
Finite Di�erence Methods for PDEs

Per-Olof Persson
persson@berkeley.edu

Department of Mathematics

University of California, Berkeley

Math 228B Numerical Solutions of Di�erential Equations

Finite Di�erence Approximations

Finite Di�erence Approximations

D+u(x̄) =
u(x̄+ h)− u(x̄)

h
= u′(x̄) +

h

2
u′′(x̄) +O(h2)

D−u(x̄) =
u(x̄)− u(x̄− h)

h
= u′(x̄)− h

2
u′′(x̄) +O(h2)

D0u(x̄) =
u(x̄+ h)− u(x̄− h)

2h
= u′(x̄) +

h2

6
u′′′(x̄) +O(h4)

D2u(x̄) =
u(x̄− h)− 2u(x̄) + u(x̄+ h)

h2

= u′′(x̄) +
h2

12
u′′′′(x̄) +O(h4)

Method of Undetermined Coe�cients

Find approximation to u(k)(x̄) based on u(x) at x1, x2, . . . , xn

Write u(xi) as Taylor series centered at x̄:

u(xi) = u(x̄) + (xi − x̄)u′(x̄) + · · ·+ 1

k!
(xi − x̄)ku(k)(x̄) + · · ·

Seek approximation of the form

u(k)(x̄) = c1u(x1) + c2u(x2) + · · ·+ cnu(xn) +O(hp)

Collect terms multiplying u(x̄), u′(x̄), etc, to obtain:

1

(i− 1)!

n∑
j=1

cj(xj − x̄)(i−1) =

{
1 if i− 1 = k

0 otherwise.

Nonsingular Vandermonde system if xj are distinct

Finite di�erence stencils, Julia implementation� �
"""

c = mkfdstencil(x, xbar, k)

Compute the coefficients `c` in a finite difference approximation of a function

defined at the grid points `x`, evaluated at `xbar`, of order `k`.

"""

function mkfdstencil(x, xbar, k)

n = length(x)

A = @. (x[:]' - xbar) � (0:n-1) / factorial(0:n-1)

b = (1:n) .== k+1

c = A \ b

end� �
Examples:� �

julia> println(mkfdstencil([-1 0 1], 0, 2)) # Centered 2nd derivative

[1.0, -2.0, 1.0]

julia> println(mkfdstencil([0 1 2], 0, 1)) # One-sided (right) 1st derivative

[-1.5, 2.0, -0.5]

julia> println(mkfdstencil(-2:2, 0//1, 2)) # 4th order 5-point stencil, rational

Rational{Int64}[-1//12, 4//3, -5//2, 4//3, -1//12]� �

Boundary Value Problems

The Finite Di�erence Method

Consider the Poisson equation with Dirichlet conditions:

u′′(x) = f(x), 0 < x < 1, u(0) = α, u(1) = β

Introduce n uniformly spaced grid points xj = jh,
h = 1/(n+ 1)

Set u0 = α, un+1 = β, and use the three-point di�erence
approximation to get the discretization

1

h2
(uj−1 − 2uj + uj+1) = f(xj), j = 1, . . . , n

This can be written as a linear system Au = f with

A =
1

h2


−2 1
1 −2 1

. . .

1 −2

 u =


u1
u2
...
un

 f =


f(x1)− α/h2

f(x2)
...

f(xn)− β/h2



Errors and Grid Function Norms

The error e = u− û where u is the numerical solution and û is
the exact solution

û =

u(x1)
...

u(xn)


Measure errors in grid function norms, which are
approximations of integrals and scale correctly as n→∞

‖e‖∞ = max
j
|ej |

‖e‖1 = h
∑
j

|ej |

‖e‖2 =

h∑
j

|ej |2
1/2

Local Truncation Error

Insert the exact solution u(x) into the di�erence scheme to get
the local truncation error:

τj =
1

h2
(u(xj−1)− 2u(xj) + u(xj+1))− f(xj)

= u′′(xj) +
h2

12
u′′′′(xj) +O(h4)− f(xj)

=
h2

12
u′′′′(xj) +O(h4)

or

τ =

τ1...
τn

 = Aû− f

Errors

Linear system gives error in terms of LTE:{
Au = f
Aû = f + τ

=⇒ Ae = −τ

Introduce superscript h to indicate that a problem depends on
the grid spacing, and bound the norm of the error:

Aheh = −τh

eh = −(Ah)−1τh

‖eh‖ = ‖(Ah)−1τh‖ ≤ ‖(Ah)−1‖ · ‖τh‖

If ‖(Ah)−1‖ ≤ C for h ≤ h0, then

‖eh‖ ≤ C · ‖τh‖ → 0 if ‖τh‖ → 0 as h→ 0

Stability, Consistency, and Convergence

De�nition

A method Ahuh = fh is stable if (Ah)−1 exists and
‖(Ah)−1‖ ≤ C for h ≤ h0
It is consistent with the DE if ‖τh‖ → 0 as h→ 0

It is convergent if ‖eh‖ → 0 as h→ 0

Theorem Fundamental Theorem of Finite Di�erence Methods

Consistency + Stability =⇒ Convergence

since ‖eh‖ ≤ ‖(Ah)−1‖ · ‖τh‖ ≤ C · ‖τh‖ → 0. A stronger

statement is

O(hp) LTE + Stability =⇒ O(hp) global error

Stability in the 2-Norm

In the 2-norm, we have

‖A‖2 = ρ(A) = max
p
|λp|

‖A−1‖2 =
1

minp |λp|

For our model problem matrix, we have explicit expressions for
the eigenvectors/eigenvalues:

A =
1

h2


−2 1
1 −2 1

. . .

