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Numerical Differentiation

Forward and Backward Differences
Inspired by the definition of derivative:

choose a small h and approximate

fxo +h) = fzo)
h

f' (@) ~
The error term for the linear Lagrange polynomial gives:

/ _f<x0+h>_f(x0> h ”
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Also known as the forward-difference formula if h > 0 and the
backward-difference formula if h < 0




General Derivative Approximations

Differentiation of Lagrange Polynomials

Differentiate
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to get
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This is the (n + 1)-point formula for approximating f(x;).




Commonly Used Formulas

Using equally spaced points with h = x;.; — x;, we have the
three-point formulas
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F"(20) = 55 [f (20 — h) = 2f(zg) + flzo + 1)] = 5 FH(E)
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and the five-point formula
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o Consider the three-point central difference formula:

£/(a0) = 5l @ +B) = flzo — W] - =7 (&y)

@ Suppose that round-off errors € are introduced when computing
f. Then the approximation error is

h2
%

flag+h) = flag—h)| _

F'(@o) - o <+ M =c(h)

where f is the computed function and | f®) (z)| < M
o Sum of truncation error h* M /6 and round-off error & /h
@ Minimize e(h) to find the optimal h = {/3¢/M




Richardson's Extrapolation

@ Suppose N (h) approximates an unknown M with error
then an O(h/) approximation is given for j = 2,3, ... by

(h) " N;_1(h/2) — N;_(h)

2 1 — 1

@ The results can be written in a table:

O(h) O(h?) O(k*)  OhY)
1:N,(h) = N(h)
2:N1(%)EN(%) 3:N,(h)
4:N1(%)EN(%) 5:N2(%) 6:N;(h)
T:N; (2) = N(%) 8:Ny(%) 9:Ng(L) 10:N,(h) )




Richardson's Extrapolation

@ If some error terms are zero, different and more efficient
formulas can be derived
e Example: If

M — N(h) = K h2 + Kh* + -
then an O(h?/) approximation is given for j = 2,3, ... by

(h) n N;_1(h/2) — N;_(h)
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Numerical Quadrature

Integration of Lagrange Interpolating Polynomials

Select {z,...,x,} in [a,b] and integrate the Lagrange polynomial
P (x)= Z?:o f(z;)L,;(x) and its truncation error term over [a, b]
to obtain . .
fla)de =Y a;f(x;) + B(f)
a =0
with
b
a; = / L,(x)dz
and
1 " (n+1)
B =Gy | L= a0 s
v




Trapezoidal and Simpson's Rules

The Trapezoidal Rule

Linear Lagrange polynomial with z; = a, ; = b, h = b — a, gives

b 3
[ $@de = St + fe) = 3577@

Simpson’s Rule

Second Lagrange polynomial with z; = a, 2, =0, v, = a + h,
h=(b—a)/2 gives

/m " flayda = Z[f(%) +4f(zq) + fl@y)] — Zo FO(E)
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Definition

The degree of accuracy, or precision, of a quadrature formula is the
largest positive integer n such that the formula is exact for z*, for
each k=0,1,...,n.




The Newton-Cotes Formulas

The Closed Newton-Cotes Formulas

Use nodes x; = zy + ih, xy = a, x,, = b, h = (b—a)/n:

b n
f@)dz~ ) aif(z)
a =0
Tn Tn (x — )
ai:/xo Li(w)dm=/xo gmdx

n = 1 gives the Trapezoidal rule, n = 2 gives Simpson's rule.

\.

The Open Newton-Cotes Formulas
Use nodes x; = xy + ih, xg =a+h, x, =b—h,
h=(b—a)/(n+2). Setting n = 0 gives the Midpoint rule:

xq 3
| 1@ da =2hs(a) + 0

.




Composite Rules

Let f € C?[a,b], h=(b—a)/n, x; = a+ jh, p € (a,b). The
Composite Trapezoidal rule for n subintervals is

b—a
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Let f € C*[a,b], n even, h = (b—a)/n, z; = a+ jh, p € (a,b).
The Composite Simpson'’s rule for n subintervals is

b h (n/2)-1 n/2 .

