Finite Difference Methods for PDEs

Per-Olof Persson
persson@berkeley.edu
Department of Mathematics
University of California, Berkeley

Math 228B Numerical Solutions of Differential Equations

Finite Difference Approximations

Finite Difference Approximations

$$
\begin{aligned}
D_{+} u(\bar{x}) & =\frac{u(\bar{x}+h)-u(\bar{x})}{h}=u^{\prime}(\bar{x})+\frac{h}{2} u^{\prime \prime}(\bar{x})+\mathcal{O}\left(h^{2}\right) \\
D_{-} u(\bar{x}) & =\frac{u(\bar{x})-u(\bar{x}-h)}{h}=u^{\prime}(\bar{x})-\frac{h}{2} u^{\prime \prime}(\bar{x})+\mathcal{O}\left(h^{2}\right) \\
D_{0} u(\bar{x}) & =\frac{u(\bar{x}+h)-u(\bar{x}-h)}{2 h}=u^{\prime}(\bar{x})+\frac{h^{2}}{6} u^{\prime \prime \prime}(\bar{x})+\mathcal{O}\left(h^{4}\right) \\
D^{2} u(\bar{x}) & =\frac{u(\bar{x}-h)-2 u(\bar{x})+u(\bar{x}+h)}{h^{2}} \\
& =u^{\prime \prime}(\bar{x})+\frac{h^{2}}{12} u^{\prime \prime \prime \prime}(\bar{x})+\mathcal{O}\left(h^{4}\right)
\end{aligned}
$$

Method of Undetermined Coefficients

- Find approximation to $u^{(k)}(\bar{x})$ based on $u(x)$ at $x_{1}, x_{2}, \ldots, x_{n}$
- Write $u\left(x_{i}\right)$ as Taylor series centered at \bar{x} :

$$
u\left(x_{i}\right)=u(\bar{x})+\left(x_{i}-\bar{x}\right) u^{\prime}(\bar{x})+\cdots+\frac{1}{k!}\left(x_{i}-\bar{x}\right)^{k} u^{(k)}(\bar{x})+\cdots
$$

- Seek approximation of the form

$$
u^{(k)}(\bar{x})=c_{1} u\left(x_{1}\right)+c_{2} u\left(x_{2}\right)+\cdots+c_{n} u\left(x_{n}\right)+\mathcal{O}\left(h^{p}\right)
$$

- Collect terms multiplying $u(\bar{x}), u^{\prime}(\bar{x})$, etc, to obtain:

$$
\frac{1}{(i-1)!} \sum_{j=1}^{n} c_{j}\left(x_{j}-\bar{x}\right)^{(i-1)}= \begin{cases}1 & \text { if } i-1=k \\ 0 & \text { otherwise }\end{cases}
$$

- Nonsingular Vandermonde system if x_{j} are distinct

Finite difference stencils, Julia implementation

```
"""
    c = mkfdstencil(x, xbar, k)
```

Compute the coefficients ' c ' in a finite difference approximation of a function
defined at the grid points ' x `, evaluated at ‘xbar`, of order ‘k ’.
"""
function mkfdstencil($x, x b a r, k)$
$\mathrm{n}=$ length(x$)$
$\mathrm{A}=$ @. (x[:]' - xbar) ^ (0:n-1) / factorial(0:n-1)
$\mathrm{b}=(1: \mathrm{n}) .==\mathrm{k}+1$
$c=A \backslash b$
end

Examples:

julia> println(mkfdstencil([-1 0 1], 0, 2)) \# Centered 2nd derivative [1.0, -2.0, 1.0]
julia> println(mkfdstencil([0 12$]$, 0, 1)) \# One-sided (right) 1st derivative [-1.5, 2.0, -0.5]
julia> println(mkfdstencil(-2:2, 0//1, 2)) \# 4th order 5-point stencil, rational Rational\{Int64\}[-1//12, 4//3, -5//2, 4//3, -1//12]

Boundary Value Problems

- Consider the Poisson equation with Dirichlet conditions:

$$
u^{\prime \prime}(x)=f(x), \quad 0<x<1, \quad u(0)=\alpha, \quad u(1)=\beta
$$

- Introduce n uniformly spaced grid points $x_{j}=j h$, $h=1 /(n+1)$
- Set $u_{0}=\alpha, u_{n+1}=\beta$, and use the three-point difference approximation to get the discretization

$$
\frac{1}{h^{2}}\left(u_{j-1}-2 u_{j}+u_{j+1}\right)=f\left(x_{j}\right), \quad j=1, \ldots, n
$$

- This can be written as a linear system $A u=f$ with

$$
A=\frac{1}{h^{2}}\left[\begin{array}{cccc}
-2 & 1 & & \\
1 & -2 & 1 & \\
& & \ddots & \\
& & 1 & -2
\end{array}\right] \quad u=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right] \quad f=\left[\begin{array}{c}
f\left(x_{1}\right)-\alpha / h^{2} \\
f\left(x_{2}\right) \\
\vdots \\
f\left(x_{n}\right)-\beta / h^{2}
\end{array}\right]
$$

- The error $e=u-\hat{u}$ where u is the numerical solution and \hat{u} is the exact solution

$$
\hat{u}=\left[\begin{array}{c}
u\left(x_{1}\right) \\
\vdots \\
u\left(x_{n}\right)
\end{array}\right]
$$

- Measure errors in grid function norms, which are approximations of integrals and scale correctly as $n \rightarrow \infty$

$$
\begin{aligned}
\|e\|_{\infty} & =\max _{j}\left|e_{j}\right| \\
\|e\|_{1} & =h \sum_{j}\left|e_{j}\right| \\
\|e\|_{2} & =\left(h \sum_{j}\left|e_{j}\right|^{2}\right)^{1 / 2}
\end{aligned}
$$

Local Truncation Error

- Insert the exact solution $u(x)$ into the difference scheme to get the local truncation error:

$$
\begin{aligned}
\tau_{j} & =\frac{1}{h^{2}}\left(u\left(x_{j-1}\right)-2 u\left(x_{j}\right)+u\left(x_{j+1}\right)\right)-f\left(x_{j}\right) \\
& =u^{\prime \prime}\left(x_{j}\right)+\frac{h^{2}}{12} u^{\prime \prime \prime \prime}\left(x_{j}\right)+\mathcal{O}\left(h^{4}\right)-f\left(x_{j}\right) \\
& =\frac{h^{2}}{12} u^{\prime \prime \prime \prime}\left(x_{j}\right)+\mathcal{O}\left(h^{4}\right)
\end{aligned}
$$

or

$$
\tau=\left[\begin{array}{c}
\tau_{1} \\
\vdots \\
\tau_{n}
\end{array}\right]=A \hat{u}-f
$$

- Linear system gives error in terms of LTE:

$$
\left\{\begin{array}{l}
A u=f \\
A \hat{u}=f+\tau
\end{array} \Longrightarrow A e=-\tau\right.
$$

- Introduce superscript h to indicate that a problem depends on the grid spacing, and bound the norm of the error:

$$
\begin{aligned}
A^{h} e^{h} & =-\tau^{h} \\
e^{h} & =-\left(A^{h}\right)^{-1} \tau^{h} \\
\left\|e^{h}\right\| & =\left\|\left(A^{h}\right)^{-1} \tau^{h}\right\| \leq\left\|\left(A^{h}\right)^{-1}\right\| \cdot\left\|\tau^{h}\right\|
\end{aligned}
$$

- If $\left\|\left(A^{h}\right)^{-1}\right\| \leq C$ for $h \leq h_{0}$, then

$$
\left\|e^{h}\right\| \leq C \cdot\left\|\tau^{h}\right\| \rightarrow 0 \text { if }\left\|\tau^{h}\right\| \rightarrow 0 \text { as } h \rightarrow 0
$$

Stability, Consistency, and Convergence

Definition

- A method $A^{h} u^{h}=f^{h}$ is stable if $\left(A^{h}\right)^{-1}$ exists and $\left\|\left(A^{h}\right)^{-1}\right\| \leq C$ for $h \leq h_{0}$
- It is consistent with the DE if $\left\|\tau^{h}\right\| \rightarrow 0$ as $h \rightarrow 0$
- It is convergent if $\left\|e^{h}\right\| \rightarrow 0$ as $h \rightarrow 0$