1 −2

 upj = sin(pπjh)

λp =
2

h2
(cos(pπh)− 1)

The smallest eigenvalue is

λ1 =
2

h2
(cos(πh)− 1) = −π2 +O(h2) =⇒ Stability

Convergence in the 2-Norm

This gives a bound on the error

‖eh‖2 ≤ ‖(Ah)−1‖2 · ‖τh‖2 ≈
1

π2
‖τh‖2

Since τhj ≈ h2

12u
′′′′(xj),

‖τh‖2 ≈
h2

12
‖u′′′′‖2 =

h2

12
‖f ′′‖2 =⇒ ‖eh‖2 = O(h2)

While this implies convergence in the max-norm, 1/2 order is
lost because of the grid function norm:

‖eh‖∞ ≤
1√
h
‖eh‖2 = O(h3/2)

But it can be shown that ‖(Ah)−1‖∞ = O(1), which implies
‖eh‖∞ = O(h2)

Neumann Boundary Conditions

Consider the Poisson equation with Neumann/Dirichlet
conditions:

u′′(x) = f(x), 0 < x < 1, u′(0) = σ, u(1) = β

Second-order accurate one-sided di�erence approximation:

1

h

(
−3

2
u0 + 2u1 −

1

2
u2

)
= σ

1

h2


−3h

2 2h −h
2

1 −2 1
. . .

1 −2 1
0 h2




u0
u1
...
un
un+1

 =


σ

f(x1)
...

f(xn)
β


Most general approach.

Finite Di�erence Methods for Elliptic Problems

Elliptic Partial Di�erential Equations

Consider the elliptic PDE below, the Poisson equation:

∇2u(x, y) ≡ ∂2u

∂x2
(x, y) +

∂2u

∂y2
(x, y) = f(x, y)

on the rectangular domain

Ω = {(x, y) | a < x < b, c < y < d}

with Dirichlet boundary conditions u(x, y) = g(x, y) on the
boundary Γ = ∂Ω of Ω.

Introduce a two-dimensional grid by choosing integers n,m and
de�ning step sizes h = (b− a)/n and k = (d− c)/m. This gives
the point coordinates (mesh points):

xi = a+ ih, i = 0, 1, . . . , n

yi = c+ jk, j = 0, 1, . . . ,m

Finite Di�erence Discretization

Discretize each of the second derivatives using �nite di�erences on
the grid:

u(xi+1, yj)− 2u(xi, yj) + u(xi−1, yj)

h2
+

u(xi, yj+1)− 2u(xi, yj) + u(xi, yj−1)

k2

= f(xi, yj) +
h2

12

∂4u

∂x4
(xi, yj) +

k2

12

∂4u

∂y4
(xi, yj) +O(h4 + k4)

for i = 1, 2, . . . , n− 1 and j = 1, 2, . . . ,m− 1, with boundary
conditions

u(x0, yj) = g(x0, yj), u(xn, yj) = g(xn, yj), j = 0, . . . ,m

u(xi, y0) = g(xi, y0), u(xi, y0) = g(xi, ym), i = 1, . . . , n− 1

Finite Di�erence Discretization

The corresponding �nite-di�erence method for ui,j ≈ u(xi, yi) is

2

[(
h

k

)2

+ 1

]
uij − (ui+1,j + ui−1,j)−(

h

k

)2

(ui,j+1 + ui,j−1) = −h2f(xi, yj)

for i = 1, 2, . . . , n− 1 and j = 1, 2, . . . ,m− 1, with boundary
conditions

u0j = g(x0, yj), unj = g(xn, yj), j = 0, . . . ,m

ui0 = g(xi, y0), uim = g(xi, ym), i = 1, . . . , n− 1

De�ne fij = f(xi, yi) and suppose h = k, to get the simple form

ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j = h2fij

FDM for Poisson, Julia implementation� �
Solve Poisson's equation -(uxx + uyy) = f, bnd cnds u(x,y) = g(x,y)

on a square grid using the finite difference method.

#

UC Berkeley Math 228B, Per-Olof Persson <persson@berkeley.edu>

using SparseArrays, PyPlot

"""

A, b, x, y = assemblePoisson(n, f, g)

Assemble linear system Au = b for Poisson's equation using finite differences.

Grid size (n+1) x (n+1), right hand side function f(x,y), Dirichlet boundary

conditions g(x,y).

"""

function assemblePoisson(n, f, g)

h = 1.0 / n

N = (n+1)�2

x = h * (0:n)

y = x

umap = reshape(1:N, n+1, n+1) # Index mapping from 2D grid to vector

A = Tuple{Int64,Int64,Float64}[] # Array of matrix elements (row,col,value)

b = zeros(N)� �

FDM for Poisson, Julia implementation� �
Main loop, insert stencil in matrix for each node point

for j = 1:n+1

for i = 1:n+1

row = umap[i,j]

if i == 1 || i == n+1 || j == 1 || j == n+1

Dirichlet boundary condition, u = g

push!(A, (row, row, 1.0))

b[row] = g(x[i],y[j])

else

Interior nodes, 5-point stencil

push!(A, (row, row, 4.0))

push!(A, (row, umap[i+1,j], -1.0))

push!(A, (row, umap[i-1,j], -1.0))

push!(A, (row, umap[i,j+1], -1.0))

push!(A, (row, umap[i,j-1], -1.0))

b[row] = f(x[i], y[j]) * h�2

end

end

end

Create CSC sparse matrix from matrix elements

A = sparse((x->x[1]).(A), (x->x[2]).(A), (x->x[3]).(A), N, N)

return A, b, x, y

end� �

FDM for Poisson, Julia implementation� �
"""

error = testPoisson(n=20)

Poisson test problem:

- Prescribe exact solution uexact

- set boundary conditions g = uexact and set RHS f = -Laplace(uexact)

Solves and plots solution on a (n+1) x (n+1) grid.

