uj+1):f($j)a J=1...,n
@ This can be written as a linear system Au = f with
-2 1 Uy f(x1) — a/h?
1| =2 1 ug f(z2)

1 9 - f(zn) — B/R2

Errors and Grid Function Norms

@ The error e = u — @ where w is the numerical solution and @ is
the exact solution

u(z1)

@ Measure errors in grid function norms, which are
approximations of integrals and scale correctly as n — o

elleo = max|e;
lells =R 3 les
J

1/2

lellz= {2 lesl”
i

Local Truncation Error

@ Insert the exact solution u(x) into the difference scheme to get
the local truncation error:
1
7j = 35 (W(@j-1) = 2u(z;) + ulzjv)) = flz)
h2
= u”(acj) + Eu"”(:vj) 4 C’)(h4) — f(zy)
_ h—QUII//(x-)+O(h4)
12 J
or
T1
T = =Au—f
Tn

@ Linear system gives error in terms of LTE:

Au=f
{ An=ftr T Ae=T
@ Introduce superscript h to indicate that a problem depends on
the grid spacing, and bound the norm of the error:

Ah h _ —Th
eh _ —(Ah)_lTh
le™]] = [1(A™) " | < [1(A™)7H] - 17

o If ||(AM)~1|| < C for h < hy, then

leh]| < C - ||7"]| = 0 if 7" — 0 as h — 0O

Stability, Consistency, and Convergence

Definition
o A method AMu" = f" is stable if (A")~! exists and
(AP 7Y < C for h < hy
o It is consistent with the DE if ||7"|| — 0 as h — 0

o It is convergent if ||e"|| — 0 as h — 0
£

Theorem Fundamental Theorem of Finite Difference Methods

Consistency + Stability —> Convergence

since HehH < H(Ah)_lH . H’Th” <C- H’Th” — 0. A stronger
statement is

O(hP) LTE + Stability = O(hP) global error

.

Stability in the 2-Norm

@ In the 2-norm, we have

14]l2 = p(A) = max [A,|
1

A= ———
A = i, Ty
@ For our model problem matrix, we have explicit expressions for
the eigenvectors/eigenvalues:
-2 1
JEER R uf = sin(pmjh)
1- » Ny = ﬁ(cos(pﬂ'h) - 1)
@ The smallest eigenvalue is

2

Convergence in the 2-Norm

@ This gives a bound on the error

_ 1
le*la < 1AM Mz - 17"l & —lI17"12

e Since 7'] h—2 " (x5),
h? h?
h h
Il 2l = 2 = el = O(8?)

@ While this implies convergence in the max-norm, 1/2 order is
lost because of the grid function norm:

le"lloo < \/—Ilehllz O(h*/?)

o But it can be shown that [|(4")7!|loc = O(1), which implies
le* |0 = O(h?)

Neumann Boundary Conditions

o Consider the Poisson equation with Neumann/Dirichlet
conditions:

u'(z) = f(x), O0<z<l1l, u(0)=0, u(l)=4

@ Second-order accurate one-sided difference approximation:

1 3 49 1
[—=u U — Uz | =0
3 5 U0 1= U2
gy b 1wl [o]
1 —2 1 Ul f($1)
3 : ; = :
1 -2 1 Un f(xn)
i 0 2| |[unt1] | B]

Most general approach.

Finite Difference Methods for Elliptic Problems

Elliptic Partial Differential Equations

Consider the elliptic PDE below, the Poisson equation:

0%u 9%u
2 pr— —_— pu—
Viu(z,y) = 55(,y) + 72 (z,y) = f(2,y)

on the rectangular domain
Q={(z,y) |la<z<bc<y<d}

with Dirichlet boundary conditions u(x,y) = g(x,y) on the
boundary T' = 99 of .

Introduce a two-dimensional grid by choosing integers n, m and
defining step sizes h = (b —a)/n and k = (d — ¢)/m. This gives
the point coordinates (mesh points):

Finite Difference Discretization

Discretize each of the second derivatives using finite differences on

the grid:
W(Tit1,Y5) — 2U(12i2, yp) +wl@i-1,5)
w(@i, Yj+1) — 2U(l‘z‘27 yj) + u(@i, yj—1)
i]:2 o*u k2 0*u

_ . . vy - . . nYyw . . 4 4
= f(xzay]) + 12 922 (‘T’Luy]) + 12 8y4 (:I:’L?yj) + O(h +k)

fori=1,2,...,n—1and j=1,2,...,m — 1, with boundary
conditions

U(.%'(),y]) = g('%'(]:yj)? u(xnay]) = g(xnvyj)v] = 07 cee, M
uw(wi, yo) = 9(ws,y0), w(@i, o) = 9(%isYm), i=1,...,n—1

V.