Theorem Fundamental Theorem of Finite Difference Methods

Consistency + Stability \Longrightarrow Convergence

since $\left\|e^{h}\right\| \leq\left\|\left(A^{h}\right)^{-1}\right\| \cdot\left\|\tau^{h}\right\| \leq C \cdot\left\|\tau^{h}\right\| \rightarrow 0$. A stronger statement is

$$
\mathcal{O}\left(h^{p}\right) L T E+\text { Stability } \Longrightarrow \mathcal{O}\left(h^{p}\right) \text { global error }
$$

Stability in the 2-Norm

- In the 2-norm, we have

$$
\begin{aligned}
\|A\|_{2} & =\rho(A)=\max _{p}\left|\lambda_{p}\right| \\
\left\|A^{-1}\right\|_{2} & =\frac{1}{\min _{p}\left|\lambda_{p}\right|}
\end{aligned}
$$

- For our model problem matrix, we have explicit expressions for the eigenvectors/eigenvalues:
$A=\frac{1}{h^{2}}\left[\begin{array}{cccc}-2 & 1 & & \\ 1 & -2 & 1 & \\ & & \ddots & \\ & & 1 & -2\end{array}\right] \quad \begin{aligned} & u_{j}^{p}=\sin (p \pi j h) \\ & \lambda_{p}=\frac{2}{h^{2}}(\cos (p \pi h)-1)\end{aligned}$
- The smallest eigenvalue is

$$
\lambda_{1}=\frac{2}{h^{2}}(\cos (\pi h)-1)=-\pi^{2}+\mathcal{O}\left(h^{2}\right) \Longrightarrow \text { Stability }
$$

Convergence in the 2-Norm

- This gives a bound on the error

$$
\left\|e^{h}\right\|_{2} \leq\left\|\left(A^{h}\right)^{-1}\right\|_{2} \cdot\left\|\tau^{h}\right\|_{2} \approx \frac{1}{\pi^{2}}\left\|\tau^{h}\right\|_{2}
$$

- Since $\tau_{j}^{h} \approx \frac{h^{2}}{12} u^{\prime \prime \prime \prime}\left(x_{j}\right)$,

$$
\left\|\tau^{h}\right\|_{2} \approx \frac{h^{2}}{12}\left\|u^{\prime \prime \prime \prime}\right\|_{2}=\frac{h^{2}}{12}\left\|f^{\prime \prime}\right\|_{2} \Longrightarrow\left\|e^{h}\right\|_{2}=\mathcal{O}\left(h^{2}\right)
$$

- While this implies convergence in the max-norm, $1 / 2$ order is lost because of the grid function norm:

$$
\left\|e^{h}\right\|_{\infty} \leq \frac{1}{\sqrt{h}}\left\|e^{h}\right\|_{2}=\mathcal{O}\left(h^{3 / 2}\right)
$$

- But it can be shown that $\left\|\left(A^{h}\right)^{-1}\right\|_{\infty}=\mathcal{O}(1)$, which implies $\left\|e^{h}\right\|_{\infty}=\mathcal{O}\left(h^{2}\right)$

Neumann Boundary Conditions

- Consider the Poisson equation with Neumann/Dirichlet conditions:

$$
u^{\prime \prime}(x)=f(x), \quad 0<x<1, \quad u^{\prime}(0)=\sigma, \quad u(1)=\beta
$$

- Second-order accurate one-sided difference approximation:

$$
\begin{gathered}
\frac{1}{h}\left(-\frac{3}{2} u_{0}+2 u_{1}-\frac{1}{2} u_{2}\right)=\sigma \\
\frac{1}{h^{2}}\left[\begin{array}{ccccc}
-\frac{3 h}{2} & 2 h & -\frac{h}{2} & \\
1 & -2 & 1 & & \\
& & \ddots & & \\
& & 1 & -2 & 1 \\
& & & 0 & h^{2}
\end{array}\right]\left[\begin{array}{c}
u_{0} \\
u_{1} \\
\vdots \\
u_{n} \\
u_{n+1}
\end{array}\right]=\left[\begin{array}{c}
\sigma \\
f\left(x_{1}\right) \\
\vdots \\
f\left(x_{n}\right) \\
\beta
\end{array}\right]
\end{gathered}
$$

Most general approach.

Finite Difference Methods for Elliptic Problems

Elliptic Partial Differential Equations

Consider the elliptic PDE below, the Poisson equation:

$$
\nabla^{2} u(x, y) \equiv \frac{\partial^{2} u}{\partial x^{2}}(x, y)+\frac{\partial^{2} u}{\partial y^{2}}(x, y)=f(x, y)
$$

on the rectangular domain

$$
\Omega=\{(x, y) \mid a<x<b, c<y<d\}
$$

with Dirichlet boundary conditions $u(x, y)=g(x, y)$ on the boundary $\Gamma=\partial \Omega$ of Ω.

Introduce a two-dimensional grid by choosing integers n, m and defining step sizes $h=(b-a) / n$ and $k=(d-c) / m$. This gives the point coordinates (mesh points):

$$
\begin{aligned}
x_{i}=a+i h, & i=0,1, \ldots, n \\
y_{i}=c+j k, & j=0,1, \ldots, m
\end{aligned}
$$

Finite Difference Discretization

Discretize each of the second derivatives using finite differences on the grid:

$$
\begin{aligned}
& \frac{u\left(x_{i+1}, y_{j}\right)-2 u\left(x_{i}, y_{j}\right)+u\left(x_{i-1}, y_{j}\right)}{h^{2}}+ \\
& \frac{u\left(x_{i}, y_{j+1}\right)-2 u\left(x_{i}, y_{j}\right)+u\left(x_{i}, y_{j-1}\right)}{k^{2}} \\
& \quad=f\left(x_{i}, y_{j}\right)+\frac{h^{2}}{12} \frac{\partial^{4} u}{\partial x^{4}}\left(x_{i}, y_{j}\right)+\frac{k^{2}}{12} \frac{\partial^{4} u}{\partial y^{4}}\left(x_{i}, y_{j}\right)+\mathcal{O}\left(h^{4}+k^{4}\right)
\end{aligned}
$$

for $i=1,2, \ldots, n-1$ and $j=1,2, \ldots, m-1$, with boundary conditions

$$
\begin{array}{rll}
u\left(x_{0}, y_{j}\right)=g\left(x_{0}, y_{j}\right), & u\left(x_{n}, y_{j}\right)=g\left(x_{n}, y_{j}\right), & j=0, \ldots, m \\
u\left(x_{i}, y_{0}\right)=g\left(x_{i}, y_{0}\right), & u\left(x_{i}, y_{0}\right)=g\left(x_{i}, y_{m}\right), & i=1, \ldots, n-1
\end{array}
$$

Finite Difference Discretization

The corresponding finite-difference method for $u_{i, j} \approx u\left(x_{i}, y_{i}\right)$ is

$$
\begin{aligned}
& 2\left[\left(\frac{h}{k}\right)^{2}+1\right] u_{i j}-\left(u_{i+1, j}+u_{i-1, j}\right)- \\
& \quad\left(\frac{h}{k}\right)^{2}\left(u_{i, j+1}+u_{i, j-1}\right)=-h^{2} f\left(x_{i}, y_{j}\right)
\end{aligned}
$$

for $i=1,2, \ldots, n-1$ and $j=1,2, \ldots, m-1$, with boundary conditions

$$
\begin{array}{ll}
u_{0 j}=g\left(x_{0}, y_{j}\right), & u_{n j}=g\left(x_{n}, y_{j}\right),
\end{array} \quad j=0, \ldots, m ~ 子 ~\left(x_{i}, y_{0}\right), \quad u_{i m}=g\left(x_{i}, y_{m}\right), \quad i=1, \ldots, n-1
$$

