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Motivation

Need for higher fidelity predictions in computational mechanics
Turbulent flows, wave propagation, multiscale phenomena,
non-linear interactions

Many practical applications involve time-varying geometries
Fluid/structure interaction, flapping flight, wind turbines,
rotor-stator flows

Goal: Develop robust, efficient, and accurate high-order methods

based on fully unstructured meshes



Why Unstructured Meshes?

Complex geometries need flexible element topologies

Complex solution fields need spatially variable resolution

Fully automated mesh generators for CAD geometries are based

on unstructured simplex elements

Real-world simulation software dominated by unstructured mesh

discretization schemes



Why high-order accurate methods?
Scalar convection equation ut + ux = 0

High-order gives superior performance for equal resolution



Example: High-order aero-acoustics

Aero-acoustics simulation of a

recorder model

Line-DG scheme, p = 7

High-order essential to

capture turbulent flow sources

and propagate waves
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High-Order Discontinuous Galerkin Simulations

Discontinuous Galerkin (DG) methods have desirable properties:

FVM FDM FEM DG

1) High-order/Low dispersion

2) Complex geometries

3) Stabilization for convection

However, several problems to resolve:

High CPU/memory requirements (compared to FVM or H-O FDM)
Robustness issues, low tolerance to under-resolved features
High-order geometry representation and mesh generation

Need to make DG competitive for real-world problems
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The Discontinuous Galerkin Method

(Reed/Hill 1973, Lesaint/Raviart 1974, Cockburn/Shu 1989-, etc)

Consider non-linear hyperbolic system in conservative form:

ut +∇ · Fi(u) = 0

Triangulate domain Ω into elements κ ∈ Th

Seek approximate solution uh in space of element-wise

polynomials:

Vp
h = {v ∈ L2(Ω) : v|κ ∈ Pp(κ) ∀κ ∈ Th}

Multiply by test function vh ∈ Vp
h and integrate over element κ:∫

κ
[(uh)t +∇ · Fi(uh)] vh dx = 0



The Discontinuous Galerkin Method

Integrate by parts:∫
κ

[(uh)t] vh dx−
∫
κ
Fi(uh)∇vh dx +

∫
∂κ
F̂i(u+

h ,u
−
h , n̂)v+h ds = 0

with numerical flux function F̂i(uL,uR, n̂) for left/right states uL,uR in

direction n̂ (Godunov, Roe, Osher, Van Leer, Lax-Friedrichs, etc)

Global problem: Find uh ∈ Vp
h such

that this weighted residual is zero for

all vh ∈ Vp
h

Error = O(hp+1) for smooth solutions
∂κ

κ

n

u
L

u
R



The DG Method – Observations

Reduces to the finite volume method for p = 0:

(uh)tAκ +

∫
∂κ
F̂i(u+

h ,u
−
h , n̂) ds = 0

Boundary conditions enforced naturally for any degree p

Block-diagonal mass matrix (no overlap between basis functions)

Block-wise compact stencil – neighboring elements connected

Mass Matrix Jacobian

∂κ

κ

n

u
L

u
R



Viscous Discretization

General approach for second derivatives:

Write as system of first order equations [Arnold et al 02]:

ut +∇ · Fi(u)−∇ · Fv(u,σ) = 0

σ −∇u = 0

Discretize using DG, choose appropriate numerical fluxes σ̂, û

Various schemes have been proposed:

BR2 [Bassi/Rebay 1998]: Different lifting operator for each edge,
compact connectivities, similar to Interior Penalty (IP)
LDG [Cockburn/Shu 1998]: Upwind/Downwind, non-compact
CDG [Peraire/Persson 2008]:
Modification of LDG for local dependence – sparse and compact



The CDG Method – Summary
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Temporal Discretization: DIRK

Diagonally Implicit RK (DIRK) are implicit Runge-Kutta schemes

defined by lower triangular Butcher tableau→ decoupled implicit
stages
Overcomes issues with high-order BDF and IRK

Limited accuracy of A-stable BDF schemes (2nd order)
High cost of general implicit RK schemes (coupled stages)

u(0) = u0(µ)

u(n) = u(n−1) +

s∑
i=1

bik
(n)
i

u(n)
i = u(n−1) +

i∑
j=1

aijk
(n)
j

Mk(n)i = ∆tnr
(

u(n)
i , µ, tn−1 + ci∆tn

)

c1 a11

c2 a21 a22
...

...
...