Finite Difference Discretization

The corresponding finite-difference method for u; j ~ u(x;,y;) is

[(3)'

h 2
<E> (uigia +vig1) = —h2f(zs, ;)

wig = (Ui, + Uiz1,5) =

fori=1,2,...,n—1and 7=1,2,...,m — 1, with boundary
conditions

qu =g(anyj)7 un] :g(xrwy])? jzoa"'am
uiO:g(miay0)7 uzm:g(xuym)a izla"'7n_1

Define f;; = f(x;,y;) and suppose h = k, to get the simple form

2
Uit1,j + Uim1,j + Uijr1 + Uij—1 — duij = B fiy

FDM for Poisson, Julia implementation

Solve Poisson's equation -(uxx + uyy) = f, bnd cnds u(x,y) = g(x,y)
on a square grid using the finite difference method.
#

UC Berkeley Math 228B, Per-0lof Persson <persson@berkeley.edu>

using SparseArrays, PyPlot

A, b, x, y = assemblePoisson(n, f, g)

Assemble linear system Au = b for Poisson's equation using finite differences.
Grid size (n+1) x (n+1), right hand side function f(x,y), Dirichlet boundary
conditions g(x,y).

function assemblePoisson(n, f, g)

h=1.0/n

N = (n+1)"2

x = h *x (0:n)

Y S &

umap = reshape(1:N, n+l, n+1) # Index mapping from 2D grid to vector

A = Tuple{Int64,Int64,Float64}[] # Array of matrix elements (row,col,value)
b = zeros(N)

FDM for Poisson, Julia implementation

Main loop, insert stencil in matrix for each node point
for j = 1:n+1
for 1 = 1:n+1
row = umapl[i,j]
ifi==1 [l i==mn+1 || j==11]3==n+
Dirichlet boundary condition, u =g
push! (A, (row, row, 1.0))
blrow] = g(x[il,y[jl)
else
Interior nodes, 5-point stencil
push! (A, (row, row, 4.0))
push!(A, (row, umap[i+1,j]l, -1.0))
push! (A, (row, umap[i-1,j], -1.0))
push! (A, (row, umap[i,j+1], -1.0))
push! (A, (row, umapl[i,j-1], -1.0))
blrow] = f£(x[i]l, y[j1) * h~2
end
end
end

Create CSC sparse matrix from matrix elements
A = sparse((x->x[1]).(4), (x->x[2]).(A), (x->x[31).(A), N, I)

return A, b, x, ¥y
end

FDM for Poisson, Julia implementation

error = testPoisson(n=20)

Poisson test problem:
- Prescribe exact solution uexact
- set boundary conditions g = uexact and set RHS f = -Laplace(uexact)

Solves and plots solution on a (n+l1) x (n+l) grid.

Returns error in max-norm.

nnn

function testPoisson(n=40)
uexact(x,y) = exp(-(4(x - 0.3)72 + 9(y - 0.6)72))
f(x,y) = uexact(x,y) * (26 - (18y - 10.8)"2 - (8x - 2.4)°2)
A, b, x, y = assemblePoisson(n, f, uexact)

Solve + reshape for plotting
u = reshape(A \ b, n+l, n+l)

Plotting
clf(); contour(x, y, u, 10, colors="k"); contourf(x, y, u, 10)
axis("equal"); colorbar()

Compute error in max-norm

u0 = uexact.(x, y')

error = maximum(abs.(u - u0))
end

Convergence in the 2-Norm

@ For the homogeneous Dirichlet problem on the unit square,
convergence in the 2-norm is shown in exactly the same way as
for the corresponding BVP

@ Taylor expansions show that

1

Eh2 (uxxx:c Sl uyyyy) -+ O(h4)

Tij =

@ It can be shown that the smallest eigenvalue of A" is
—272 + O(h?), and the spectral radius of (A")~!is
approximately 1/272

o As before, this gives |e”||s = O(h?)