Returns error in max-norm.

"""

function testPoisson(n=40)

uexact(x,y) = exp(-(4(x - 0.3)�2 + 9(y - 0.6)�2))

f(x,y) = uexact(x,y) * (26 - (18y - 10.8)�2 - (8x - 2.4)�2)

A, b, x, y = assemblePoisson(n, f, uexact)

Solve + reshape for plotting

u = reshape(A \ b, n+1, n+1)

Plotting

clf(); contour(x, y, u, 10, colors="k"); contourf(x, y, u, 10)

axis("equal"); colorbar()

Compute error in max-norm

u0 = uexact.(x, y')

error = maximum(abs.(u - u0))

end� �

Convergence in the 2-Norm

For the homogeneous Dirichlet problem on the unit square,
convergence in the 2-norm is shown in exactly the same way as
for the corresponding BVP

Taylor expansions show that

τij =
1

12
h2(uxxxx + uyyyy) +O(h4)

It can be shown that the smallest eigenvalue of Ah is
−2π2 +O(h2), and the spectral radius of (Ah)−1 is
approximately 1/2π2

As before, this gives ‖eh‖2 = O(h2)

Non-Rectangular Domains

Poisson in 2D non-rectangular domain

Consider the Poisson problem on the non-rectangular domain
Ω with boundary Γ = ΓD ∪ ΓN = ∂Ω:

−∇2u = f in Ω

u = g on ΓD

∂u

∂n
= r on ΓN

Consider a mapping between a rectangular reference domain Ω̂
and the actual physical domain Ω

Find an equivalent problem that can be solved in Ω̂

ξ

η

Ω̂

N

x

y

Ω

n

x = x(ξ, η)
y = y(ξ, η)

Poisson in 2D non-rectangular domain
Transformed derivatives

Use the chain rule to transform the derivatives of u in the
physical domain:

u(x, y) = u(x(ξ, η), y(ξ, η)) =⇒ ux = ξxuξ + ηxuη

uy = ξyuξ + ηyuη

Determine the terms ξx, ηx, ξy, ηy by the mapped derivatives:

ξ = ξ(x, y)

η = η(x, y)(
dξ
dη

)
=

(
ξx ξy
ηx ηy

)(
dx
dy

)
x = x(ξ, η)

y = y(ξ, η)(
dx
dy

)
=

(
xξ xη
yξ yη

)(
dξ
dη

)

=⇒
(
ξx ξy
ηx ηy

)
=

(
xξ xη
yξ yη

)−1
=

1

J

(
yη −xη
−yξ xξ

)
where J = xξyη − xηyξ

Poisson in 2D non-rectangular domain
Transformed equations

Using the derivative expressions, we can transform all the
derivatives and the equation −(uxx + uyy) = f becomes

− 1

J2
(auξξ − 2buξη + cuηη + duη + euξ) = f

where

a = x2η + y2η b = xξxη + yξyη c = x2ξ + y2ξ

d =
yξα− xξβ

J
e =

xηβ − yηα
J

with

α = axξξ − 2bxξη + cxηη

β = ayξξ − 2byξη + cyηη

Poisson in 2D non-rectangular domain
Normal derivatives

The normal n in the physical domain is in the direction of
∇η or ∇ξ.
For example, on the top boundary η = 1 we have

n = (nx, ny) =
1√

η2x + η2y

(ηx, ηy) =
1√

x2ξ + y2ξ

(−yξ, xξ)

This gives the normal derivative

∂u

∂n
= uxn

x + uyn
y =

1

J
[(yηn

x − xηny)uξ + (−yξnx + xξn
y)uη]

ξ

η

Ω̂

N

x

y

Ω

n

x = x(ξ, η)
y = y(ξ, η)

Finite Di�erence Methods for Parabolic Problems

Parabolic equations

Model problem: The heat equation:

∂u

∂t
−∇ · (κ∇u) = f

where

u = u(x, t) is the temperature at a given point and time
κ is the heat capacity (possibly x- and t-dependent)
f is the source term (possibly x- and t-dependent)

Need initial conditions at some time t0:

u(x, t0) = η(x)

Need boundary conditions at domain boundary Γ:

Dirichlet condition (prescribed temperature): u = uD
Neumann condition (prescribed heat �ux): n · (κ∇u) = gN

1D discretization

Initial case: One space dimension, κ = 1, f = 0:

ut = κuxx, 0 ≤ x ≤ 1

with boundary conditions u(0, t) = g0(t), u(1, t) = g1(t)

Introduce �nite di�erence grid:

xi = ih, tn = nk

with mesh spacing h = ∆x
and time step k = ∆t.