/ f(@)de =3 [f(a>+2 Y flugy) +4 flwg;) + ()
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Romberg Integration

@ Compute a sequence of n integrals using the Composite
Trapezoidal rule, where m; =1, m, = 2,m3 =4, ... and
m,, =271

o The step sizes are then h;, = (b—a)/m;, = (b—a)/2"!

@ The Trapezoidal rule becomes

/f R | fa) + £ ) + (zj—f(aﬂhk))]

i=1




Romberg Integration

o Let R, ; denote the trapezoidal approximation, then

hy

R, = ?[f(a) + f(b)] =

1
Ry, = §[R1,1 + hy f(a+ hy)]

(b—a)
2

[f(a) + £(b)]

Ro = 3{Ra + holf(at hy) + f(a+ 3h)])

2k—2

1 .
Ry, = 3 Ry 11+ hy Z fla+(2i = 1)hy)

1=1

@ Apply Richardson extrapolation to these values:

Ry i1 —Ry1;

Byj =Ryt — 53




Romberg Integration

MATLAB Implementation

function R = romberg(f, a, b, n)
% Compute integral of f(x) from a to b using Romberg integration.

h =
R =

R(1,

for

end

b-a;
zeros(n,n);

1) = h/2 * (f(a) + £(b));

i = 2:n

R(i,1) = 1/2 * (R(i-1,1) + h*sum(f(a + ((1:27(i-2))-0.5)*h)));
for j = 2:1i

R(i,j) = R(i,j-1) + (R(i,j-1)-R(i-1,j-1)) / (4~ (j-1)-1);
end
h = h/2;




Error Estimation

@ The error term in Simpson’s rule requires knowledge of f(*

b ho
| f@)ds=Sa.b) - 5510w

o Instead, apply it again with step size h/2:

a+b a+b 1 (h°
— _ (g
/f ) do = >+S< 2 ’b> 16<9o>f ()
@ The assumption f(4) () ~ fW(fi) gives the error estimate
s(ut) s(52)

a-+b a-+b
—5‘S(a,b)—5’<a,—2 )—s( - )‘




Adaptive Quadrature

e To compute j;b f(z) dz within a tolerance € > 0, first apply
Simpson's rule with h = (b — a)/2 and with h/2

o If
S(a,b) — S <a, “TH’> —S(%”,b)‘ < 15¢

then the integral is sufficiently accurate

o If not, apply the technique to [a, (a +b)/2] and [(a + b)/2, ],
and compute the integral within a tolerance of /2

@ Repeat until each portion is within the required tolerance




Gaussian Quadrature

@ Basic idea: Calculate both nodes z, ..., x,, and coefficients
¢y, ..., C, such that

b n
/ f(z)dz ~ Zczf(mz)

@ Since there are 2n parameters, we might expect a degree of
precision of 2n — 1
@ Example: n = 2 gives the rule

s () (9

with degree of precision 3




Legendre Polynomials

@ The Legendre polynomials P, (x) have the properties
1. For each n, P,(z) is a monic polynomial of degree n (leading

coefficient 1)
2. fjl P(z)P,(x)dx = 0 when P(z) is a polynomial of degree
less than n
@ The roots of P (x) are distinct, in the interval (—1,1), and
symmetric with respect to the origin.

@ Examples:
Py(z) =1, 12 () =
P(ac)—mQ—1 Py(x) =x —§x
2 3 S 5
6 3
P — 4 2 -~
W(z) = = - 35 ]




Gaussian Quadrature

Suppose x4, ..., x,, are roots of P, (z) and
1 n
T —x;
c; —/ H I d
Ty — T
1 j#i

If P(z) is any polynomial of degree less than 2n, then




Computing Gaussian Quadrature Coefficients

MATLAB Implementation

function [x, c] = gaussquad(n)
% Compute Gaussian quadrature points and coefficients.