Non-Rectangular Domains

Poisson in 2D non-rectangular domain

@ Consider the Poisson problem on the non-rectangular domain
Q with boundary ' =T p UT'y = 02

—~Nu=f in Q
u=g onI'p
0
8—2:7" onI'y

o Consider a mapping between a rectangular reference domain Q
and the actual physical domain
e Find an equivalent problem that can be solved in 2

7]

Poisson in 2D non-rectangular domain

Transformed derivatives

@ Use the chain rule to transform the derivatives of w in the
physical domain:

Uy = EpUe + Nty

u(z,y) =u(x(,n),yn) = _
Uy = §yUe + Myt

@ Determine the terms &, 7., &y, n, by the mapped derivatives:
§=¢&(z,y) z =xz(&n)
n=n(z,y) y=wy(&n)

d 77 L ;117 L }y dy dy yf y”] dn
> < SI Sy) — <:[§ ”) — < yn :En>
”$ Uy y£ y?’] J y§ 5

where J = xey, — x,y¢

Poisson in 2D non-rectangular domain

Transformed equations

@ Using the derivative expressions, we can transform all the
derivatives and the equation —(ug, + uyy) = f becomes

1
—— (auge — 2bugy + cuyy + duy + eug) = f

72
where
a:x%+y,27 b= xexy + Yeyy c:m?—i—yg
yeow — w3 Ty — ypa
d = 285 7 _ nP = Yn®
7 ¢ J
with

a = az¢e — 20wy + cyy

B = ayee — 2byeyn + cyny

Poisson in 2D non-rectangular domain

Normal derivatives

@ The normal n in the physical domain is in the direction of
Vn or VE.
@ For example, on the top boundary n = 1 we have
1 1

———=sy) = ——= (¥, T¢)
s+ g \ 72+ yE

@ This gives the normal derivative

n=(n"nY) =

u 1
3, = Uen” Fuyn? = = [(ygn® — zyn¥)ug + (—yen® + zen)uy]

on

n

Finite Difference Methods for Parabolic Problems

Parabolic equations

o Model problem: The heat equation:

where

o u = u(x,t) is the temperature at a given point and time
o r is the heat capacity (possibly - and t-dependent)
o f is the source term (possibly - and t-dependent)

o Need initial conditions at some time tj:

u(®; to) = n(x)

e Need boundary conditions at domain boundary I':

o Dirichlet condition (prescribed temperature): u = up
o Neumann condition (prescribed heat flux): n - (kVu) = gy

1D discretization

@ Initial case: One space dimension, k =1, f = 0:
Ut = Klgy, 0<z<1

with boundary conditions u(0,t) = go(t), u(1,t) = g1(t)

@ Introduce finite difference grid: A

. — L] L] , , , L]

r; =1th, t, =nk oo
f,n+1—o---o--o--+——$l--f---o

1 1 1

with mesh spacing h = Ax K S G S 7t
and time step k = At. tiip-e--e-4-¢--t-

1 1 1
e Approximate the solution wat <41 * = ¢ ¢ ¢ °

. I

grid point (z;,t,): B BT T TR

I I I

" t Tttt
UZ ~ u(ng tn) o Tl i

Numerical schemes: FTCS

e FTCS (Forward in time, centered in space):

urtt—ur 1

k h (Un 2Uz'n+ Z&-l)

or, as an explicit expression for UZ-”H,

k
UgH—l Un+ﬁ(ll_2Un+ 111)
@ Explicit one-step method in time

o Boundary conditions naturally implemented by setting

U(7)1 = gO(tn)a Ugﬁ—l = gl(tn)

FTCS, Julia implementation

using PyPlot, LinearAlgebra, DifferentialEquations
nnn
Solves the 1D heat equation with the FTCS scheme (Forward-Time,
Centered-Space), using grid size "m’ and timestep multiplier “kmul-.
Integrates until final time “T° and plots each solution.
nnn
function heateqn_ftcs(m=100; T=0.2, kmul=0.5)
Discretization
=1.0 / (m+1)
=h * (0:m+1)
kmulxh~2
= ceil(Int, T/k)

= WX P
]

u = exp.(-(x .- 0.256).72 / 0.172) .+ 0.1sin.(10*%27*x) # Initial conditions
ul[1,end]] .= 0 # Dirichlet boundary conditions u(0) = u(1) = 0

clf(); axis([0, 1, -0.1, 1.1]); grid(true); ph, = plot(x,u) # Setup plotting
for n = 1:N

ul2:m+1] += k/h"2 * (u[l:m] .- 2u[2:m+1] + u[3:m+2])

if mod(n, 10) == 0 # Plot every 10th timestep

phl:set_datal (x,u), pause(le-3)

end

end
end

Numerical schemes: Crank-Nicolson

@ Crank-Nicolson — like FTCS, but use average of space
derivative at time steps n and n + 1:

urtt—ur 1
—— =5 (DU + DU
1 1 1 1
:2—]12(=200+ UR + UM =207 + UMY
or

—rUM + (142U — Uffll =rU" 1+ (1 —2r)U" +rU]

where 7 = k/2h?
@ Implicit one-step method in time = need to solve tridiagonal
system of equations