Approximate the solution u at
grid point (xi, tn):

Uni ≈ u(xi, tn)
x

t

x0

t0
xi−1

tn−1

xi

tn

xi+1

tn+1

h = ∆x

k
=

∆
t

Un
i

Numerical schemes: FTCS

FTCS (Forward in time, centered in space):

Un+1
i − Uni

k
=

1

h2
(
Uni−1 − 2Uni + Uni+1

)
or, as an explicit expression for Un+1

i ,

Un+1
i = Uni +

k

h2
(
Uni−1 − 2Uni + Uni+1

)
Explicit one-step method in time

Boundary conditions naturally implemented by setting

Un0 = g0(tn), Unm+1 = g1(tn)

FTCS, Julia implementation� �
using PyPlot, LinearAlgebra, DifferentialEquations

"""

Solves the 1D heat equation with the FTCS scheme (Forward-Time,

Centered-Space), using grid size `m` and timestep multiplier `kmul`.

Integrates until final time `T` and plots each solution.

"""

function heateqn_ftcs(m=100; T=0.2, kmul=0.5)

Discretization

h = 1.0 / (m+1)

x = h * (0:m+1)

k = kmul*h�2

N = ceil(Int, T/k)

u = exp.(-(x .- 0.25).�2 / 0.1�2) .+ 0.1sin.(10*2π*x) # Initial conditions

u[[1,end]] .= 0 # Dirichlet boundary conditions u(0) = u(1) = 0

clf(); axis([0, 1, -0.1, 1.1]); grid(true); ph, = plot(x,u) # Setup plotting

for n = 1:N

u[2:m+1] += k/h�2 * (u[1:m] .- 2u[2:m+1] + u[3:m+2])

if mod(n, 10) == 0 # Plot every 10th timestep

ph[:set_data](x,u), pause(1e-3)

end

end

end� �

Numerical schemes: Crank-Nicolson

Crank-Nicolson � like FTCS, but use average of space
derivative at time steps n and n+ 1:

Un+1
i − Uni

k
=

1

2

(
D2Uni +D2Un+1

i

)
=

1

2h2
(
Uni−1 − 2Uni + Uni+1 + Un+1

i−1 − 2Un+1
i + Un+1

i+1

)
or

−rUn+1
i−1 + (1 + 2r)Un+1

i − rUn+1
i+1 = rUni−1 + (1− 2r)Uni + rUni+1

where r = k/2h2

Implicit one-step method in time =⇒ need to solve tridiagonal
system of equations

Crank-Nicolson, Julia implementation� �
"""

Solves the 1D heat equation with the C r a n k Nicolson scheme,

using grid size `m` and timestep multiplier `kmul`.

Integrates until final time `T` and plots each solution.

"""

function heateqn_cn(m=100; T=0.2, kmul=50)

Discretization

h = 1.0 / (m+1)

x = h * (0:m+1)

k = kmul*h�2

N = ceil(Int, T/k)

u = exp.(-(x .- 0.25).�2 / 0.1�2) .+ 0.1sin.(10*2π*x) # Initial conditions

u[[1,end]] .= 0 # Dirichlet boundary conditions u(0) = u(1) = 0

Form the matrices in the Crank-Nicolson scheme (Left and right)

A = SymTridiagonal(-2ones(m), ones(m-1)) / h�2

LH = I - A*k/2

RH = I + A*k/2

clf(); axis([0, 1, -0.1, 1.1]); grid(true); ph, = plot(x,u) # Setup plotting

for n = 1:N

u[2:m+1] = LH \ (RH * u[2:m+1]) # Note ()'s for efficient evaluation

ph[:set_data](x,u), pause(1e-3) # Plot every timestep

end

end� �

Local truncation error

LTE: Insert exact solution u(x, t) into di�erence equations

Ex: FTCS

τ(x, t) =
u(x, t+ k)− u(x, t)

k
− 1

h2
(u(x− h, t)− 2u(x, t) + u(x+ h, t))

Assume u smooth enough and expand in Taylor series:

τ(x, t) =

(
ut +

1

2
kutt +

1

6
k2uttt + · · ·

)
−
(
uxx +

1

12
h2uxxxx + · · ·

)
Use the equation: ut = uxx, utt = utxx = uxxxx:

τ(x, t) =

(
1

2
k − 1

12
h2
)
uxxxx +O(k2 + h4) = O(k + h2)

First order accurate in time, second order accurate in space

Ex: For Crank-Nicolson, τ(x, t) = O(k2 + h2)

Consistent method if τ(x, t)→ 0 as k, h→ 0

Method of Lines

Discretize PDE in space, integrate resulting semidiscrete

system of ODEs using standard schemes

Ex: Centered in space

U ′i(t) =
1

h2
(Ui−1(t)− 2Ui(t) + Ui+1(t)), i = 1, . . . ,m

or in matrix form: U ′(t) = AU(t) + g(t), where

A =
1

h2



−2 1
1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1
1 −2


, g(t) =

1

h2



g0(t)
0
0
...

0
g1(t)


Solve the centered semidiscrete system using:

Forward Euler Un+1 = Un + kf(Un)
=⇒ the FTCS method

Trapezoidal method Un+1 = Un + k
2 (f(Un) + f(Un+1))

=⇒ the Crank-Nicolson method

Heat equation, method of lines using black-box ODE solver� �
"""

Solves the 1D heat equation using Method of Lines with ODE solvers from

DifferentialEquations.jl. Grid size `m`, integrates until final time `T`

and plots a total of `nsteps` solutions.