Define $f_{i j}=f\left(x_{i}, y_{i}\right)$ and suppose $h=k$, to get the simple form

$$
u_{i+1, j}+u_{i-1, j}+u_{i, j+1}+u_{i, j-1}-4 u_{i, j}=h^{2} f_{i j}
$$

FDM for Poisson, Julia implementation

```
# Solve Poisson's equation -(uxx + uyy) = f, bnd cnds u(x,y) = g(x,y)
# on a square grid using the finite difference method.
#
# UC Berkeley Math 228B, Per-Olof Persson <persson@berkeley.edu>
using SparseArrays, PyPlot
"""
A, b, x, y = assemblePoisson(n, f, g)
Assemble linear system Au = b for Poisson's equation using finite differences.
Grid size (n+1) x (n+1), right hand side function f(x,y), Dirichlet boundary
conditions g(x,y).
"""
function assemblePoisson(n, f, g)
\[
\begin{aligned}
& \mathrm{h}=1.0 / \mathrm{n} \\
& \mathrm{~N}=(\mathrm{n}+1)^{\wedge} 2 \\
& \mathrm{x}=\mathrm{h} *(0: \mathrm{n}) \\
& \mathrm{y}=\mathrm{x}
\end{aligned}
\]
```

```
umap = reshape(1:N, n+1, n+1) # Index mapping from 2D grid to vector
```

umap = reshape(1:N, n+1, n+1) \# Index mapping from 2D grid to vector
A = Tuple{Int64,Int64,Float64}[] \# Array of matrix elements (row,col,value)
A = Tuple{Int64,Int64,Float64}[] \# Array of matrix elements (row,col,value)
b = zeros(N)

```
b = zeros(N)
```


FDM for Poisson, Julia implementation

\# Main loop, insert stencil in matrix for each node point

```
for j = 1:n+1
    for i = 1:n+1
        row = umap[i,j]
        if i == 1 || i == n+1 || j == 1 || j == n+1
                # Dirichlet boundary condition, u = g
        push!(A, (row, row, 1.0))
        b[row] = g(x[i],y[j])
        else
            # Interior nodes, 5-point stencil
            push!(A, (row, row, 4.0))
            push!(A, (row, umap[i+1,j], -1.0))
            push!(A, (row, umap[i-1,j], -1.0))
            push!(A, (row, umap[i,j+1], -1.0))
            push!(A, (row, umap[i,j-1], -1.0))
            b[row] = f(x[i], y[j]) * h^2
        end
    end
```

end
\# Create CSC sparse matrix from matrix elements
$A=\operatorname{sparse}((x->x[1]) .(A),(x->x[2]) .(A),(x->x[3]) .(A), N, N)$
return $\mathrm{A}, \mathrm{b}, \mathrm{x}, \mathrm{y}$

FDM for Poisson, Julia implementation

\| \| \|

```
error = testPoisson(n=20)
```

Poisson test problem:

- Prescribe exact solution uexact
- set boundary conditions g = uexact and set RHS f = -Laplace(uexact)

Solves and plots solution on $a(n+1) x(n+1)$ grid.
Returns error in max-norm.
" ""
function testPoisson ($n=40$)
uexact $(x, y)=\exp \left(-\left(4(x-0.3)^{\wedge} 2+9(y-0.6)^{\wedge} 2\right)\right)$
$f(x, y)=\operatorname{uexact}(x, y) *\left(26-(18 y-10.8)^{\wedge} 2-(8 x-2.4)^{\wedge} 2\right)$
$\mathrm{A}, \mathrm{b}, \mathrm{x}, \mathrm{y}=\mathrm{assemblePoisson}(\mathrm{n}, \mathrm{f}$, uexact)
\# Solve + reshape for plotting
$\mathrm{u}=\operatorname{reshape}(\mathrm{A} \backslash \mathrm{b}, \mathrm{n}+1, \mathrm{n}+1$)
\# Plotting
clf(); contour(x, y, u, 10, colors="k"); contourf(x, y, u, 10) axis("equal"); colorbar()
\# Compute error in max-norm
u 0 = uexact. ($\mathrm{x}, \mathrm{y}^{\prime}$)
error $=$ maximum(abs. $(u-u 0)$)
end

Convergence in the 2-Norm

- For the homogeneous Dirichlet problem on the unit square, convergence in the 2-norm is shown in exactly the same way as for the corresponding BVP
- Taylor expansions show that

$$
\tau_{i j}=\frac{1}{12} h^{2}\left(u_{x x x x}+u_{y y y y}\right)+\mathcal{O}\left(h^{4}\right)
$$

- It can be shown that the smallest eigenvalue of A^{h} is $-2 \pi^{2}+\mathcal{O}\left(h^{2}\right)$, and the spectral radius of $\left(A^{h}\right)^{-1}$ is approximately $1 / 2 \pi^{2}$
- As before, this gives $\left\|e^{h}\right\|_{2}=\mathcal{O}\left(h^{2}\right)$

Non-Rectangular Domains

Poisson in 2D non-rectangular domain

- Consider the Poisson problem on the non-rectangular domain Ω with boundary $\Gamma=\Gamma_{D} \cup \Gamma_{N}=\partial \Omega$:

$$
\begin{aligned}
-\nabla^{2} u & =f & & \text { in } \Omega \\
u & =g & & \text { on } \Gamma_{D} \\
\frac{\partial u}{\partial n} & =r & & \text { on } \Gamma_{N}
\end{aligned}
$$

- Consider a mapping between a rectangular reference domain $\hat{\Omega}$ and the actual physical domain Ω
- Find an equivalent problem that can be solved in $\hat{\Omega}$

Poisson in 2D non-rectangular domain

Transformed derivatives

- Use the chain rule to transform the derivatives of u in the physical domain:

$$
u(x, y)=u(x(\xi, \eta), y(\xi, \eta)) \quad \Longrightarrow \quad \begin{aligned}
& u_{x}=\xi_{x} u_{\xi}+\eta_{x} u_{\eta} \\
& u_{y}=\xi_{y} u_{\xi}+\eta_{y} u_{\eta}
\end{aligned}
$$

- Determine the terms $\xi_{x}, \eta_{x}, \xi_{y}, \eta_{y}$ by the mapped derivatives:

$$
\begin{aligned}
& \xi=\xi(x, y) \\
& \eta=\eta(x, y) \\
& x=x(\xi, \eta) \\
& y=y(\xi, \eta) \\
& \binom{d \xi}{d \eta}=\left(\begin{array}{ll}
\xi_{x} & \xi_{y} \\
\eta_{x} & \eta_{y}
\end{array}\right)\binom{d x}{d y} \quad\binom{d x}{d y}=\left(\begin{array}{ll}
x_{\xi} & x_{\eta} \\
y_{\xi} & y_{\eta}
\end{array}\right)\binom{d \xi}{d \eta} \\
& \Longrightarrow\left(\begin{array}{ll}
\xi_{x} & \xi_{y} \\
\eta_{x} & \eta_{y}
\end{array}\right)=\left(\begin{array}{ll}
x_{\xi} & x_{\eta} \\
y_{\xi} & y_{\eta}
\end{array}\right)^{-1}=\frac{1}{J}\left(\begin{array}{cc}
y_{\eta} & -x_{\eta} \\
-y_{\xi} & x_{\xi}
\end{array}\right) \\
& \text { where } J=x_{\xi} y_{\eta}-x_{\eta} y_{\xi}
\end{aligned}
$$

Poisson in 2D non-rectangular domain

Transformed equations

- Using the derivative expressions, we can transform all the derivatives and the equation $-\left(u_{x x}+u_{y y}\right)=f$ becomes

$$
-\frac{1}{J^{2}}\left(a u_{\xi \xi}-2 b u_{\xi \eta}+c u_{\eta \eta}+d u_{\eta}+e u_{\xi}\right)=f
$$

where

$$
\begin{array}{lll}
a=x_{\eta}^{2}+y_{\eta}^{2} & b=x_{\xi} x_{\eta}+y_{\xi} y_{\eta} & c=x_{\xi}^{2}+y_{\xi}^{2} \\
d=\frac{y_{\xi} \alpha-x_{\xi} \beta}{J} & e=\frac{x_{\eta} \beta-y_{\eta} \alpha}{J} &
\end{array}
$$

with

$$
\begin{aligned}
\alpha & =a x_{\xi \xi}-2 b x_{\xi \eta}+c x_{\eta \eta} \\
\beta & =a y_{\xi \xi}-2 b y_{\xi \eta}+c y_{\eta \eta}
\end{aligned}
$$

Poisson in 2D non-rectangular domain

Normal derivatives

- The normal \boldsymbol{n} in the physical domain is in the direction of $\nabla \eta$ or $\nabla \xi$.
- For example, on the top boundary $\eta=1$ we have

$$
\boldsymbol{n}=\left(n^{x}, n^{y}\right)=\frac{1}{\sqrt{\eta_{x}^{2}+\eta_{y}^{2}}}\left(\eta_{x}, \eta_{y}\right)=\frac{1}{\sqrt{x_{\xi}^{2}+y_{\xi}^{2}}}\left(-y_{\xi}, x_{\xi}\right)
$$