Crank-Nicolson, Julia implementation

Solves the 1D heat equation with the CrankNicolson scheme,
using grid size 'm’ and timestep multiplier “kmul’.
Integrates until final time “T and plots each solution.

function heateqn_cn(m=100; T=0.2, kmul=50)

end

Discretization
=1.0 / (m+1)
=h * (0:m+1)
kmul*h~2

= ceil(Int, T/k)

h
X
k
N

u = exp.(-(x .- 0.25).72 / 0.172) .+ 0.1sin.(10*27%x) # Initial conditions
ul[1,end]] .= O # Dirichlet boundary conditions u(0) = u(1) = 0

Form the matrices in the Crank-Nicolson scheme (Left and right)
A = SymTridiagonal(-2ones(m), ones(m-1)) / h"2

LH = I - Axk/2

RH = I + Axk/2

clf(); axis([0, 1, -0.1, 1.1]); grid(true); ph, = plot(x,u) # Setup plotting
for n = 1:N
ul2:m+1] = LH \ (RH * u[2:m+1]) # Note ()'s for efficient evaluation
phl:set_datal (x,u), pause(le-3) # Plot every timestep
end

Local truncation error

o LTE: Insert exact solution u(x,t) into difference equations
e Ex: FTCS

T(x’t):u(x,tJrk]z—u(x,t)]112((2 — hot) — 2u(z,) + ulz + h, 1))

Assume u smooth enough and expand in Taylor series:
T(z,t) = <Ut + %k‘utt + %k2uttt + -) - <Ua:x + h Upgze + - >
Use the equation: u; = Ugg, Uy = Uter = Uzpzrs:
T(x,1) = (;k - 112h2> Ugzzz + O(K* + hY) = O(k + h?)

First order accurate in time, second order accurate in space
e Ex: For Crank-Nicolson, 7(x,t) = O(k* + h?)
e Consistent method if 7(z,t) — 0 as k,h — 0

Method of Lines

@ Discretize PDE in space, integrate resulting semidiscrete
system of ODEs using standard schemes

o Ex: Centered in space

Ui(t) = %(Ui—l(t) —2U(t) + Uisa(t)), i=1,....m

or in matrix form: U'(t) = AU(t) + g(t), where

2 1 go(?)
1 -2 1 0
1 -2 1 0
1 1
1 -2 1 0
1 -2 g1(t)

@ Solve the centered semidiscrete system using:
o Forward Euler U"*! = U™ + kf(U™)
= the FTCS method
o Trapezoidal method U™t = U™ + £(f(U™) + f(U"T))
= the Crank-Nicolson method

Heat equation, method of lines using black-box ODE solver

Solves the 1D heat equation using Method of Lines with ODE solvers from
DifferentialEquations.jl. Grid size 'm’, integrates until final time T~
and plots a total of "nsteps” solutions.
nnn
function heateqn_odesolver(m=100; T=0.2, nsteps=100)

Discretization

h=1.0 / (m+1)

x =h x (0:mt+1)

u = exp.(-(x .- 0.256).72 / 0.172) .+ 0.1sin.(10*27*x) # Initial conditions
ul[1,end]] .= 0 # Dirichlet boundary conditions u(0) = u(l) = 0

fode(u,p,t) = ([0; ull:m+1]] .- 2u .+ [u[2:m+2]; 0]) / h"2 # RHS du/dt = £(u)
prob = ODEProblem(fode, u, (0,T))
sol = solve(prob, alg_hints=[:stiff], saveat=T / nsteps)

Animate solution
clf(); axis([0, 1, -0.1, 1.1]); grid(true); ph, = plot(x,u) # Setup plotting
for n = 1:length(sol)
phl:set_datal(x,sol.uln]), pause(le-3) # Update plot
end
end

Method of Lines, Stability

o Stability requires kA to be inside the
absolute stability region, for all
eigenvalues A of A

Im(kX)

@ For the centered differences, the

eigenvalues are __1/ Re(kN)

2
Ap = ﬁ(cos(pﬂh) -1), p=1,....m
Forward-Euler stability region

or, in particular, A\, = —4/h2
o Euler gives —2 < —4k/h? <0, or

Im(kX)