"""

function heateqn_odesolver(m=100; T=0.2, nsteps=100)

Discretization

h = 1.0 / (m+1)

x = h * (0:m+1)

u = exp.(-(x .- 0.25).�2 / 0.1�2) .+ 0.1sin.(10*2π*x) # Initial conditions

u[[1,end]] .= 0 # Dirichlet boundary conditions u(0) = u(1) = 0

fode(u,p,t) = ([0; u[1:m+1]] .- 2u .+ [u[2:m+2]; 0]) / h�2 # RHS du/dt = f(u)

prob = ODEProblem(fode, u, (0,T))

sol = solve(prob, alg_hints=[:stiff], saveat=T / nsteps)

Animate solution

clf(); axis([0, 1, -0.1, 1.1]); grid(true); ph, = plot(x,u) # Setup plotting

for n = 1:length(sol)

ph[:set_data](x,sol.u[n]), pause(1e-3) # Update plot

end

end� �

Method of Lines, Stability

Stability requires kλ to be inside the
absolute stability region, for all
eigenvalues λ of A

For the centered di�erences, the
eigenvalues are

λp =
2

h2
(cos(pπh)− 1), p = 1, . . . ,m

or, in particular, λm ≈ −4/h2

Euler gives −2 ≤ −4k/h2 ≤ 0, or

k

h2
≤ 1

2

=⇒ time step restriction for FTCS

Trapezoidal method A-stable =⇒
Crank-Nicolson is stable for any time
step k > 0

−1 Re(kλ)

Im(kλ)

Forward-Euler stability region

−1 Re(kλ)

Im(kλ)

Trapezoidal method stability region

Convergence

For convergence, k and h must in general approach zero at
appropriate rates, for example k → 0 and k/h2 ≤ 1/2
Write the methods as

Un+1 = B(k)Un + bn(k) (*)

where, e.g., B(k) = I + kA for forward Euler and

B(k) =
(
I − k

2A
)−1 (

I + k
2A
)
for Crank-Nicolson

De�nition

A linear method of the form (*) is Lax-Richtmyer stable if, for each
time T , these is a constant CT > 0 such that

‖B(k)n‖ ≤ CT
for all k > 0 and integers n for which kn ≤ T .

Theorem (Lax Equivalence Theorem)

A consistent linear method of the form (*) is convergent if and only

if it is Lax-Richtmyer stable.

Lax Equivalence Theorem

Proof.

Consider the numerical scheme applied to the numerical solution U
and the exact solution u(x, t):

Un+1 = BUn + bn

un+1 = Bun + bn + kτn

Subtract to get di�erence equation for the error En = Un − un:

En+1 = BEn − kτn, or EN = BNE0 − k
N∑
n=1

BN−nτn−1

Bound the norm, use Lax-Richtmyer stability and Nk ≤ T :

‖EN‖ ≤ ‖BN‖‖E0‖+ k

N∑
n=1

‖BN−n‖‖τn−1‖

≤ CT ‖E0‖+ TCT max
1≤n≤N

‖τn−1‖ → 0 as k → 0

provided ‖τ‖ → 0 and that the initial data ‖E0‖ → 0.

Convergence

Example

For the FTCS method, B(k) = I + kA is symmetric, so
‖B(k)‖2 = ρ(B) ≤ 1 if k ≤ h2/2. Therefore, it is Lax-Richtmyer
stable and convergent, under this restriction.

Example

For the Crank-Nicolson method, B(k) =
(
I − k

2A
)−1 (

I + k
2A
)
is

symmetric with eigenvalues (1 + kλp/2)/(1− kλp/2). Therefore,
‖B(k)‖2 = ρ(B) < 1 for any k > 0 and the method is
Lax-Richtmyer stable and convergent.

Example

‖B(k)‖ ≤ 1 is called strong stability, but Lax-Richtmyer stability is
also obtained if ‖B(k)‖ ≤ 1 + αk for some constant α, since then

‖B(k)n‖ ≤ (1 + αk)n ≤ eαT

Von Neumann Analysis

Consider the Cachy problem, on all space and no boundaries
(−∞ < x <∞ in 1D)

The grid function Wj = eijhξ, constant ξ, is an eigenfunction
of any translation-invariant �nite di�erence operator

Consider the centered di�erence D0Vj = 1
2h(Vj+1 − Vj−1):

D0Wj =
1

2h

(
ei(j+1)hξ − ei(j−1)hξ

)
=

1

2h

(
eihξ − e−ihξ

)
eijhξ

=
i

h
sin(hξ)eijhξ =

i

h
sin(hξ)Wj ,

that is, W is an eigenfunction with eigenvalue i
h sin(hξ)

Note that this agrees to �rst order with the eigenvalue iξ of
the operator ∂x

Von Neumann Analysis

Consider a function Vj on the grid xj = jh, with �nite 2-norm

‖V ‖2 =

h ∞∑
j=−∞

|Vj |2
1/2

Express Vj as linear combination of eijhξ for |ξ| ≤ π/h:

Vj =
1√
2π

∫ π/h

−π/h
V̂ (ξ)eijhξ dξ, where V̂ (ξ) =

h√
2π

∞∑
j=−∞

Vje
−ijhξ

Parseval's relation: ‖V̂ ‖2 = ‖V ‖2 in the norms

‖V ‖2 =

h ∞∑
j=−∞

|Vj |2
1/2

, ‖V̂ ‖2 =

(∫ π/h

−π/h
|V̂ (ξ)|2dξ

)1/2

Von Neumann Analysis

Using Parseval's relation, we can show Lax-Richtmyer stability

‖Un+1‖2 ≤ (1 + αk)‖Un‖2

in the Fourier transform of Un:

‖Ûn+1‖2 ≤ (1 + αk)‖Ûn‖2

This decouples each Ûn(ξ) from all other wave numbers:

Ûn+1(ξ) = g(ξ)Ûn(ξ)

with ampli�cation factor g(ξ).