P = zeros(n+1,n+1);
P([1,2],1) = 1;
for k = 1:n-1
P(k+2,1:k+2) = ((2xk+1)*[P(k+1,1:k+1) 0] - ...
k*[0 0 P(k,1:k)]) / (k+1);

x = sort(roots(P(n+1,1:n+1)));
A = zeros(n,n);
for i = 1:n

A(i,:) = polyval(P(i,1:i),x)';

c=A\ [2; zeros(n-1,1)];

.




Arbitrary Intervals

Transform integrals Lb f(z)dx into integrals over [—1,1] by a
change of variables:

2 —a—b 1

Gaussian quadrature then gives

/abf(g;)dm:/1f<<b_a)t;<b+a>> (bga) @t

-1




Double Integrals

o Consider the double integral
//f(a:,y)dA, R={(z,y)|la<z<bec<y<d}
R

e Partition [a, b] and [c, d] into even number of subintervals n, m
o Stepsizes h = (b—a)/n and k= (d—c)/m
@ Write the integral as an iterated integral

//Rﬂx,mdA:/ab (/Cdﬂx,wdy) dz

and use any quadrature rule in an iterated manner.




Composite Simpson’s Rule Double Integration

The Composite Simpson'’s rule gives

/(/fwydy) dw—%zzwﬂf (x;,y;) + B

1=0 j=

where x; = a +ih, y; = ¢ + jk, w; ; are the products of the nested
Composite Simpson'’s rule coefficients (see below), and the error is

p- =00 [+ 105 L)

d el e4 e2 e4 el

ol el6 o8 el6 e4




Non-Rectangular Regions

The same technique can be applied to double integrals of the form

b pd(x)
/ / flz,y) dyda
a Ye(z)

The step size for x is still h = (b — a)/n, but for y it varies with z:

d(z) — c(z)

m

k() =




Gaussian Double Integration

o For Guassian integration, first transform the roots ,, ; from
[—1,1] to [a,b] and [c, d], respectively
@ The integral is then

b pd o . n n
/ / f(xv y) dyd.’l? ~ W ch,icn,jf<xia y])

i=1 j=1

@ Similar techniques can be used for non-rectangular regions




Improper Integrals with a Singularity

The improper integral below, with a singularity at the left endpoint,
converges if and only if 0 < p < 1 and then

/b< 1 dm:(x—a)lfp

T —a)P 1—p

" (b—a)r

1—p

More generally, if

f(z) = %, 0<p<1, g continuouson [a,b],

construct the fourth Taylor polynomial P,(x) for g about a:

//(a) )
J o (x —a)

(z—a)*

Py(z) = g(a) + ¢'(a)(z —a) +

9" (a) 9“4 (a)
+ (- a)® + 2




Improper Integrals with a Singularity

and write

/abf(m)dx:/ab%dm—i—/b (fi<Z)>pdx

a

The second integral can be computed exactly:

Py(z

x—a
a a

4
b a>k+1—p
,; T

—a)Pdx




Improper Integrals with a Singularity

For the first integral, use the Composite Simpson’s rule to compute
the integral of G on [a, b], where

9(@)—Py(z)
Glz) = e ifa<z<b
0, ifz=a

Note that 0 < p < 1 and Pik)(a) agrees with g'*)(a) for each
k=0,1,2,3,4, so G € C*[a,b] and Simpson's rule can be applied.J




Singularity at the Right Endpoint

@ For an improper integral with a singularity at the right endpoint
b, make the substitution z = —x, dz = —dx to obtain

b —a
[ r@do= [ sz
a —b

which has its singularity at the left endpoint
@ For an improper integral with a singularity at ¢, where
a < ¢ < b, split into two improper integrals

/abf(m)dx:/acf(x)d:v+/cbf(m)da:




Infinite Limits of Integration

An integral of the form f —dm with p > 1, can be converted to
an integral with left endpomt singularity at 0 by the substitution

t=z"1, dt=—x"2dx, sodr=—x2dt =—t2dt

oo 1 0 tp 1/(1 1
a 1/a 0 =

More generally, this variable change converts faoo f(z)dx into

/QOO f(x)dx = /01/’1 t2f (%) dt

which gives