LAPS
hZz — 2

= time step restriction for FTCS - Re(k3)

@ Trapezoidal method A-stable —-
Crank-Nicolson is stable for any time
step k>0

Trapezoidal method stability region

Convergence

@ For convergence, k and h must in general approach zero at
appropriate rates, for example k — 0 and k/h? < 1/2
@ Write the methods as
U™ = B(E)U™ + b"(k) (*)
where, e.g., B(k) = I + kA for forward Euler and
B(k)= (I - %A)f1 (I +%A) for Crank-Nicolson
Definition
A linear method of the form (*) is Lax-Richtmyer stable if, for each
time T, these is a constant C7 > 0 such that
IB(k)"|| < Cr
for all £ > 0 and integers n for which kn < T.

.

Theorem (Lax Equivalence Theorem)

A consistent linear method of the form (*) is convergent if and only
if it is Lax-Richtmyer stable.

V,

Lax Equivalence Theorem

Consider the numerical scheme applied to the numerical solution U
and the exact solution u(x,t):

Ut = BU" +b"
w1 = By + b + k"
Subtract to get difference equation for the error E™ = U™ — u™:

N
E™!' =BE"—kr", o EN=BYE'-k) BNyl
n=1

Bound the norm, use Lax-Richtmyer stability and Nk < T*

N
IEN) < IBMIIE + %D IBY " [lIl7" |
n=1

< Cr||E°| + TCr max ||[7"7 | = 0ask —0
1<n<N

provided ||7|| — 0 and that the initial data ||E°|| — 0. O

Convergence

For the FTCS method, B(k) = I + kA is symmetric, so
|B(k)||2 = p(B) < 1if k < h?/2. Therefore, it is Lax-Richtmyer
stable and convergent, under this restriction.

For the Crank-Nicolson method, B(k) = (I — gA)_1 I+ gA) is
symmetric with eigenvalues (1 + kA,/2)/(1 — kX, /2). Therefore,
|B(k)||l2 = p(B) < 1 for any k > 0 and the method is
Lax-Richtmyer stable and convergent.

A

||B(k)|| <1 is called strong stability, but Lax-Richtmyer stability is
also obtained if ||B(k)|| < 1+ ak for some constant «, since then

IBR)™ || < (1 + ak)" < e

Von Neumann Analysis

o Consider the Cachy problem, on all space and no boundaries
(—o00 <z < oo in 1D)

e The grid function W, = ehE constant &, is an eigenfunction
of any translation-invariant finite difference operator

o Consider the centered difference DyV; = ﬁ(VjH - Vio1):
1 /.. » 1 /. . g
— (LG DRE _ Ji(i-1REY = [ihE _ —ih& Jijhg
DoWi =3 (e ¢) 2h (e ‘)e
= %sin(hﬁ)eijh£ = %sin(h&)Wj,

that is, W is an eigenfunction with eigenvalue ; sin(h¢)

@ Note that this agrees to first order with the eigenvalue ¢ of
the operator 0,

Von Neumann Analysis

o Consider a function V; on the grid z; = 'hl/\ﬁ/ith finite 2-norm

V2 = (h > il

j=—o00

o Express V; as linear combination of e¥/h¢ for [¢| < 7/h:

1 7/h B . h > g
Vi = — V(€)M ds, where V(§) = —— Y Ve M
=g L, @t wher V©) = 2 3 Vi

j=—o0

o Parseval’s relation: |V |2 = ||[V|2 in the norms

- 1/2 I 1/2
V2 = (h > ij) Ve = (/_W/hIV(f) 2d£>

j=—o0

Von Neumann Analysis

@ Using Parseval's relation, we can show Lax-Richtmyer stability
[T 2 < (14 ak) U2
in the Fourier transform of U™:
10"]2 < (1 + ak) (1T |2
o This decouples each U™(¢) from all other wave numbers:
0" (€) = g(OU"(€)

with amplification factor g(&).
o If |g(¢)] <1+ ak, then

TS L+ ak)T™(©)] and [T < (1 -+ ak) [T7)3

Example (FTCS)

Von Neumann Analysis

For the FTCS method,
k
U = U7 + 5 (U2 = 207 + Uf)
we get the amplification factor
k
9(6) = 1+ 255 (cos(eh) — 1)
and [g(&)| < 1if k < h?/2

Example (Crank-Nicolson)

For the Crank Nicolson method,
—rUM + (1 + 2r)UPT — TU"H =rU" 1+ (1 —-2r)U +rU%,
we get the amplification factor
1+ 32
9(§) = 1— %Z
and |g(&)| <1 for any k,h

where z = i—l;(cos(fh) -1)