If |g(ξ)| ≤ 1 + αk, then

|Ûn+1(ξ)| ≤ (1 + αk)|Ûn(ξ)| and ‖Ûn+1‖2 ≤ (1 + αk)‖Ûn‖2

Von Neumann Analysis

Example (FTCS)

For the FTCS method,

Un+1
i = Uni +

k

h2
(
Uni−1 − 2Uni + Uni+1

)
we get the ampli�cation factor

g(ξ) = 1 + 2
k

h2
(cos(ξh)− 1)

and |g(ξ)| ≤ 1 if k ≤ h2/2

Example (Crank-Nicolson)

For the Crank Nicolson method,

−rUn+1
i−1 + (1 + 2r)Un+1

i − rUn+1
i+1 = rUni−1 + (1− 2r)Uni + rUni+1

we get the ampli�cation factor

g(ξ) =
1 + 1

2z

1− 1
2z

where z =
2k

h2
(cos(ξh)− 1)

and |g(ξ)| ≤ 1 for any k, h

Multidimensional Problems

Consider the heat equation in two space dimensions:

ut = uxx + uyy

with initial conditions u(x, y, 0) = η(x, y) and boundary
conditions on the boundary of the domain Ω.

Use e.g. the 5-point discrete Laplacian:

∇2
hUij =

1

h2
(Ui−1,j + Ui+1,j + Ui,j−1 + Ui,j+1 − 4Uij)

Use e.g. the trapezoidal method in time:

Un+1
ij = Unij +

k

2

[
∇2
hU

n
ij +∇2

hU
n+1
ij

]
or (

I − k

2
∇2
h

)
Un+1
ij =

(
I +

k

2
∇2
h

)
Unij

Linear system involving A = I − k∇2
h/2, not tridiagonal

But condition number = O(k/h2), =⇒ fast iterative solvers

Locally One-Dimensional and Alternating Directions

Split timestep and decouple uxx and uyy:

U∗ij = Unij +
k

2
(D2

xU
n
ij +D2

xU
∗
ij)

Un+1
ij = U∗ij +

k

2
(D2

yU
∗
ij +D2

xU
n+1
ij)

or, as in the alternating direction implicit (ADI) method,

U∗ij = Unij +
k

2
(D2

yU
n
ij +D2

xU
∗
ij)

Un+1
ij = U∗ij +

k

2
(D2

xU
∗
ij +D2

yU
n+1
ij)

Implicit scheme with only tridiagonal systems

Remains second order accurate

Finite Di�erence Methods for Hyperbolic Problems

Advection

The scalar advection equation, with constant velocity a:

ut + aux = 0

Cauchy problem needs initial data u(x, 0) = η(x), and the
exact solution is

u(x, t) = η(x− at)

FTCS scheme:

Un+1
j − Unj

k
= − a

2h

(
Unj+1 − Unj−1

)
or

Un+1
j = Unj −

ak

2h

(
Unj+1 − Unj−1

)
Stability problems � more later

The Lax-Friedrichs Method

Replace Unj in FTCS by the average of its neighbors:

Un+1
j =

1

2

(
Unj−1 + Unj+1

)
− ak

2h

(
Unj+1 − Unj−1

)
Lax-Richtmyer stable if ∣∣∣∣akh

∣∣∣∣ ≤ 1,

or k = O(h) � not sti�

Method of Lines

With bounded domain, e.g. 0 ≤ x ≤ 1, if a > 0 we need an
in�ow boundary condition at x = 0:

u(0, t) = g0(t)

and x = 1 is an out�ow boundary

Opposite if a < 0

Need one-sided di�erences � more later

Periodic Boundary Conditions

For analysis, impose the periodic boundary conditions

u(0, t) = u(1, t), for t ≥ 0

Equivalent to Cauchy problem with periodic initial data

Introduce one boundary value as an unknown, e.g. Um+1(t):

U(t) = (U1(t), U2(t), . . . , Um+1(t))
T

Use periodicity for �rst and last equations:

U ′1(t) = − a

2h
(U2(t)− Um+1(t))

U ′m+1(t) = − a

2h
(U1(t)− Um(t))

Periodic Boundary Conditions

Leads to Method of Lines formulation U ′(t) = AU(t), where

A = − a

2h



0 1 −1
−1 0 1

−1 0 1
. . .

. . .
. . .

−1 0 1
1 −1 0


Skew-symmetric matrix (AT = −A) =⇒ purely imaginary
eigenvalues:

λp = − ia
h

sin(2πph), p = 1, 2, . . . ,m+ 1

with eigenvectors

upj = e2πipjh, p, j = 1, 2, . . . ,m+ 1

Forward Euler

Use Forward Euler in time =⇒ FTCS scheme:

Un+1
j = Unj −

ak

2h

(
Unj+1 − Unj−1

)
Stability region S: |1 + kλ| ≤ 1 =⇒ imaginary kλp will always
be outside S =⇒ unstable for �xed k/h

However, if e.g. k = h2, we have

|1 + kλp|2 ≤ 1 +

(
ka

h

)2

= 1 + a2h2 = 1 + a2k

which gives Lax-Richtmyer stability

‖(I + kA)n‖2 ≤ (1 + a2k)n/2 ≤ ea2T/2

Not used in practice � too strong
restriction on timestep k

−1 Re(kλ)

Im(kλ)