- This gives the normal derivative

$$
\frac{\partial u}{\partial n}=u_{x} n^{x}+u_{y} n^{y}=\frac{1}{J}\left[\left(y_{\eta} n^{x}-x_{\eta} n^{y}\right) u_{\xi}+\left(-y_{\xi} n^{x}+x_{\xi} n^{y}\right) u_{\eta}\right]
$$

Finite Difference Methods for Parabolic Problems

Parabolic equations

- Model problem: The heat equation:

$$
\frac{\partial u}{\partial t}-\nabla \cdot(\kappa \nabla u)=f
$$

where

- $u=u(\boldsymbol{x}, t)$ is the temperature at a given point and time
- κ is the heat capacity (possibly \boldsymbol{x} - and t-dependent)
- f is the source term (possibly \boldsymbol{x} - and t-dependent)
- Need initial conditions at some time t_{0} :

$$
u\left(\boldsymbol{x}, t_{0}\right)=\eta(\boldsymbol{x})
$$

- Need boundary conditions at domain boundary Γ :
- Dirichlet condition (prescribed temperature): $u=u_{D}$
- Neumann condition (prescribed heat flux): $\boldsymbol{n} \cdot(\kappa \nabla u)=g_{N}$

1D discretization

- Initial case: One space dimension, $\kappa=1, f=0$:

$$
u_{t}=\kappa u_{x x}, \quad 0 \leq x \leq 1
$$

with boundary conditions $u(0, t)=g_{0}(t), u(1, t)=g_{1}(t)$

- Introduce finite difference grid:

$$
x_{i}=i h, \quad t_{n}=n k
$$

with mesh spacing $h=\Delta x$ and time step $k=\Delta t$.

- Approximate the solution u at grid point $\left(x_{i}, t_{n}\right)$:

$$
U_{i}^{n} \approx u\left(x_{i}, t_{n}\right)
$$

Numerical schemes: FTCS

- FTCS (Forward in time, centered in space):

$$
\frac{U_{i}^{n+1}-U_{i}^{n}}{k}=\frac{1}{h^{2}}\left(U_{i-1}^{n}-2 U_{i}^{n}+U_{i+1}^{n}\right)
$$

or, as an explicit expression for U_{i}^{n+1},

$$
U_{i}^{n+1}=U_{i}^{n}+\frac{k}{h^{2}}\left(U_{i-1}^{n}-2 U_{i}^{n}+U_{i+1}^{n}\right)
$$

- Explicit one-step method in time
- Boundary conditions naturally implemented by setting

$$
U_{0}^{n}=g_{0}\left(t_{n}\right), \quad U_{m+1}^{n}=g_{1}\left(t_{n}\right)
$$

FTCS, Julia implementation

```
using PyPlot, LinearAlgebra, DifferentialEquations
"""
Solves the 1D heat equation with the FTCS scheme (Forward-Time,
Centered-Space), using grid size 'm' and timestep multiplier `kmul`.
Integrates until final time 'T` and plots each solution.
"""
function heateqn_ftcs(m=100; T=0.2, kmul=0.5)
    # Discretization
    h = 1.0 / (m+1)
    x = h * (0:m+1)
    k = kmul*h^2
    N = ceil(Int, T/k)
    u = exp.(-(x .- 0.25).^2 / 0.1^2) .+ 0.1sin.(10*2\pi*x) # Initial conditions
    u[[1,end]] .= 0 # Dirichlet boundary conditions u(0) = u(1) = 0
    clf(); axis([0, 1, -0.1, 1.1]); grid(true); ph, = plot(x,u) # Setup plotting
    for n = 1:N
        u[2:m+1] += k/h^2 * (u[1:m] .- 2u[2:m+1] + u[3:m+2])
        if mod(n, 10) == 0 # Plot every 10th timestep
                ph[:set_data](x,u), pause(1e-3)
        end
    end
end
```


Numerical schemes: Crank-Nicolson

- Crank-Nicolson - like FTCS, but use average of space derivative at time steps n and $n+1$:

$$
\begin{aligned}
\frac{U_{i}^{n+1}-U_{i}^{n}}{k} & =\frac{1}{2}\left(D^{2} U_{i}^{n}+D^{2} U_{i}^{n+1}\right) \\
& =\frac{1}{2 h^{2}}\left(U_{i-1}^{n}-2 U_{i}^{n}+U_{i+1}^{n}+U_{i-1}^{n+1}-2 U_{i}^{n+1}+U_{i+1}^{n+1}\right)
\end{aligned}
$$

or
$-r U_{i-1}^{n+1}+(1+2 r) U_{i}^{n+1}-r U_{i+1}^{n+1}=r U_{i-1}^{n}+(1-2 r) U_{i}^{n}+r U_{i+1}^{n}$
where $r=k / 2 h^{2}$

- Implicit one-step method in time \Longrightarrow need to solve tridiagonal system of equations

Crank-Nicolson, Julia implementation

```
| || |
Solves the 1D heat equation with the CrankNicolson scheme,
using grid size `m` and timestep multiplier `kmul`.
Integrates until final time 'T` and plots each solution.
|||
function heateqn_cn(m=100; T=0.2, kmul=50)
    # Discretization
    h = 1.0 / (m+1)
    x = h * (0:m+1)
    k = kmul*h^2
    N = ceil(Int, T/k)
    u = exp.(-(x .- 0.25).^2 / 0.1^2) .+ 0.1sin.(10*2\pi*x) # Initial conditions
    u[[1,end]] .= 0 # Dirichlet boundary conditions u(0) = u(1) = 0
    # Form the matrices in the Crank-Nicolson scheme (Left and right)
    A = SymTridiagonal(-2ones(m), ones(m-1)) / h^2
    LH = I - A*k/2
    RH = I + A*k/2
    clf(); axis([0, 1, -0.1, 1.1]); grid(true); ph, = plot(x,u) # Setup plotting
    for n = 1:N
        u[2:m+1] = LH \ (RH * u[2:m+1]) # Note ()'s for efficient evaluation
        ph[:set_data](x,u), pause(1e-3) # Plot every timestep
    end
end
```


Local truncation error

- LTE: Insert exact solution $u(x, t)$ into difference equations
- Ex: FTCS

$$
\tau(x, t)=\frac{u(x, t+k)-u(x, t)}{k}-\frac{1}{h^{2}}(u(x-h, t)-2 u(x, t)+u(x+h, t))
$$

Assume u smooth enough and expand in Taylor series:

$$
\tau(x, t)=\left(u_{t}+\frac{1}{2} k u_{t t}+\frac{1}{6} k^{2} u_{t t t}+\cdots\right)-\left(u_{x x}+\frac{1}{12} h^{2} u_{x x x x}+\cdots\right)
$$

Use the equation: $u_{t}=u_{x x}, u_{t t}=u_{t x x}=u_{x x x x}$:

$$
\tau(x, t)=\left(\frac{1}{2} k-\frac{1}{12} h^{2}\right) u_{x x x x}+O\left(k^{2}+h^{4}\right)=O\left(k+h^{2}\right)
$$

First order accurate in time, second order accurate in space

- Ex: For Crank-Nicolson, $\tau(x, t)=O\left(k^{2}+h^{2}\right)$
- Consistent method if $\tau(x, t) \rightarrow 0$ as $k, h \rightarrow 0$

Method of Lines

- Discretize PDE in space, integrate resulting semidiscrete system of ODEs using standard schemes
- Ex: Centered in space

$$
U_{i}^{\prime}(t)=\frac{1}{h^{2}}\left(U_{i-1}(t)-2 U_{i}(t)+U_{i+1}(t)\right), \quad i=1, \ldots, m
$$

or in matrix form: $U^{\prime}(t)=A U(t)+g(t)$, where

$$
A=\frac{1}{h^{2}}\left[\begin{array}{cccccc}
-2 & 1 & & & & \\
1 & -2 & 1 & & & \\
& 1 & -2 & 1 & & \\
& & \ddots & \ddots & \ddots & \\
& & & 1 & -2 & 1 \\
& & & & 1 & -2
\end{array}\right], \quad g(t)=\frac{1}{h^{2}}\left[\begin{array}{c}
g_{0}(t) \\
0 \\
0 \\
\vdots \\
0 \\
g_{1}(t)
\end{array}\right]
$$