Multidimensional Problems

o Consider the heat equation in two space dimensions:
Up = Ugg T Uyy

with initial conditions u(x,y,0) = n(x,y) and boundary
conditions on the boundary of the domain €.
@ Use e.g. the 5-point discrete Laplacian:
1
Vilij = 72l
@ Use e.g. the trapezoidal method in time:

Ui—1j + U1 + Ui j—1 + Ui j41 — 4Us5)

Ut =g+ 5 [Viun + viup|

k 2 n+1 __ k 2 n
<I—2Vh>U <I+ “vi)un

o Linear system involving A = I — kV?3 /2, not tridiagonal
@ But condition number = O(k/h?), = fast iterative solvers

or

Locally One-Dimensional and Alternating Directions

@ Split timestep and decouple u;, and wuyy:

k s
Uy = Ujj + 5 (D3U5; + DiUY)
k
Uit = U+ 5 (DU + DU

or, as in the alternating direction implicit (ADI) method,

* n k 2r1n 277%

Y1) x~)
* k *
Ut = Ujj + 5 (DRU5 + DU)

@ Implicit scheme with only tridiagonal systems

@ Remains second order accurate

Finite Difference Methods for Hyperbolic Problems

@ The scalar advection equation, with constant velocity a:
us + auy =0

o Cauchy problem needs initial data u(z,0) = n(z), and the
exact solution is

u(z,t) = n(x — at)

@ FTCS scheme:

yrtl _pyn a
]T] = "5 (Ufa = Uy)
or
Uptt = U7 = o (U = Ujta)

@ Stability problems — more later

The Lax-Friedrichs Method

o Replace U} in FTCS by the average of its neighbors:

(U1 + Ufh) = 55 (Ufsa = Ufly)

o Lax-Richtmyer stable if

Untt =

N |

or k = O(h) — not stiff

Method of Lines

e With bounded domain, e.g. 0 < x <1, if a > 0 we need an
inflow boundary condition at z = 0:

u(0,t) = go(t)

and x = 1 is an outflow boundary
@ Opposite if a < 0
o Need one-sided differences — more later

Periodic Boundary Conditions

For analysis, impose the periodic boundary conditions

u(0,t) = u(1,1), fort >0

Equivalent to Cauchy problem with periodic initial data

Introduce one boundary value as an unknown, e.g. Uy, +1(%):

U(t) = (U1(t), Ua(t), ..., Uns1 ()"

Use periodicity for first and last equations:

a

- (Ut) ~ Ui (1)

1 (t) = —%(Ul(t) —Un(t))

Ui(t) =

Periodic Boundary Conditions

@ Leads to Method of Lines formulation U’(t) = AU(t), where

o Skew-symmetric matrix (AT = —A) = purely imaginary
eigenvalues:

)\p:—%sin@ﬂ'ph), p=1,2,...,m+1

with eigenvectors
P _ e?ﬂ'lpjh’

o pji=12...,m+1

Forward Euler

@ Use Forward Euler in time = FTCS scheme:
ak
+1
U = Uy - U

@ Stability region S: |1+ kA| <1 = imaginary kX, will always
be outside S = unstable for fixed k/h
e However, ife.g. k = hZ, we have

k
1+ kAp* <1+ < ha> it

=1+a’h? =1+ d’k

which gives Lax-Richtmyer stability

U Re(kX)

(T + EA)™ 2 < (1+ a?k)"/2 < e T/2
Forward-Euler stability region
@ Not used in practice — too strong
restriction on timestep k

Leapfrog

o Consider using the midpoint method in time:
Un+1 Un 1 +2LAU"

@ For the centered differences in space, this gives the leapfrog

method.:
Un+1 _ Unfl _ % (U?‘L)
i =Y S
e Stability region S: ia for -1 < a <1 Im(k2)
= stable if |ak/h| < 1
@ Only marginally stable —-
nondissipative) Re(in)

Midpoint method stability region

Lax-Friedrichs

@ Rewrite the average as:

1 n n n 1 n n n
5 (U +Uf) = U + 5 (U = 207 + U

to obtain
n+1 n ak n n 1 n n n
Ut = Uf = 5 (Ui = Ujea) + 5 (Uf = 207 + Ujy)
or
o -uy po (YU R (U 220+ U
k 2h T2k h2

@ Like a discretization of the advection-diffusion equation
Ut + AUy = EUgy

where € = h?/(2k).

