
Mesh Generation

Per-Olof Persson
persson@berkeley.edu

Department of Mathematics
University of California, Berkeley

Math 228B Numerical Solutions of Differential Equations

Mesh Generation

Motivation: Most numerical methods for
PDEs require a mesh for non-trivial domains

Various methods might use different components of the mesh:
Nodes (vertices)
Edges (faces in 3D)
Elements

Structured vs. Unstructured Meshes

Natural classification of meshes based on connectivity of nodes:
In structured meshes, all nodes have the same connections to
their neighbors (at least away from the boundaries)
Unstructured meshes allow for arbitrary connectivities (as long
as the mesh remains conforming)
Hybrid meshes combine the two, e.g. by having structured
parts in certain areas of the domain

Structured Mesh Generation

Why Structured Meshes?

Lead to very efficient numerical methods
High quality for sufficiently simple geometries
Larger grid control when high anisotropy is required
Multi-block approach allows for realistic geometries

Single-Block Grid Generation

Construct a one-to-one mapping between a rectangular
computational domain and a physical domain
Ideally, grid size in physical space should be dictated by
solver/solution requirements
Ensure grid quality e.g. smoothness, orthogonality

Single Block Grid Generation - Creating the Mapping

Transfinite Interpolation (TFI)
Conformal Mapping
Solving PDE’s

Elliptic
Parabolic/Hyperbolic

Algebraic Mappings

Construct a mapping between the boundaries of the unit
square (cube) and the boundaries of an "arbitrary" region
which is topologically equivalent
Combine 1D interpolants using Boolean sums to construct
mapping - Transfinite Interpolation (TFI)
Not guaranteed to be one-to-one
Orthogonality not guaranteed
Very Fast
Quite General
Grid quality not always assured

Algebraic Mappings - 1D Interpolants

General 1D interpolant of f(x) for x ∈ (0, 1)

f̂(x) ≡ Πxf =

L∑
i=0

P∑
n=0

αn
i (x)

dnf

dxn

∣∣∣∣
x=xi

αn
i (x) are the blending functions

Examples
Linear Lagrange interpolation - P = 0, L = 1

Πxf = (1− x)f(0) + xf(1)

Quadratic Lagrange interpolation - P = 0, L = 2

Πxf = (2x2− 3x+1)f(0)+ (4x− 4x2)f(0.5)+ (2x2−x)f(1)

Hermite interpolation - P = 1, L = 1

Πxf = (2x3 − 3x2 + 1)f(0) + (3x2 − 2x3)f(1) +

(x3 − 2x2 + x)f ′(0) + (x3 − x2)f ′(1)

Algebraic Mappings - Transfinite Interpolation

x

y

R(1,η)

R(0,η)

R(x,0)

R(x,1)

η

ξ ξ

η

Start from 1D boundary mappings of R ≡ (x, y), e.g.
R(ξ, 0),R(ξ, 1),R(0, η),R(1, η)

Construct 1D interpolants in the ξ and η directions (e.g.
linear)

ΠξR = (1− ξ)R(0, η) + ξR(1, η)

ΠηR = (1− η)R(ξ, 0) + ηR(ξ, 1)

Algebraic Mappings - Transfinite Interpolation

Construct two-dimensional interpolant by doing the Boolean
sum

R̂(ξ, η) = (Πξ ⊕Πη)R = (Πξ +Πη −ΠξΠη)R

Expanding:

R̂(ξ, η) = (1−ξ, ξ)
(

R(0, η)
R(1, η)

)
+(R(ξ, 0),R(ξ, 1))

(
1− η
η

)

−(1− ξ, ξ)
(

R(0, 0) R(0, 1)
R(1, 0) R(1, 1)

)(
1− η
η

)
= (1− ξ)R(0, η) + ξR(1, η) + (1− η)R(ξ, 0) + ηR(ξ, 1)

−(1−ξ)(1−η)R(0, 0)−(1−ξ)ηR(0, 1)−ξ(1−η)R(1, 0)−ξηR(1, 1)

Important property: Preserves R at the domain boundary
Extends to general 1D interpolants and any dimension

Algebraic Mappings - Example

Algebraic Mappings - Example

ΠξR ΠηR

(Πξ ⊕Πη)R

Algebraic Mappings - Grid Control

Use non-regular subdivisions in (ξ, η) (e.g. exponential
functions) to obtain desired element sizes in (x, y)

Use derivative boundary conditions to enforce boundary
orthogonality

∂R

∂ξ
· ∂R
∂η

= 0

Conformal Mapping

An analytic function α = f(z) such that
df

dz
̸= 0 defines a

one-to-one (conformal) mapping between z = x+ iy and
α = ξ + iη, or between (x, y) and (ξ, η).
The functions ξ(x, y) and η(x, y) satisfy the Cauchy- Riemann
equations (e.g. ξx = ηy, and ηx = −ξy) and as a consequence,
they are harmonic

