Chapter 3

Interpolation and Polynomial Approximation

Per-Olof Persson
persson@berkeley.edu

Department of Mathematics
University of California, Berkeley

Math 128A Numerical Analysis

Polynomial Interpolation

Polynomials

e Polynomials P, (z) = a,z" + ---a;x + a, are commonly used
for interpolation or approximation of functions

@ Benefits include efficient methods, simple differentiation, and
simple integration

@ Also, Weierstrass Approximation Theorem says that for each
e > 0, there is a P(x) such that

|f(z) —p(z)| <e for all z in [a, b]

for f € Cla,b]. In other words, polynomials are good at
approximating general functions.

A

The Lagrange Polynomial

If g, ..., x, distinct and f given at these numbers, a unique
polynomial P(z) of degree < n exists with

f(zy) = P(xy,), foreach k =0,1,...,n

The polynomial is

P(@) = f(20)Lno(@) + - + f(z, =" iz
k=0
where
(2 —wp)(@—21) (T —3p_1) (@ — Tpyy) (@ —zp)
Ent®) = G, o) a — 21 (& —) (@ — Zpyr) (g~)

Lagrange Polynomial Error Term

Ty, ..., 1, distinct in [a,b], f € C"[a,b], then for = € [a, b]
there exists () in (a,b) with

FrD(E())

f(z) = P(x) + CE

(= 2o) (@ —21) - (& —)

where P(z) is the interpolating polynomial.

Divided Differences

Divided Differences
o Write the nth Lagrange polynomial in the form

P,(z) = ag + a;(x — xp) + ay(x — 7)) (x — 79+

e+ a,(x— Zo) (T —) (x—x, 1)

@ Introduce the kth divided difference

Fl&i Big1s oy Bigpo1, Ty =
fl@ig1: Tivas s Togw] — F[Zo Tigrs o Tigp]
LTitk — L5
@ The coefficients are then aj, = f[zy, z, %o, ..., ;] and
n

P,(2) = flaol + Y flwg, 21, e i) (@ — 20) -+ (& — 24 4)

k=1

v

Newton's Divided-Difference

MATLAB Implementation

function F = divideddifference(x, f)
% Compute interpolating polynomial using Divided Differences.

n = length(x)-1;
F = zeros(n+1,n+1);
F(:,1) = £(:);
for i = 1:n
for j = 1:1i
F(i+1,j+1) = (F(i+1,j) - F(i,3)) / (x(i+1) - x(i-j+1));
end
end

.

Equally Spaced Nodes

Equal Spacing

@ Suppose x, ..., x,, increasing with equal spacing

h=z,,—x;, and x = x4 + sh
@ The Newton Forward-Difference Formula then gives

P.(x0+2(>Afwo

where

Af(zg) = f(z1) — f(x)
AQf(%) = Af(zy) — Af(zg) = f(xy) — 2f(z1) + f(=)

Backward Differencing
The Newton Backward-Difference Formula

@ Reordering the nodes gives

Pn(a:) = f[xn] + f[gsn’mn—l](aj — wn)+

ot e, szl —2y) (@ — 2 g) e (2 —2y)

@ The Newton Backward-Difference Formula is

(-1 (;) VEf(@,)

where the backward difference Vp,, is defined by

By
&

I
=
8
2
|
(-

k=1

Vpn =Dp —Ppn
V¥, = V(VF'p,)

A

Osculating Polynomials

Definition

Let z, ..., x,, be distinct in [a,b], and m, nonnegative integers.

Suppose f € C™[a,b], with m = maxg_;.,, m;. The osculating

polynomial approximating f is the P(x) of least degree such that

dkP(337;> _ dkf(a:i)

dak dgk fori=0,...,nand k=0,...,m;

\

Special Cases
e n = 0: myth Taylor polynomial
e m; = 0: nth Lagrange polynomial
@ m; = 1: Hermite polynomial

Hermite Interpolation

If f € C'a,b] and z, ..., x,, € [a,b] distinct, the Hermite
polynomial is

n

Hy,q(z) = Z flz;)H, ;(z)+ Z f/<$j)ﬁn,j(x)

J=0 J=0

where
Hn,j(m) = [1 —2(z — xj)L;L,j(xj)]L?z,j(m)

H, (z) = (x —z,)L} ;(x).

Moreover, if f € C?"2[a,b], then

o) = By o)+ S S 0)

for some &(z) € (a,b).

.

Hermite Polynomials from Divided Differences

Divided Differences

Suppose z, ..., x,, and f, f’ are given at these numbers. Define
205 -y Zopg1 bY

Roj = R2i+1 — L5

Construct divided difference table, but use
f (o), (@), s ()
instead of the undefined divided differences
flzo, 21, flzas 23] -, fl2ans 22n41]

The Hermite polynomial is

Hy,y1(z) = flzo) + Z flz0, - 2l (@ — 2p) -+ (2 — 24_1)
k=1

Cubic Splines

Definition

Given a function fon [a,b] and nodes a =z, < - <z, =b, a
cubic spline interpolant S for f satisfies:
a. S(z) is a cubic polynomial S;(z) on [z}, 7,]
Si(@;) = fla;) and Sy(xjp1) = f(7541)
SJ+1<]+1) S; (]+1)
]+1(j+1> (j+1)
]+1< _]+1) S”(]+1)
One of the foIIowmg boundary conditions:
i. S”(zy) =8"(x,,) =0 (free or natural boundary)
i. 8"(zg)=f'(zg) and S’(z,,) = f'(z,,) (clamped boundary)

.-h.fD.Q-OP'

’

Natural Splines

Computing Natural Cubic Splines
b.,c.,d. in

Solve for coefficients a;, b;, ¢;, d;

Sj(a:) =a,+ bj(a: — ;) + cj(a: — :Ej)2 + dj(a: — xj)?’

by setting a; = f(x;), h; = z;,; —x;, and solving Ax = b:

hn—2 2(h’n—2 + hn—l) hn—l
0 1
b = (0,3(ay —ay)/h; —3(a; —ag)/hg, -,
3(a, —a, 1)/h, 1 —3(a, 1 —a, 5)/h, ., O)T
)T

X =(CpyesCp

Finally,

b; = (aj+1 - aj)/hj - hj(ch + cj+1)/37 d; = (Cj+1 - Cj)/(th)

A

Clamped Splines

Computing Clamped Cubic Splines

Solve for coefficients a;, b;, ¢;, d; in

S;(x)=a;+b(x—xz;)+c;(x—x;)* +d;(x—x,)?

J

using same procedure as for natural cubic splines, but with

2h, ho
ho 2(hg+hy) hy

A=
2(h’n72 + hnfl) h
h

n—1

2hn—1

n—2

n—1

b = (3(a; —ag)/hy —3f'(a),3(ay —a,)/hy —3(a; —agy)/hg, ...

g(a’n - anfl)/hnfl - 3((1,”471 - an72)/hn—2’
3f7(b) = 3(a,, —an_1)/hn_1)"

7

.