Forward-Euler stability region

Leapfrog

Consider using the midpoint method in time:

Un+1 = Un−1 + 2kAUn

For the centered di�erences in space, this gives the leapfrog
method:

Un+1
j = Un−1j − ak

h

(
Unj+1 − Unj−1

)
Stability region S: iα for −1 < α < 1
=⇒ stable if |ak/h| < 1

Only marginally stable =⇒
nondissipative −1 Re(kλ)

Im(kλ)

Midpoint method stability region

Lax-Friedrichs

Rewrite the average as:

1

2

(
Unj−1 + Unj+1

)
= Unj +

1

2

(
Unj−1 − 2Unj + Unj+1

)
to obtain

Un+1
j = Unj −

ak

2h

(
Unj+1 − Unj−1

)
+

1

2

(
Unj−1 − 2Unj + Unj+1

)
or

Un+1
j − Unj

k
+ a

(
Unj+1 − Unj−1

2h

)
=
h2

2k

(
Unj−1 − 2Unj + Unj+1

h2

)
Like a discretization of the advection-di�usion equation

ut + aux = εuxx

where ε = h2/(2k).

Lax-Friedrichs

The Lax-Friedrichs method can then be written as
U ′(t) = AεU(t) with

Aε = − a

2h



0 1 −1
−1 0 1

−1 0 1
. . .

. . .
. . .

−1 0 1
1 −1 0



+
ε

h2



−2 1 1
1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1
1 1 −2


where ε = h2/(2k)

Lax-Friedrichs

The eigenvalues of Aε are shifted from the imaginary axis into
the left half-plane:

µp = − ia
h

sin(2πph)− 2ε

h2
(1− cos(2πph))

The values kµp lie on an ellipse centered at −2kε/h2, with
semi-axes 2kε/h2, ak/h

For Lax-Friedrichs, ε = h2/(2k) and −2kε/h2 = −1 =⇒
stable if |ak/h| ≤ 1

The Lax-Wendro� Method

Use Taylor series method for higher order accuracy in time

For U ′(t) = AU(t), we have U ′′ = AU ′ = A2U and the
second-order Taylor method

Un+1 = Un + kAUn +
1

2
k2A2Un

Note that

(A2U)j =
a2

4h2
(Uj−2 − 2Uj + Uj+2)

so the method can be written

Un+1
j = Unj −

ak

2h

(
Unj+1 − Unj−1

)
+
a2k2

8h2
(
Unj−2 − 2Unj + Unj+2

)
Replace last term by 3-point discretization of a2k2uxx/2 =⇒
the Lax-Wendro� method:

Un+1
j = Unj −

ak

2h

(
Unj+1 − Unj−1

)
+
a2k2

2h2
(
Unj−1 − 2Unj + Unj+1

)

Stability analysis

The Lax-Wendro� method is Euler's method applied to
U ′(t) = AεU(t), with ε = a2k/2 =⇒ eigenvalues

kµp = −i
(
ak

h

)
sin(pπh) +

(
ak

h

)2

(cos(pπh)− 1)

On ellipse centered at −(ak/h)2 with semi-axes (ak/h)2,
|ak/h|
Stable if |ak/h| ≤ 1

Upwind methods

Consider one-sided approximations for ux, e.g. for a > 0:

Un+1
j = Unj −

ak

h
(Unj − Unj−1), stable if 0 ≤ ak

h
≤ 1

or, if a < 0:

Un+1
j = Unj −

ak

h
(Unj+1 − Unj), stable if − 1 ≤ ak

h
≤ 0

Natural with asymmetry for the advection equation, since the
solution is translating at speed a

Stability analysis

The upwind method for a > 0 can be written

Un+1
j = Unj −

ak

2h
(Unj+1 − Unj−1) +

ak

2h
(Unj+1 − 2Unj + Unj−1)

Again like a discretization of advection-di�usion
ut + aux = εuxx, with ε = ah/2 =⇒ stable if

−2 < −2εk/h2 < 0, or 0 ≤ ak

h
≤ 1

The three methods, Lax-Wendro�, upwind, Lax-Friedrichs, can
all be written as advection-di�usion with

εLW =
a2k

2
=
ahν

2
, εup =

ah

2
, εLF =

h2

2k
=
ah

2ν

where ν = ak/h. Stable if 0 < ν < 1.

The Beam-Warming method

Like upwind, but use second-order one-sided approximations:

Un+1
j =Unj −

ak

2h
(3Unj − 4Unj−1 + Unj−2)

+
a2k2

2h2
(Unj − 2Unj−1 + Unj−2) for a > 0

and

Un+1
j =Unj −

ak

2h
(−3Unj + 4Unj+1 − Unj+2)

+
a2k2

2h2
(Unj − 2Unj+1 + Unj+2) for a < 0

Stable if 0 ≤ ν ≤ 2 and −2 ≤ ν ≤ 0, respectively

Von Neumann analysis

Example (The upwind method)

g(ξ) = (1− ν) + νe−iξh

where ν = ak/h, stable if 0 ≤ ν ≤ 1

Example (Lax-Friedrichs)

g(ξ) = cos(ξh)− νi sin(ξh) =⇒ |g(ξ)|2 = cos2(ξh) + ν2 sin2(ξh),

stable if |ν| ≤ 1

Von Neumann analysis

Example (Lax-Wendro�)

g(ξ) = 1− iν[2 sin(ξh/2) cos(ξh/2)]− ν2[2 sin2(ξh/2)]