- Solve the centered semidiscrete system using:
- Forward Euler $U^{n+1}=U^{n}+k f\left(U^{n}\right)$
\Longrightarrow the FTCS method
- Trapezoidal method $U^{n+1}=U^{n}+\frac{k}{2}\left(f\left(U^{n}\right)+f\left(U^{n+1}\right)\right)$
\Longrightarrow the Crank-Nicolson method

Heat equation, method of lines using black-box ODE solver

```
"|"
Solves the 1D heat equation using Method of Lines with ODE solvers from
DifferentialEquations.jl. Grid size `m`, integrates until final time `T`
and plots a total of 'nsteps' solutions.
"""
function heateqn_odesolver(m=100; T=0.2, nsteps=100)
    # Discretization
    h = 1.0 / (m+1)
    x = h * (0:m+1)
    u = exp.(-(x .- 0.25).^2 / 0.1^2) .+ 0.1sin.(10*2\pi*x) # Initial conditions
    u[[1,end]] .= 0 # Dirichlet boundary conditions u(0) = u(1) = 0
    fode(u,p,t) = ([0; u[1:m+1]] .- 2u .+ [u[2:m+2]; 0]) / h^2 # RHS du/dt = f(u)
    prob = ODEProblem(fode, u, (0,T))
    sol = solve(prob, alg_hints=[:stiff], saveat=T / nsteps)
    # Animate solution
    clf(); axis([0, 1, -0.1, 1.1]); grid(true); ph, = plot(x,u) # Setup plotting
    for n = 1:length(sol)
    ph[:set_data](x,sol.u[n]), pause(1e-3) # Update plot
    end
end
```


Method of Lines, Stability

- Stability requires $k \lambda$ to be inside the absolute stability region, for all eigenvalues λ of A
- For the centered differences, the eigenvalues are

$$
\lambda_{p}=\frac{2}{h^{2}}(\cos (p \pi h)-1), \quad p=1, \ldots, m
$$

or, in particular, $\lambda_{m} \approx-4 / h^{2}$

- Euler gives $-2 \leq-4 k / h^{2} \leq 0$, or

$$
\frac{k}{h^{2}} \leq \frac{1}{2}
$$

\Longrightarrow time step restriction for FTCS

- Trapezoidal method A-stable \Longrightarrow Crank-Nicolson is stable for any time step $k>0$

Forward-Euler stability region

Convergence

- For convergence, k and h must in general approach zero at appropriate rates, for example $k \rightarrow 0$ and $k / h^{2} \leq 1 / 2$
- Write the methods as

$$
\begin{equation*}
U^{n+1}=B(k) U^{n}+b^{n}(k) \tag{}
\end{equation*}
$$

where, e.g., $B(k)=I+k A$ for forward Euler and $B(k)=\left(I-\frac{k}{2} A\right)^{-1}\left(I+\frac{k}{2} A\right)$ for Crank-Nicolson

Definition

A linear method of the form $\left(^{*}\right)$ is Lax-Richtmyer stable if, for each time T, these is a constant $C_{T}>0$ such that

$$
\left\|B(k)^{n}\right\| \leq C_{T}
$$

for all $k>0$ and integers n for which $k n \leq T$.

Theorem (Lax Equivalence Theorem)

A consistent linear method of the form (*) is convergent if and only if it is Lax-Richtmyer stable.

Lax Equivalence Theorem

Proof.

Consider the numerical scheme applied to the numerical solution U and the exact solution $u(x, t)$:

$$
\begin{aligned}
U^{n+1} & =B U^{n}+b^{n} \\
u^{n+1} & =B u^{n}+b^{n}+k \tau^{n}
\end{aligned}
$$

Subtract to get difference equation for the error $E^{n}=U^{n}-u^{n}$:

$$
E^{n+1}=B E^{n}-k \tau^{n}, \quad \text { or } \quad E^{N}=B^{N} E^{0}-k \sum_{n=1}^{N} B^{N-n} \tau^{n-1}
$$

Bound the norm, use Lax-Richtmyer stability and $N k \leq T$:

$$
\begin{aligned}
\left\|E^{N}\right\| & \leq\left\|B^{N}\right\|\left\|E^{0}\right\|+k \sum_{n=1}^{N}\left\|B^{N-n}\right\|\left\|\tau^{n-1}\right\| \\
& \leq C_{T}\left\|E^{0}\right\|+T C_{T} \max _{1 \leq n \leq N}\left\|\tau^{n-1}\right\| \rightarrow 0 \text { as } k \rightarrow 0
\end{aligned}
$$

provided $\|\tau\| \rightarrow 0$ and that the initial data $\left\|E^{0}\right\| \rightarrow 0$.

Convergence

Example

For the FTCS method, $B(k)=I+k A$ is symmetric, so $\|B(k)\|_{2}=\rho(B) \leq 1$ if $k \leq h^{2} / 2$. Therefore, it is Lax-Richtmyer stable and convergent, under this restriction.

Example

For the Crank-Nicolson method, $B(k)=\left(I-\frac{k}{2} A\right)^{-1}\left(I+\frac{k}{2} A\right)$ is symmetric with eigenvalues $\left(1+k \lambda_{p} / 2\right) /\left(1-k \lambda_{p} / 2\right)$. Therefore, $\|B(k)\|_{2}=\rho(B)<1$ for any $k>0$ and the method is
Lax-Richtmyer stable and convergent.

Example

$\|B(k)\| \leq 1$ is called strong stability, but Lax-Richtmyer stability is also obtained if $\|B(k)\| \leq 1+\alpha k$ for some constant α, since then

$$
\left\|B(k)^{n}\right\| \leq(1+\alpha k)^{n} \leq e^{\alpha T}
$$

Von Neumann Analysis

- Consider the Cachy problem, on all space and no boundaries $(-\infty<x<\infty$ in 1D)
- The grid function $W_{j}=e^{i j h \xi}$, constant ξ, is an eigenfunction of any translation-invariant finite difference operator
- Consider the centered difference $D_{0} V_{j}=\frac{1}{2 h}\left(V_{j+1}-V_{j-1}\right)$:

$$
\begin{aligned}
D_{0} W_{j} & =\frac{1}{2 h}\left(e^{i(j+1) h \xi}-e^{i(j-1) h \xi}\right)=\frac{1}{2 h}\left(e^{i h \xi}-e^{-i h \xi}\right) e^{i j h \xi} \\
& =\frac{i}{h} \sin (h \xi) e^{i j h \xi}=\frac{i}{h} \sin (h \xi) W_{j},
\end{aligned}
$$

that is, W is an eigenfunction with eigenvalue $\frac{i}{h} \sin (h \xi)$

- Note that this agrees to first order with the eigenvalue $i \xi$ of the operator ∂_{x}

Von Neumann Analysis

- Consider a function V_{j} on the grid $x_{j}=j h_{1}$, yith finite 2-norm

$$
\|V\|_{2}=\left(h \sum_{j=-\infty}^{\infty}\left|V_{j}\right|^{2}\right)
$$

- Express V_{j} as linear combination of $e^{i j h \xi}$ for $|\xi| \leq \pi / h$:
$V_{j}=\frac{1}{\sqrt{2 \pi}} \int_{-\pi / h}^{\pi / h} \hat{V}(\xi) e^{i j h \xi} d \xi, \quad$ where $\hat{V}(\xi)=\frac{h}{\sqrt{2 \pi}} \sum_{j=-\infty}^{\infty} V_{j} e^{-i j h \xi}$
- Parseval's relation: $\|\hat{V}\|_{2}=\|V\|_{2}$ in the norms

$$
\|V\|_{2}=\left(h \sum_{j=-\infty}^{\infty}\left|V_{j}\right|^{2}\right)^{1 / 2}, \quad\|\hat{V}\|_{2}=\left(\int_{-\pi / h}^{\pi / h}|\hat{V}(\xi)|^{2} d \xi\right)^{1 / 2}
$$

Von Neumann Analysis

- Using Parseval's relation, we can show Lax-Richtmyer stability

$$
\left\|U^{n+1}\right\|_{2} \leq(1+\alpha k)\left\|U^{n}\right\|_{2}
$$

in the Fourier transform of U^{n} :

$$
\left\|\hat{U}^{n+1}\right\|_{2} \leq(1+\alpha k)\left\|\hat{U}^{n}\right\|_{2}
$$

- This decouples each $\hat{U}^{n}(\xi)$ from all other wave numbers:

$$
\hat{U}^{n+1}(\xi)=g(\xi) \hat{U}^{n}(\xi)
$$

with amplification factor $g(\xi)$.