∇2ξ = 0, ∇2η = 0 (smoothness)

Preserve angles (grid orthogonality)
Preserve ratios
Lead to high quality grids
Limited to 2D

Conformal Mapping Transformations

Joukowski (maps circle of radius c to segment [−2c, 2c])

α = z +
c2

z
, or

α+ 2c

α− 2c
=

(
z + c

z − c

)2

Karman-Trefftz
α+ 2c

α− 2c
=

(
z + c

z − c

)n

Schwarz-Christoffel (maps polygon into half plane)

dα

dz
= K

n∏
k=1

(
1− z

zk

)βk

Conformal Mapping - Schwarz-Christoffel

Ref. “Schwarz-Christofell Mapping”, Driscoll and Trefethen,
Cambridge Univeristy Press, 2002.

PDE Grid Generation

Construct mapping by solving a PDE
Elliptic Equations (smooth grids)

∇2ξ(x, y) = P (x, y), ∇2η(x, y) = Q(x, y)

Hyperbolic equations (orthogonal grids)

xξyη − xηyξ = J (size control)
xξxη + yξyη = 0 (orthogonality)

Most widely used approach
Grids usually have high quality

Elliptic Grid Generation

We are interested in solving

−∇2ξ = P in Ω

ξ = g on ΓD

∂ξ

∂n
= h on ΓN = Γ\ΓD

where P , g, and h are given.

Similarly for η(x, y)

Elliptic Grid Generation

? ?

x = x(ξ, η)
y = y(ξ, η)
−→

∇2ξ = P

Can we determine an equivalent problem to be solved on Ω̂?

Elliptic Grid Generation

ξ = ξ(x, y) x = x(ξ, η)
η = η(x, y) y = y(ξ, η)(

dξ

dη

)
=

(
ξx ξy

ηx ηy

)(
dx

dy

) (
dx

dy

)
=

(
xξ xη

yξ yη

)(
dξ

dη

)

⇒

(
ξx ξy

ηx ηy

)
=

(
xξ xη

yξ yη

)−1

=
1

J

(
yη −xη

−yξ xξ

)

J = xξyη − xηyξ

Elliptic Grid Generation

ξx =
yη
J ξy = −xη

J

ηx = −yξ
J ηy =

xξ

J

and ξxx =
∂

∂x
(ξx) =

(
ξx

∂

∂ξ
+ ηx

∂

∂η

)(yη
J

)
=

1

J

(
yη

∂

∂ξ
− yξ

∂

∂η

)(yη
J

)
= . . .

ξyy = . . .

Elliptic Grid Generation - Thompson’s Equations

Finally, ξxx + ξyy = 0 and ηxx + ηyy = 0, become

axξξ − 2bxξη + cxηη = 0
ayξξ − 2byξη + cyηη = 0

a, b, c depend on the mapping.

a = x2η + y2η b = xξxη + yξyη c = x2ξ + y2ξ

These equations can be solved using central finite
differences on a regular grid in the (ξ, η) domain to determine
the (x, y) coordinates of each grid point.
Picard iteration: Start from initial grid coordinates x, y.
Compute a, b, c, solve the PDE, and repeat until convergence.

Elliptic Grid Generation - Grid Control

Modify grid by e.g. adding source terms to the PDE:
ξxx + ξyy = P (x, y) and ηxx + ηyy = Q(x, y)

axξξ − 2bxξη + cxηη = −J2(xξP + xηQ)
ayξξ − 2byξη + cyηη = −J2(yξP + yηQ)

The functions P (ξ, η) and Q(ξ, η) can be used to obtain grid
control
Derivative boundary conditons can be used to enforce grid
orthogonality at the boundary

Ref: “Numerical Generation of Two-Dimensional Grids by Use of
Poisson Equations with Grid Control”, Sorenson and Steger, in
Numerical Grid Generation Techniques, Smith, R.E. (Ed.),
NASA-CP-2166, pp. 449-461, 1980

Single-Block Grid Common Topologies

O-Grid C-Grid

H-Grids
. . . plus combinations

Examples: Single-Block O-Grids

Examples: Single-Block C,H-Grids

Examples: H-Grids

H-Grid H-Grid/I-Grid

Multi-Block Grid Generation

Subdivide domain into an unstructured assembly of
quadrilaterals/hexahedra
Obtaining block topology automatically is hard
Obtaining block geometry automatically (e.g. point
coordinates) once topology is known is tractable

Examples: Multi-Block Grids

Examples: Multi-Block Grids

Block Topology Generators

(from ICEM CFD)

Automatic H ⇒ O conversion

Block Topology Generators - Medial Axis Transform (MAT)

Unstructured Mesh Generation

Unstructured Mesh Generation

Approximate a domain in Rd by simple geometric shapes
Determine node points and element connectivity
Goal: Resolve the domain accurately with well-shaped
elements, but use as few elements as possible
Applications: Numerical solution of PDEs (FEM, FVM, DGM,
BEM), interpolation, computer graphics, visualization