Lax-Friedrichs

@ The Lax-Friedrichs method can then be written as
U'(t) = AU (t) with

0 1 -1
-1 0 1
a -1 0 1
€ — _ﬁ . "
-1 0 1
- 1 _1 -
-2 1 l
1 -2 1
¢ 1 -2 1
E -
1 -2 1
|1 1 -2

where ¢ = h?/(2k)

Lax-Friedrichs

@ The eigenvalues of A, are shifted from the imaginary axis into
the left half-plane:

a 2e
o == sin(2mph) — ﬁ(l — cos(27mph))

@ The values ky, lie on an ellipse centered at —2ke/h2, with
semi-axes 2ke/h?, ak/h

o For Lax-Friedrichs, e = h%/(2k) and —2ke/h? = —1 =
stable if |ak/h| <1

The Lax-Wendroff Method

@ Use Taylor series method for higher order accuracy in time
e For U'(t) = AU(t), we have U"” = AU’ = A%U and the
second-order Taylor method

Un+1 Un + k‘AUn kQAQUn

@ Note that
2 a?
(A°0); = 35 Wj—2 = 2U;j + Ujs2)
so the method can be written
ak ak?

Uit = U - 57, (Ui = Uja) + g (Ufn — 2U7 + Uf)

o Replace last term by 3-point discretization of a?k?u,, /2 =
the Lax-Wendroff method.

Upt = Uf = o (U = U) + 5

7 9 Uity — QU]’? +]TL_H)

2h2(]

Stability analysis

@ The Lax-Wendroff method is Euler’'s method applied to
U'(t) = AU(t), with € = a®k/2 = eigenvalues

I (‘f) sin(prh) + (‘Z“)Q (cos(prh) — 1)

o On ellipse centered at —(ak/h)? with semi-axes (ak/h)?,
|ak/h|
e Stable if |ak/h| <1

Upwind methods

o Consider one-sided approximations for u,, e.g. for a > 0:

n+1l _ rrn ak n . ak
U] U — h (Uj — Uj—l)? Stable |'F 0 S ﬁ S 1
or, if a < 0:
n+l _ 7 ak n . ak
U U —F(]+1—Uj),stab|elf—1§?§0

@ Natural with asymmetry for the advection equation, since the
solution is translating at speed a

Stability analysis

@ The upwind method for a > 0 can be written

n+1 n ak n n ak n n
Uit = U]*%(JH1 T j—1)+%(i1 — 207 + U y)

@ Again like a discretization of advection-diffusion
Ut + QUy = €Ug,, with € = ah/2 = stable if

—2 < —2ek/h? <0, or og%gl

@ The three methods, Lax-Wendroff, upwind, Lax-Friedrichs, can
all be written as advection-diffusion with

a’k ahv ah h? ah

ELW:7:72) Gup:7; GLF:ﬁzg

where v = ak/h. Stable if 0 < v < 1.

The Beam-Warming method

@ Like upwind, but use second-order one-sided approximations:

ak
Uttt =ur — %(w" AU + UjLy)
2]{72
2h2 (an — 2U]n_1 -+ U]n_Q) for a > O
and
vt = - 2 3UJ +4)
J 7y 2% J+1 j+2
2k2 n n n
2h2 ((]‘7 —2U]+1+U]+2) for(l<0

o Stable if 0 < v <2and —2 < v <0, respectively

Von Neumann analysis

Example (The upwind method)

9(6) = (1 —v) +ve "

where v = ak/h, stable if 0 <v <1

Example (Lax-Friedrichs)

9(€) = cos(h) — visin(Eh) = |g(€)[> = cos? (éh) + 12 sin?(¢h),

stable if |v| <1

Von Neumann analysis

Example (Lax-Wendroff)

g(&) =1 — iv[2sin(Eh/2) cos(€h/2)] — v2[2sin®(€h/2)]
= [9(§)F* =1 - 4*(1 - v*)sin’(£h/2)

stable if [v| <1

.