- If $|g(\xi)| \leq 1+\alpha k$, then
$\left|\hat{U}^{n+1}(\xi)\right| \leq(1+\alpha k)\left|\hat{U}^{n}(\xi)\right| \quad$ and $\quad\left\|\hat{U}^{n+1}\right\|_{2} \leq(1+\alpha k)\left\|\hat{U}^{n}\right\|_{2}$

Von Neumann Analysis

Example (FTCS)

For the FTCS method,

$$
U_{i}^{n+1}=U_{i}^{n}+\frac{k}{h^{2}}\left(U_{i-1}^{n}-2 U_{i}^{n}+U_{i+1}^{n}\right)
$$

we get the amplification factor

$$
g(\xi)=1+2 \frac{k}{h^{2}}(\cos (\xi h)-1)
$$

and $|g(\xi)| \leq 1$ if $k \leq h^{2} / 2$

Example (Crank-Nicolson)

For the Crank Nicolson method,
$-r U_{i-1}^{n+1}+(1+2 r) U_{i}^{n+1}-r U_{i+1}^{n+1}=r U_{i-1}^{n}+(1-2 r) U_{i}^{n}+r U_{i+1}^{n}$
we get the amplification factor

$$
g(\xi)=\frac{1+\frac{1}{2} z}{1-\frac{1}{2} z} \quad \text { where } \quad z=\frac{2 k}{h^{2}}(\cos (\xi h)-1)
$$

and $|g(\xi)| \leq 1$ for any k, h

Multidimensional Problems

- Consider the heat equation in two space dimensions:

$$
u_{t}=u_{x x}+u_{y y}
$$

with initial conditions $u(x, y, 0)=\eta(x, y)$ and boundary conditions on the boundary of the domain Ω.

- Use e.g. the 5-point discrete Laplacian:

$$
\nabla_{h}^{2} U_{i j}=\frac{1}{h^{2}}\left(U_{i-1, j}+U_{i+1, j}+U_{i, j-1}+U_{i, j+1}-4 U_{i j}\right)
$$

- Use e.g. the trapezoidal method in time:

$$
U_{i j}^{n+1}=U_{i j}^{n}+\frac{k}{2}\left[\nabla_{h}^{2} U_{i j}^{n}+\nabla_{h}^{2} U_{i j}^{n+1}\right]
$$

or

$$
\left(I-\frac{k}{2} \nabla_{h}^{2}\right) U_{i j}^{n+1}=\left(I+\frac{k}{2} \nabla_{h}^{2}\right) U_{i j}^{n}
$$

- Linear system involving $A=I-k \nabla_{h}^{2} / 2$, not tridiagonal
- But condition number $=O\left(k / h^{2}\right), \Longrightarrow$ fast iterative solvers

Locally One-Dimensional and Alternating Directions

- Split timestep and decouple $u_{x x}$ and $u_{y y}$:

$$
\begin{aligned}
U_{i j}^{*} & =U_{i j}^{n}+\frac{k}{2}\left(D_{x}^{2} U_{i j}^{n}+D_{x}^{2} U_{i j}^{*}\right) \\
U_{i j}^{n+1} & =U_{i j}^{*}+\frac{k}{2}\left(D_{y}^{2} U_{i j}^{*}+D_{x}^{2} U_{i j}^{n+1}\right)
\end{aligned}
$$

or, as in the alternating direction implicit (ADI) method,

$$
\begin{aligned}
U_{i j}^{*} & =U_{i j}^{n}+\frac{k}{2}\left(D_{y}^{2} U_{i j}^{n}+D_{x}^{2} U_{i j}^{*}\right) \\
U_{i j}^{n+1} & =U_{i j}^{*}+\frac{k}{2}\left(D_{x}^{2} U_{i j}^{*}+D_{y}^{2} U_{i j}^{n+1}\right)
\end{aligned}
$$

- Implicit scheme with only tridiagonal systems
- Remains second order accurate

Finite Difference Methods for Hyperbolic Problems

Advection

- The scalar advection equation, with constant velocity a :

$$
u_{t}+a u_{x}=0
$$

- Cauchy problem needs initial data $u(x, 0)=\eta(x)$, and the exact solution is

$$
u(x, t)=\eta(x-a t)
$$

- FTCS scheme:

$$
\frac{U_{j}^{n+1}-U_{j}^{n}}{k}=-\frac{a}{2 h}\left(U_{j+1}^{n}-U_{j-1}^{n}\right)
$$

or

$$
U_{j}^{n+1}=U_{j}^{n}-\frac{a k}{2 h}\left(U_{j+1}^{n}-U_{j-1}^{n}\right)
$$

- Stability problems - more later
- Replace U_{j}^{n} in FTCS by the average of its neighbors:

$$
U_{j}^{n+1}=\frac{1}{2}\left(U_{j-1}^{n}+U_{j+1}^{n}\right)-\frac{a k}{2 h}\left(U_{j+1}^{n}-U_{j-1}^{n}\right)
$$

- Lax-Richtmyer stable if

$$
\left|\frac{a k}{h}\right| \leq 1
$$

or $k=\mathcal{O}(h)-$ not stiff

Method of Lines

- With bounded domain, e.g. $0 \leq x \leq 1$, if $a>0$ we need an inflow boundary condition at $x=0$:

$$
u(0, t)=g_{0}(t)
$$

and $x=1$ is an outflow boundary

- Opposite if $a<0$
- Need one-sided differences - more later

Periodic Boundary Conditions

- For analysis, impose the periodic boundary conditions

$$
u(0, t)=u(1, t), \quad \text { for } t \geq 0
$$

- Equivalent to Cauchy problem with periodic initial data
- Introduce one boundary value as an unknown, e.g. $U_{m+1}(t)$:

$$
U(t)=\left(U_{1}(t), U_{2}(t), \ldots, U_{m+1}(t)\right)^{T}
$$

- Use periodicity for first and last equations:

$$
\begin{aligned}
U_{1}^{\prime}(t) & =-\frac{a}{2 h}\left(U_{2}(t)-U_{m+1}(t)\right) \\
U_{m+1}^{\prime}(t) & =-\frac{a}{2 h}\left(U_{1}(t)-U_{m}(t)\right)
\end{aligned}
$$

Periodic Boundary Conditions

- Leads to Method of Lines formulation $U^{\prime}(t)=A U(t)$, where

$$
A=-\frac{a}{2 h}\left[\begin{array}{cccccc}
0 & 1 & & & & -1 \\
-1 & 0 & 1 & & & \\
& -1 & 0 & 1 & & \\
& & \ddots & \ddots & \ddots & \\
& & & -1 & 0 & 1 \\
1 & & & & -1 & 0
\end{array}\right]
$$

- Skew-symmetric matrix $\left(A^{T}=-A\right) \Longrightarrow$ purely imaginary eigenvalues:

$$
\lambda_{p}=-\frac{i a}{h} \sin (2 \pi p h), \quad p=1,2, \ldots, m+1
$$

with eigenvectors

$$
u_{j}^{p}=e^{2 \pi i p j h}, \quad p, j=1,2, \ldots, m+1
$$

- Use Forward Euler in time \Longrightarrow FTCS scheme:

$$
U_{j}^{n+1}=U_{j}^{n}-\frac{a k}{2 h}\left(U_{j+1}^{n}-U_{j-1}^{n}\right)
$$

- Stability region \mathcal{S} : $|1+k \lambda| \leq 1 \Longrightarrow$ imaginary $k \lambda_{p}$ will always be outside $\mathcal{S} \Longrightarrow$ unstable for fixed k / h
- However, if e.g. $k=h^{2}$, we have

$$
\begin{aligned}
&\left|1+k \lambda_{p}\right|^{2} \leq 1+\left(\frac{k a}{h}\right)^{2} \\
&=1+a^{2} h^{2}=1+a^{2} k
\end{aligned}
$$

which gives Lax-Richtmyer stability

$$
\left\|(I+k A)^{n}\right\|_{2} \leq\left(1+a^{2} k\right)^{n / 2} \leq e^{a^{2} T / 2}
$$