Geometry Representations

Explicit Geometry
Parameterized boundaries

(x,y) = (x(s), y(s))

Implicit Geometry
Boundaries from contour

f (x,y)<0

f (x,y)>0

f (x,y)=0

Unstructured Meshing Algorithms

Delaunay refinement
Refine an initial triangulation by inserting centroid points and
updating connectivities
Efficient and robust, provably good in 2-D

Advancing front
Propagate a layer of elements from boundaries into domain,
stitch together at intersection
High quality meshes, good for boundary layers, but somewhat
unreliable in 3-D

Unstructured Meshing Algorithms

Octree mesh
Create an octree, refine until geometry well resolved, form
elements between cell intersections
Guaranteed quality even in 3-D, but poor element qualities

DistMesh
Improve initial triangulation by node movements and
connectivity updates
Easy to understand and use, handles implicit geometries, high
element qualities, but non-robust and low performance

Delaunay Triangulation

Find non-overlapping triangles that fill the convex hull of a set
of points
Properties:

Every edge is shared by at most two triangles
The circumcircle of a triangle contains no other input points
Maximizes the minimum angle of all the triangles

Delaunay triangulation Voronoi tesselation

Empty circumcircle

Constrained Delaunay Triangulation

The Delaunay triangulation might not respect given input
edges

Non-conforming triangles

Use local edge swaps to recover the input edges

Delaunay Refinement Method

Algorithm:
Form initial triangulation using boundary points and outer box
Replace an undesired element (bad or large) by inserting its
circumcenter, retriangulate and repeat until mesh is good

Will converge with high element qualities in 2-D
Very fast – time almost linear in number of nodes

2)

° 12

)

The Advancing Front Method

Discretise the boundary as initial front
Add elements into the domain and update the front
When front is empty the mesh is complete

Original front New front

Original front New front

New element

New element

δ

Grid Based and Octree Meshing

Overlay domain with regular grid, crop and warp edge points
to boundary

Octree instead of regular
grid gives graded mesh with
fewer elements

Mesh Size Functions

Function h(x) specifying desired mesh element size
Many mesh generators need a priori mesh size functions

Physically-based methods such as DistMesh
Advancing front and Paving methods

Discretize mesh size function h(x) on a background grid

Mesh Size Functions

Based on several factors:
Curvature of geometry boundary
Local feature size of geometry
Numerical error estimates (adaptive solvers)
Any user-specified size constraints

Also: |∇h(x)| ≤ g to limit ratio G = g + 1 of neighboring
element sizes

Explicit Mesh Size Functions

A point-source

h(x) = hpnt + g|x− x0|

Any shape, with distance function ϕ(x)

h(x) = hshape + gϕ(x)

Combine mesh size functions by min operator:

h(x) = min
i
hi(x)

For more general h(x), solve the gradient limiting equation
[Persson’05]

∂h

∂t
+ |∇h| = min(|∇h|, g),

h(t = 0,x) = h0(x).

Mesh Size Functions – 2-D Examples

Mesh Size Function h(x) Mesh Based on h(x)

Laplacian Smoothing

Improve node locations by iteratively moving nodes to average
of neighbors:

xi ←
1

ni

ni∑
j=1

xj

Usually a good postprocessing step for Delaunay refinement
However, element quality can get worse and elements might
even invert:

Face and Edge Swapping

In 3-D there are several swappings between neighboring
elements
Face and edge swapping important postprocessing of Delaunay
meshes

 Figure 30: Face-edge swapping

Boundary Layer Meshes

Unstructured mesh for offset curve ψ(x)− δ
The structured grid is easily created with the distance function

The DistMesh Mesh Generator

The DistMesh Mesh Generator

1. Start with any topologically correct initial mesh, for example
random node distribution and Delaunay triangulation

2. Move nodes to find force equilibrium in edges
Project boundary nodes using implicit function ϕ
Update element connectivities

Internal Forces

F
1

F
2

F
3

F
4

F
5

F
6

For each interior node:∑
i

Fi = 0

Repulsive forces depending on
edge length ℓ and equilibrium
length ℓ0:

|F | =

{
k(ℓ0 − ℓ) if ℓ < ℓ0,

0 if ℓ ≥ ℓ0.

Get expanding mesh by choosing
ℓ0 larger than desired length h

Reactions at Boundaries

F
1

F
2

F
3

F
4

R

For each boundary node:∑
i

Fi +R = 0

Reaction force R:
Orthogonal to boundary
Keeps node along
boundary

Node Movement and Connectivity Updates

Move nodes p to find force
equilibrium:

pn+1 = pn +∆tF (pn)

Project boundary nodes to
ϕ(p) = 0

Elements deform, change
connectivity based on element
quality or in-circle condition
(Delaunay)