Example (Leapfrog)

9(6)* = 1 — 2visin(¢h)g(€),

stable if |v| < 1 (like the midpoint method)

Characteristic tracing and interpolation

o Consider the case a > 0 and ak/h < 1
@ Trace characteristic through x;,t,41 to time ¢,
e Find U™"! by linear interpolation between Ui~y and U}

n+1 _ rm ak n
Uit = U - (U7 - Upy)

= first order upwind method
" . = Lax-Wendroff

© Quadratic interpolating U;",, U, Uj,4
@ Quadratic interpolating U”72, U"fl, UJ’? —> Beam-Warming

h
th+1 —@ » °
ty . . .
Tj-1 €Zj
-—

The CFL condition

to

to

For the advection equation, u(X,T') depends only on the
initial data n(X — aT))

The domain of dependence is D(X,T) = {X — aT}

Heat equation u; = uy,, D(X,T) = (—00, 00)

Domain of dependence for 3-point explicit FD method: Each
value depends on neighbors at previous timestep

Refining the grid with fixed k/h = r gives same interval
This region must contain the true D for the PDE:

X-T/r<X—-—aT <X+T/r

= |a| < 1/r or |ak/h| <1
The Courant-Friedrichs-Lewy (CFL) condition: Numerical
domain of dependence must contain the true D as k,h — 0

ty

to
Tj—2 Zj Tj+2 Tj—q Tj Tjt+4q

The CFL condition

Example (FTCS)

The centered-difference scheme for the advection equation is
unstable for fixed k/h even if |ak/h| <1

.

Example (Beam-Warming)

3-point one-sided stencil, CFL condition gives 0 < ak/h < 2 (for
left-sided, used when a > 0)

Example (Heat equation)

e D(X,T) = (—o0,00) = any 3-point explicit method violates
CFL condition for fixed k/h
@ However, with k;/h2 < 1/2, all of R is covered as k — 0

.

Example (Crank-Nicolson)

Any implicit scheme satisfies the CFL condition, since the
tridiagonal linear system couples all points.

A

Modified equations

o Find a PDE v; = --- that the numerical approximation U}'
satisfies exactly, or at least better than the original PDE

Example (Upwind method)

To second order accuracy, the numerical solution satisfies

1 k
vy + avy = iah (1 — %) Vg
Advection-diffusion equation

€

Example (Lax-Wendroff)

To third order accuracy,

1 2
vt + avg + gah2 (1 — (%) > Vpge = 0

Dispersive behavior, leading to a phase error. To fourth order,

1 ak\?
Vt + Uy + éah 1— 7 Vpxx = —€Uzzzx

where € = O(k® + h3) = highest modes damped

.

Modified equations

Example (Beam-Warming)
To third order,

1 k k\?
v + avy = gahQ <2 = 3% I (%)) s

Dispersive, similar to Lax-Wendroff

.

Example (Leapfrog)

Modified equation
1 2%
V¢ + AUz + gah2 (1 - (%) > Vpgxw = €Vggazs +

where € = O(h* + k*) = only odd-order derivatives,
nondissipative method

Hyperbolic systems

@ The methods generalize to first order linear systems of
equations of the form
up + Aug = 0,
u(z,0) = ().
where v : R x R — R® and a constant matrix A € R**?
@ Hyperbolic system of conservation laws, with flux function
f(u) = Au, if A diagonalizable with real eigenvalues:
A=RAR™' or Arp =Xprp forp=1,2,...,s
e Change variables to eigenvectors, w = R~ 'u, to decouple
system into s independent scalar equations
(wp)t + Ap(wp)e =0, p=1,2,...,s
with solution wy(x,t) = wy(x — A\pt, 0) and initial condition
the pth component of w(x,0) = R~!n(x).

@ Solution recovered by u(z,t) = Rw(x,t), or
S

u(x,t) = Z wp(x — Apt, 0)7)
p=1

Numerical methods for hyperbolic systems

@ Most methods generalize to systems by replacing a with A

Example (Lax-Wendroff)

k‘2

_k
n+l _ ymn n __ gy
Urtt = UP — — A()+ 373

2% J+1 7—1 AQ(U]TL—I - 2an + Jn—i-l)

Second-order accurate, stable if ¥ = maxj<p<s [\pk/h| < 1

Example (Upwind methods)

k
n+1 n n n
Uit =05 - AU} = UjLy)

n n k n
Upt = UP — S AU — UF)
Only useful if all eigenvalues of A have same sign. Instead,

decompose into scalar equations and upwind each one separately
— Godunov’s method

.

Initial boundary value problems

@ For a bounded domain, e.g. 0 < z < 1, the advection equation
requires an inflow condition z(0,t) = go(t) if a > 0

@ This gives the solution

nx—at) f0<z—at<l,
u(z,t) = _
go(t —x/a) otherwise.

o First-order upwind works well, but other stencils need special
cases at inflow boundary and/or outflow boundary

@ von Neumann analysis not applicable, but generally gives
necessary conditions for convergence

@ Method of Lines applicable if eigenvalues of discretization
matrix are known