Forward-Euler stability region

- Not used in practice - too strong restriction on timestep k

Leapfrog

- Consider using the midpoint method in time:

$$
U^{n+1}=U^{n-1}+2 k A U^{n}
$$

- For the centered differences in space, this gives the leapfrog method:

$$
U_{j}^{n+1}=U_{j}^{n-1}-\frac{a k}{h}\left(U_{j+1}^{n}-U_{j-1}^{n}\right)
$$

- Stability region \mathcal{S} : $i \alpha$ for $-1<\alpha<1$ \Longrightarrow stable if $|a k / h|<1$
- Only marginally stable \Longrightarrow nondissipative

Midpoint method stability region

- Rewrite the average as:

$$
\frac{1}{2}\left(U_{j-1}^{n}+U_{j+1}^{n}\right)=U_{j}^{n}+\frac{1}{2}\left(U_{j-1}^{n}-2 U_{j}^{n}+U_{j+1}^{n}\right)
$$

to obtain

$$
U_{j}^{n+1}=U_{j}^{n}-\frac{a k}{2 h}\left(U_{j+1}^{n}-U_{j-1}^{n}\right)+\frac{1}{2}\left(U_{j-1}^{n}-2 U_{j}^{n}+U_{j+1}^{n}\right)
$$

or

$$
\frac{U_{j}^{n+1}-U_{j}^{n}}{k}+a\left(\frac{U_{j+1}^{n}-U_{j-1}^{n}}{2 h}\right)=\frac{h^{2}}{2 k}\left(\frac{U_{j-1}^{n}-2 U_{j}^{n}+U_{j+1}^{n}}{h^{2}}\right)
$$

- Like a discretization of the advection-diffusion equation

$$
u_{t}+a u_{x}=\epsilon u_{x x}
$$

where $\epsilon=h^{2} /(2 k)$.

Lax-Friedrichs

- The Lax-Friedrichs method can then be written as $U^{\prime}(t)=A_{\epsilon} U(t)$ with

$$
\begin{aligned}
& A_{\epsilon}=-\frac{a}{2 h}\left[\begin{array}{cccccc}
0 & 1 & & & & -1 \\
-1 & 0 & 1 & & & \\
& -1 & 0 & 1 & & \\
& & \ddots & \ddots & \ddots & \\
1 & & & -1 & 0 & 1 \\
& & & & -1 & 0
\end{array}\right] \\
& +\frac{\epsilon}{h^{2}}\left[\begin{array}{cccccc}
-2 & 1 & & & & 1 \\
1 & -2 & 1 & & & \\
& 1 & -2 & 1 & & \\
& & \ddots & \ddots & \ddots & \\
& & & 1 & -2 & 1 \\
1 & & & & 1 & -2
\end{array}\right]
\end{aligned}
$$

where $\epsilon=h^{2} /(2 k)$

Lax-Friedrichs

- The eigenvalues of A_{ϵ} are shifted from the imaginary axis into the left half-plane:

$$
\mu_{p}=-\frac{i a}{h} \sin (2 \pi p h)-\frac{2 \epsilon}{h^{2}}(1-\cos (2 \pi p h))
$$

- The values $k \mu_{p}$ lie on an ellipse centered at $-2 k \epsilon / h^{2}$, with semi-axes $2 k \epsilon / h^{2}$, ak/h
- For Lax-Friedrichs, $\epsilon=h^{2} /(2 k)$ and $-2 k \epsilon / h^{2}=-1 \Longrightarrow$ stable if $|a k / h| \leq 1$
- Use Taylor series method for higher order accuracy in time
- For $U^{\prime}(t)=A U(t)$, we have $U^{\prime \prime}=A U^{\prime}=A^{2} U$ and the second-order Taylor method

$$
U^{n+1}=U^{n}+k A U^{n}+\frac{1}{2} k^{2} A^{2} U^{n}
$$

- Note that

$$
\left(A^{2} U\right)_{j}=\frac{a^{2}}{4 h^{2}}\left(U_{j-2}-2 U_{j}+U_{j+2}\right)
$$

so the method can be written

$$
U_{j}^{n+1}=U_{j}^{n}-\frac{a k}{2 h}\left(U_{j+1}^{n}-U_{j-1}^{n}\right)+\frac{a^{2} k^{2}}{8 h^{2}}\left(U_{j-2}^{n}-2 U_{j}^{n}+U_{j+2}^{n}\right)
$$

- Replace last term by 3-point discretization of $a^{2} k^{2} u_{x x} / 2 \Longrightarrow$ the Lax-Wendroff method:

$$
U_{j}^{n+1}=U_{j}^{n}-\frac{a k}{2 h}\left(U_{j+1}^{n}-U_{j-1}^{n}\right)+\frac{a^{2} k^{2}}{2 h^{2}}\left(U_{j-1}^{n}-2 U_{j}^{n}+U_{j+1}^{n}\right)
$$

Stability analysis

- The Lax-Wendroff method is Euler's method applied to $U^{\prime}(t)=A_{\epsilon} U(t)$, with $\epsilon=a^{2} k / 2 \Longrightarrow$ eigenvalues

$$
k \mu_{p}=-i\left(\frac{a k}{h}\right) \sin (p \pi h)+\left(\frac{a k}{h}\right)^{2}(\cos (p \pi h)-1)
$$

- On ellipse centered at $-(a k / h)^{2}$ with semi-axes $(a k / h)^{2}$, $|a k / h|$
- Stable if $|a k / h| \leq 1$

Upwind methods

- Consider one-sided approximations for u_{x}, e.g. for $a>0$:

$$
U_{j}^{n+1}=U_{j}^{n}-\frac{a k}{h}\left(U_{j}^{n}-U_{j-1}^{n}\right), \text { stable if } 0 \leq \frac{a k}{h} \leq 1
$$

or, if $a<0$:

$$
U_{j}^{n+1}=U_{j}^{n}-\frac{a k}{h}\left(U_{j+1}^{n}-U_{j}^{n}\right), \text { stable if }-1 \leq \frac{a k}{h} \leq 0
$$

- Natural with asymmetry for the advection equation, since the solution is translating at speed a

Stability analysis

- The upwind method for $a>0$ can be written

$$
U_{j}^{n+1}=U_{j}^{n}-\frac{a k}{2 h}\left(U_{j+1}^{n}-U_{j-1}^{n}\right)+\frac{a k}{2 h}\left(U_{j+1}^{n}-2 U_{j}^{n}+U_{j-1}^{n}\right)
$$

- Again like a discretization of advection-diffusion $u_{t}+a u_{x}=\epsilon u_{x x}$, with $\epsilon=a h / 2 \Longrightarrow$ stable if

$$
-2<-2 \epsilon k / h^{2}<0, \quad \text { or } \quad 0 \leq \frac{a k}{h} \leq 1
$$

- The three methods, Lax-Wendroff, upwind, Lax-Friedrichs, can all be written as advection-diffusion with

$$
\epsilon_{L W}=\frac{a^{2} k}{2}=\frac{a h \nu}{2}, \quad \epsilon_{u p}=\frac{a h}{2}, \quad \epsilon_{L F}=\frac{h^{2}}{2 k}=\frac{a h}{2 \nu}
$$

where $\nu=a k / h$. Stable if $0<\nu<1$.