=⇒ |g(ξ)|2 = 1− 4ν2(1− ν2) sin4(ξh/2)

stable if |ν| ≤ 1

Example (Leapfrog)

g(ξ)2 = 1− 2νi sin(ξh)g(ξ),

stable if |ν| < 1 (like the midpoint method)

Characteristic tracing and interpolation

Consider the case a > 0 and ak/h < 1
Trace characteristic through xj , tn+1 to time tn
Find Un+1

j by linear interpolation between Unj−1 and Unj :

Un+1
j = Unj −

ak

h
(Unj − Unj−1)

=⇒ �rst order upwind method
Quadratic interpolating Unj−1, U

n
j , U

n
j+1 =⇒ Lax-Wendro�

Quadratic interpolating Unj−2, U
n
j−1, U

n
j =⇒ Beam-Warming

h

ak

xj−1 xj
tn

tn+1

The CFL condition

For the advection equation, u(X,T) depends only on the
initial data η(X − aT)
The domain of dependence is D(X,T) = {X − aT}
Heat equation ut = uxx, D(X,T) = (−∞,∞)
Domain of dependence for 3-point explicit FD method: Each
value depends on neighbors at previous timestep
Re�ning the grid with �xed k/h ≡ r gives same interval
This region must contain the true D for the PDE:

X − T/r ≤ X − aT ≤ X + T/r

=⇒ |a| ≤ 1/r or |ak/h| ≤ 1
The Courant-Friedrichs-Lewy (CFL) condition: Numerical
domain of dependence must contain the true D as k, h→ 0

xj−2 xj xj+2
t0

t2

xj−4 xj xj+4
t0

t4

The CFL condition

Example (FTCS)

The centered-di�erence scheme for the advection equation is
unstable for �xed k/h even if |ak/h| ≤ 1

Example (Beam-Warming)

3-point one-sided stencil, CFL condition gives 0 ≤ ak/h ≤ 2 (for
left-sided, used when a > 0)

Example (Heat equation)

D(X,T) = (−∞,∞) =⇒ any 3-point explicit method violates
CFL condition for �xed k/h

However, with k/h2 ≤ 1/2, all of R is covered as k → 0

Example (Crank-Nicolson)

Any implicit scheme satis�es the CFL condition, since the
tridiagonal linear system couples all points.

Modi�ed equations

Find a PDE vt = · · · that the numerical approximation Unj
satis�es exactly, or at least better than the original PDE

Example (Upwind method)

To second order accuracy, the numerical solution satis�es

vt + avx =
1

2
ah

(
1− ak

h

)
vxx

Advection-di�usion equation

Example (Lax-Wendro�)

To third order accuracy,

vt + avx +
1

6
ah2

(
1−

(
ak

h

)2
)
vxxx = 0

Dispersive behavior, leading to a phase error. To fourth order,

vt + avx +
1

6
ah2

(
1−

(
ak

h

)2
)
vxxx = −εvxxxx

where ε = O(k3 + h3) =⇒ highest modes damped

Modi�ed equations

Example (Beam-Warming)

To third order,

vt + avx =
1

6
ah2

(
2− 3ak

h
+

(
ak

h

)2
)
vxxx

Dispersive, similar to Lax-Wendro�

Example (Leapfrog)

Modi�ed equation

vt + avx +
1

6
ah2

(
1−

(
ak

h

)2
)
vxxx = εvxxxxx + · · ·

where ε = O(h4 + k4) =⇒ only odd-order derivatives,
nondissipative method

Hyperbolic systems

The methods generalize to �rst order linear systems of
equations of the form

ut +Aux = 0,

u(x, 0) = η(x),
where u : R× R→ Rs and a constant matrix A ∈ Rs×s

Hyperbolic system of conservation laws, with �ux function

f(u) = Au, if A diagonalizable with real eigenvalues:

A = RΛR−1 or Arp = λprp for p = 1, 2, . . . , s

Change variables to eigenvectors, w = R−1u, to decouple
system into s independent scalar equations

(wp)t + λp(wp)x = 0, p = 1, 2, . . . , s

with solution wp(x, t) = wp(x− λpt, 0) and initial condition
the pth component of w(x, 0) = R−1η(x).

Solution recovered by u(x, t) = Rw(x, t), or

u(x, t) =

s∑
p=1

wp(x− λpt, 0)rp

Numerical methods for hyperbolic systems

Most methods generalize to systems by replacing a with A

Example (Lax-Wendro�)

Un+1
j = Unj −

k

2h
A(Unj+1 − Unj−1) +

k2

2h2
A2(Unj−1 − 2Unj + Unj+1)

Second-order accurate, stable if ν = max1≤p≤s |λpk/h| ≤ 1

Example (Upwind methods)

Un+1
j = Unj −

k

h
A(Unj − Unj−1)

Un+1
j = Unj −

k

h
A(Unj+1 − Unj)

Only useful if all eigenvalues of A have same sign. Instead,
decompose into scalar equations and upwind each one separately
=⇒ Godunov's method

Initial boundary value problems

For a bounded domain, e.g. 0 ≤ x ≤ 1, the advection equation
requires an in�ow condition x(0, t) = g0(t) if a > 0

This gives the solution

u(x, t) =

{
η(x− at) if 0 ≤ x− at ≤ 1,

g0(t− x/a) otherwise.

First-order upwind works well, but other stencils need special
cases at in�ow boundary and/or out�ow boundary

von Neumann analysis not applicable, but generally gives
necessary conditions for convergence

Method of Lines applicable if eigenvalues of discretization
matrix are known

