
The Level Set Method

Per-Olof Persson
persson@berkeley.edu

Department of Mathematics
University of California, Berkeley

Math 228B Numerical Solutions of Differential Equations

Evolving Curves and Surfaces

Propagate curve according to speed function v = Fn

F depends on space, time, and the curve itself

Surfaces in three dimensions

F

Geometry Representations

Explicit Geometry
Parameterized boundaries

(x,y) = (x(s), y(s))

Implicit Geometry
Boundaries given by zero levelset

f (x,y)<0

f (x,y)>0

f (x,y)=0

Explicit Techniques

Simple approach: Represent curve explicitly by a set of nodes
{x(i)}, connected by lines or splines

Propagate curve by solving ODEs

dx(i)

dt
= v(x(i), t), x(i)(0) = x

(i)
0 ,

Calculate normal vectors, curvatures, etc by difference
approximations, e.g.:

dx(i)

ds
≈ x(i+1) − x(i−1)

2∆s

MATLAB Demo

Explicit Techniques - Drawbacks

Node redistribution required, introduces errors

No entropy solution, sharp corners handled incorrectly

Need special treatment for topology changes

Stability constraints for curvature dependent speed functions

Node distribution Sharp corners Topology changes

The Level Set Method

Implicit geometries, evolve interface by solving PDEs

Invented in 1988 by Osher and Sethian:

Stanley Osher and James A. Sethian. Fronts propagating with
curvature-dependent speed: algorithms based on Hamilton-
Jacobi formulations. J. Comput. Phys., 79(1):12–49, 1988.

Introductory books:

James A. Sethian. Level set methods and fast marching
methods. Cambridge University Press, Cambridge, second
edition, 1999.
Stanley Osher and Ronald Fedkiw. Level set methods and
dynamic implicit surfaces. Springer-Verlag, New York, 2003.

Implicit Geometries

Represent curve by zero level set of a function, φ(x) = 0

Special case: Signed distance function:

|∇φ| = 1
|φ(x)| gives (shortest) distance from x to curve

φ>0

φ<0

Discretized Implicit Geometries

Discretize implicit function φ on background grid

Obtain φ(x) for general x by interpolation

Cartesian Quadtree/Octree

Geometric Variables

Normal vector n (without assuming distance function):

n =
∇φ
|∇φ|

Curvature (in two dimensions):

κ = ∇ · ∇φ
|∇φ|

=
φxxφ

2
y − 2φyφxφxy + φyyφ

2
x

(φ2x + φ2y)3/2
.

Write material parameters, etc, in terms of φ:

ρ(x) = ρ1 + (ρ2 − ρ1)θ(φ(x))

Smooth Heaviside function θ over a few grid cells.

The Level Set Equation

Solve convection equation to propagate φ = 0 by velocities v

φt + v · ∇φ = 0.

For v = Fn, use n = ∇φ/|∇φ| and ∇φ · ∇φ = |∇φ|2 to
obtain the Level Set Equation

φt + F |∇φ| = 0.

Nonlinear, hyperbolic equation (Hamilton-Jacobi).

Discretization

Use upwinded finite difference approximations for convection

For the level set equation φt + F |∇φ| = 0:

φn+1
ijk = φnijk −∆t

(
max(F, 0)∇+

ijk + min(F, 0)∇−
ijk

)
,

where

∇+
ijk =

[
max(D−xφnijk, 0)2 + min(D+xφnijk, 0)2+

max(D−yφnijk, 0)2 + min(D+yφnijk, 0)2+

max(D−zφnijk, 0)2 + min(D+zφnijk, 0)2
]1/2

,

Discretization

and

∇−
ijk =

[
min(D−xφnijk, 0)2 + max(D+xφnijk, 0)2+

min(D−yφnijk, 0)2 + max(D+yφnijk, 0)2+

min(D−zφnijk, 0)2 + max(D+zφnijk, 0)2
]1/2

.

D−x backward difference operator in the x-direction, etc

For curvature dependent part of F , use central differences

Higher order schemes available

MATLAB Demo

Reinitialization

Even if the initial level set function is a distance function,
general speed functions F will give large variations in |∇φ|
This gives poor accuracy and performance, and requires
smaller timesteps for stability

Reinitialize the level set function by finding a new φ with
same zero level set but |∇φ| = 1

Different approaches:
1 Integrate the reinitialization equation for a few time steps

φt + sign(φ)(|∇φ| − 1) = 0

2 Compute distances from φ = 0 explicitly for nodes close to
boundary, use Fast Marching Method for remaining nodes

The Boundary Value Formulation

For F > 0, formulate evolution by an arrival function T

T (x) gives time to reach x from initial Γ

time * rate = distance gives the Eikonal equation:

|∇T |F = 1, T = 0 on Γ.

Special case: F = 1 gives distance functions

yx

T(x,y)

The Fast Marching Method

Discretize the Eikonal equation |∇T |F = 1 by max(D−x
ijkT, 0)2 + min(D+x

ijkT, 0)2

+ max(D−y
ijkT, 0)2 + min(D+y

ijkT, 0)2

+ max(D−z
ijkT, 0)2 + min(D+z

ijkT, 0)2


1/2

=
1

Fijk

or  max(D−x
ijkT,−D

+x
ijkT, 0)2

+ max(D−y
ijkT,−D

+y
ijkT, 0)2

+ max(D−z
ijkT,−D

+z
ijkT, 0)2


1/2

=
1

Fijk

The Fast Marching Method

Use the fact that the front propagates outward

Tag known values and update neighboring T values (using the
difference approximation)

Pick unknown with smallest T (will not be affected by other
unknowns)

Update new neighbors and repeat until all nodes are known

Store unknowns in priority queue, O(n log n) performance for
n nodes with heap implementation

Application: First arrivals and shortest geodesic paths

Visibility around obstacles

Application: Structural Vibration Control

Consider eigenvalue problem

−∆u = λρ(x)u, x ∈ Ω

u = 0, x ∈ ∂Ω.

with

ρ(x) =

{
ρ1 for x /∈ S
ρ2 for x ∈ S.

Solve the optimization

min
S
λ1 or λ2 subject to ‖S‖ = K.

Ω\S, ρ
1

S, ρ
2

Application: Structural Vibration Control

Level set formulation by Osher and Santosa:

Finite difference approximations for Laplacian
Sparse eigenvalue solver for solutions λi, ui
Calculate descent direction δφ = −v(x)|∇φ| with v(x) from
shape sensitivity analysis
Find a Lagrange multiplier that enforces the area constraint
using Newton’s method
Represent interface implicitly, propagate using level set method