The Beam-Warming method

- Like upwind, but use second-order one-sided approximations:

$$
\begin{aligned}
U_{j}^{n+1}= & U_{j}^{n}-\frac{a k}{2 h}\left(3 U_{j}^{n}-4 U_{j-1}^{n}+U_{j-2}^{n}\right) \\
& +\frac{a^{2} k^{2}}{2 h^{2}}\left(U_{j}^{n}-2 U_{j-1}^{n}+U_{j-2}^{n}\right) \quad \text { for } a>0
\end{aligned}
$$

and

$$
\begin{aligned}
U_{j}^{n+1}= & U_{j}^{n}-\frac{a k}{2 h}\left(-3 U_{j}^{n}+4 U_{j+1}^{n}-U_{j+2}^{n}\right) \\
& +\frac{a^{2} k^{2}}{2 h^{2}}\left(U_{j}^{n}-2 U_{j+1}^{n}+U_{j+2}^{n}\right) \quad \text { for } a<0
\end{aligned}
$$

- Stable if $0 \leq \nu \leq 2$ and $-2 \leq \nu \leq 0$, respectively

Von Neumann analysis

Example (The upwind method)

$$
g(\xi)=(1-\nu)+\nu e^{-i \xi h}
$$

where $\nu=a k / h$, stable if $0 \leq \nu \leq 1$

Example (Lax-Friedrichs)

$$
g(\xi)=\cos (\xi h)-\nu i \sin (\xi h) \Longrightarrow|g(\xi)|^{2}=\cos ^{2}(\xi h)+\nu^{2} \sin ^{2}(\xi h)
$$

stable if $|\nu| \leq 1$

Von Neumann analysis

Example (Lax-Wendroff)

$$
\begin{array}{r}
g(\xi)=1-i \nu[2 \sin (\xi h / 2) \cos (\xi h / 2)]-\nu^{2}\left[2 \sin ^{2}(\xi h / 2)\right] \\
\Longrightarrow|g(\xi)|^{2}=1-4 \nu^{2}\left(1-\nu^{2}\right) \sin ^{4}(\xi h / 2)
\end{array}
$$

stable if $|\nu| \leq 1$

Example (Leapfrog)

$$
g(\xi)^{2}=1-2 \nu i \sin (\xi h) g(\xi)
$$

stable if $|\nu|<1$ (like the midpoint method)

Characteristic tracing and interpolation

- Consider the case $a>0$ and $a k / h<1$
- Trace characteristic through x_{j}, t_{n+1} to time t_{n}
- Find U_{j}^{n+1} by linear interpolation between U_{j-1}^{n} and U_{j}^{n} :

$$
U_{j}^{n+1}=U_{j}^{n}-\frac{a k}{h}\left(U_{j}^{n}-U_{j-1}^{n}\right)
$$

\Longrightarrow first order upwind method

- Quadratic interpolating $U_{j-1}^{n}, U_{j}^{n}, U_{j+1}^{n} \Longrightarrow$ Lax-Wendroff
- Quadratic interpolating $U_{j-2}^{n}, U_{j-1}^{n}, U_{j}^{n} \Longrightarrow$ Beam-Warming

- For the advection equation, $u(X, T)$ depends only on the initial data $\eta(X-a T)$
- The domain of dependence is $\mathcal{D}(X, T)=\{X-a T\}$
- Heat equation $u_{t}=u_{x x}, \mathcal{D}(X, T)=(-\infty, \infty)$
- Domain of dependence for 3-point explicit FD method: Each value depends on neighbors at previous timestep
- Refining the grid with fixed $k / h \equiv r$ gives same interval
- This region must contain the true \mathcal{D} for the PDE:

$$
X-T / r \leq X-a T \leq X+T / r
$$

$\Longrightarrow|a| \leq 1 / r$ or $|a k / h| \leq 1$

- The Courant-Friedrichs-Lewy (CFL) condition: Numerical domain of dependence must contain the true \mathcal{D} as $k, h \rightarrow 0$

Example (FTCS)

The centered-difference scheme for the advection equation is unstable for fixed k / h even if $|a k / h| \leq 1$

Example (Beam-Warming)

3-point one-sided stencil, CFL condition gives $0 \leq a k / h \leq 2$ (for left-sided, used when $a>0$)

Example (Heat equation)

- $\mathcal{D}(X, T)=(-\infty, \infty) \Longrightarrow$ any 3-point explicit method violates CFL condition for fixed k / h
- However, with $k / h^{2} \leq 1 / 2$, all of \mathbb{R} is covered as $k \rightarrow 0$

Example (Crank-Nicolson)

Any implicit scheme satisfies the CFL condition, since the tridiagonal linear system couples all points.

Modified equations

- Find a PDE $v_{t}=\cdots$ that the numerical approximation U_{j}^{n} satisfies exactly, or at least better than the original PDE

Example (Upwind method)

To second order accuracy, the numerical solution satisfies

$$
v_{t}+a v_{x}=\frac{1}{2} a h\left(1-\frac{a k}{h}\right) v_{x x}
$$

Advection-diffusion equation

Example (Lax-Wendroff)

To third order accuracy,

$$
v_{t}+a v_{x}+\frac{1}{6} a h^{2}\left(1-\left(\frac{a k}{h}\right)^{2}\right) v_{x x x}=0
$$

Dispersive behavior, leading to a phase error. To fourth order,

$$
v_{t}+a v_{x}+\frac{1}{6} a h^{2}\left(1-\left(\frac{a k}{h}\right)^{2}\right) v_{x x x}=-\epsilon v_{x x x x}
$$

where $\epsilon=O\left(k^{3}+h^{3}\right) \Longrightarrow$ highest modes damped

Modified equations

Example (Beam-Warming)

To third order,

$$
v_{t}+a v_{x}=\frac{1}{6} a h^{2}\left(2-\frac{3 a k}{h}+\left(\frac{a k}{h}\right)^{2}\right) v_{x x x}
$$

Dispersive, similar to Lax-Wendroff

Example (Leapfrog)

Modified equation

$$
v_{t}+a v_{x}+\frac{1}{6} a h^{2}\left(1-\left(\frac{a k}{h}\right)^{2}\right) v_{x x x}=\epsilon v_{x x x x x}+\cdots
$$

where $\epsilon=O\left(h^{4}+k^{4}\right) \Longrightarrow$ only odd-order derivatives, nondissipative method

Hyperbolic systems

- The methods generalize to first order linear systems of equations of the form

$$
\begin{aligned}
& u_{t}+A u_{x}=0 \\
& u(x, 0)=\eta(x)
\end{aligned}
$$

where $u: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}^{s}$ and a constant matrix $A \in \mathbb{R}^{s \times s}$

- Hyperbolic system of conservation laws, with flux function $f(u)=A u$, if A diagonalizable with real eigenvalues:

$$
A=R \Lambda R^{-1} \quad \text { or } \quad A r_{p}=\lambda_{p} r_{p} \text { for } p=1,2, \ldots, s
$$

- Change variables to eigenvectors, $w=R^{-1} u$, to decouple system into s independent scalar equations

$$
\left(w_{p}\right)_{t}+\lambda_{p}\left(w_{p}\right)_{x}=0, \quad p=1,2, \ldots, s
$$

with solution $w_{p}(x, t)=w_{p}\left(x-\lambda_{p} t, 0\right)$ and initial condition the p th component of $w(x, 0)=R^{-1} \eta(x)$.

- Solution recovered by $u(x, t)=R w(x, t)$, or

$$
u(x, t)=\sum_{p=1}^{s} w_{p}\left(x-\lambda_{p} t, 0\right) r_{p}
$$

Numerical methods for hyperbolic systems

- Most methods generalize to systems by replacing a with A

Example (Lax-Wendroff)

$$
U_{j}^{n+1}=U_{j}^{n}-\frac{k}{2 h} A\left(U_{j+1}^{n}-U_{j-1}^{n}\right)+\frac{k^{2}}{2 h^{2}} A^{2}\left(U_{j-1}^{n}-2 U_{j}^{n}+U_{j+1}^{n}\right)
$$

Second-order accurate, stable if $\nu=\max _{1 \leq p \leq s}\left|\lambda_{p} k / h\right| \leq 1$

Example (Upwind methods)

$$
\begin{aligned}
& U_{j}^{n+1}=U_{j}^{n}-\frac{k}{h} A\left(U_{j}^{n}-U_{j-1}^{n}\right) \\
& U_{j}^{n+1}=U_{j}^{n}-\frac{k}{h} A\left(U_{j+1}^{n}-U_{j}^{n}\right)
\end{aligned}
$$

Only useful if all eigenvalues of A have same sign. Instead, decompose into scalar equations and upwind each one separately \Longrightarrow Godunov's method

Initial boundary value problems

- For a bounded domain, e.g. $0 \leq x \leq 1$, the advection equation requires an inflow condition $x(0, t)=g_{0}(t)$ if $a>0$
- This gives the solution

$$
u(x, t)= \begin{cases}\eta(x-a t) & \text { if } 0 \leq x-a t \leq 1 \\ g_{0}(t-x / a) & \text { otherwise }\end{cases}
$$

- First-order upwind works well, but other stencils need special cases at inflow boundary and/or outflow boundary
- von Neumann analysis not applicable, but generally gives necessary conditions for convergence
- Method of Lines applicable if eigenvalues of discretization matrix are known