. . .

cs as1 as2 · · · ass

b1 b2 · · · bs

Butcher Tableau for DIRK scheme



Preconditioning for Newton-Krylov Solvers

Implicit solvers typically required because of CFL restrictions from

viscous effects, low Mach numbers, and adaptive/anisotropic grids
Jacobian matrices are large even at p = 2 or p = 3, however:

They are required for non-trivial preconditioners
They are very expensive to recompute

Block-ILU(0) preconditioners and Minimum Discarded Fill (MDF)

element ordering [Persson/Peraire 2008]

Distributed parallel solvers

developed in [Persson ’09]

IMEX schemes for geometrically

induced stiffness (e.g. boundary

layers) [Persson 2011]



Cylinder – Delayed Detached Eddy Simulation

DES/DDES [Spalart 1997,2006]: Hybrid RANS/LES model for

problems with significant flow separation

Edge of boundary layer moving; stabilize by continuous AV

Model problem: Flow over cylinder, Re = 1.5 · 106

Left: Force coefficients CD,CL, Right: Q-criterion isosurfaces
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Artificial Viscosity for Underresolved Features

Cannot resolve all solution features (shocks,

RANS, singularities), and low dissipation

makes DG sensitive to under-resolution

Stabilize by sensors and artificial viscosity

[Persson & Peraire 2006]

Regularity of solution determined from the

decay rate of expansion coefficients in

orthogonal basis

Periodic Fourier case: f (x) =
∑∞

k=−∞ gkeikx

If f (x) has m continuous derivatives→ |gk| ∼ k−(m+1)

For simplices: Expand solution in orthonormal Koornwinder basis:

u =

N(p)∑
i=1

uiψi, û =

N(p−1)∑
i=1

uiψi, se = log10

(
(u− û, u− û)e

(u, u)e

)



Nonlinear stabilization using artificial viscosity

se is a highly sensitive yet selective sensor

General→ applicable to any type of under-resolved features

Allows for full Newton convergence of sensor

Subgrid resolution→ smooth propagation of moving shocks



3-D Transonic Flow over Tapered Wing

3-D wing, fully unstructured tetrahedral mesh

Freestream Ma = 0.8, AoA = 3◦

Polynomial degrees p = 3

Pressure Artificial viscosity



Pitching wing in transonic flow

ALE formulation for the Euler equations combined with

sensor-based artificial diffusion

Freestream Ma = 0.6, AoA harmonic with amplitude= 30◦

Implicit solver, re-used Jacobians

x-gradient of density Arfificial viscosity
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ALE Formulation for Deforming Domains

Use mapping-based ALE formulation for moving domains

[Visbal,Gaitonde 2002], [Persson,Bonet,Peraire 2009]

Map from reference domain V to physical deformable domain v(t)

Introduce the mapping deformation gradient G = ∇XG and the

mapping velocity vX = ∂G
∂t

∣∣
X, and set g = det(G)

The system of conservation laws in the physical domain v(t)

∂Ux

∂t

∣∣∣∣
x

+ ∇x · Fx(Ux,∇xUx) = 0

can then be written in the reference configuration V as
∂UX

∂t

∣∣∣∣
X

+ ∇X · FX(UX,∇XUX) = 0

where
UX = gUx , FX = gG−1Fx − UXG−1vX

∇xUx = ∇X(g−1UX)G−T = (g−1∇XUX − UX∇X(g−1))G−T



ALE Formulation for Deforming Domains

Mapping-based formulation

gives arbitrarily high-order

accuracy in space and time
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Nonlinear Elasticity for Deforming Domains

Non-linear solid mechanics approach: [Persson & Peraire 2009]

An initial reference mesh corresponds to an undeformed solid
External forces come from the true moving boundary constraints
Solving for a force equilibrium gives the deformed (curved)
boundary conforming mesh

High-order ALE methods require a smooth mapping G(X, t) such

that the elements are aligned with the moving boundaries

G(X, t)



Moving Domain Applications
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Partitioned FSI using IMEX schemes

[Froehle & Persson 2013, 2014]

IMEX schemes can be used to derive accurate partitioning

methods for fully coupled FSI problems

Treat a predicted traction t̃ explicitly and everything else implicitly:

r =

[
rf (uf ; x(us))

rs(us; t(uf ))

]
=

[
rf (uf ; x(us))

rs(us; t̃)

]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

implicit

+

[
rfs(t(uf )− t̃)

]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

explicit

5.5 14.0

12.0
1.0

1.0
4.0

0.06

Tip frequency: f = 3.14 Hz (Literature: 2.98 – 3.25 Hz)

Tip displacement: dmax = 1.09 cm (Literature: 0.95 – 1.25 cm)



Flow around Membrane, 3-D

Angle of attack 22.6◦, Reynolds number 2000.

Flexible structure reduces leading edge separation.

Fluid: 108k degree 3 tetrahedra (11M DOF)

Solid: 1k degree 3 tetrahedra

Mesh Flow field
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Discretization of PDE-Constrained Optimization
Continuous PDE-constrained optimization problem

minimize
U, µ

J (U,µ)

subject to C(U,µ) ≤ 0

∂U
∂t

+∇ · F(U,∇U) = 0 in v(µ, t)

Fully discrete PDE-constrained optimization problem

minimize
u(0), ..., u(Nt)∈RNu ,

k(1)
1 , ..., k(Nt)

s ∈RNu ,
µ∈Rnµ

J(u(0), . . . , u(Nt), k(1)
1 , . . . , k(Nt)

s , µ)

subject to C(u(0), . . . , u(Nt), k(1)
1 , . . . , k(Nt)

s , µ) ≤ 0

u(0) − u0(µ) = 0

u(n) − u(n−1) +

s∑
i=1

bik
(n)
i = 0

Mk(n)
i −∆tnr

(
u(n)

i , µ, t(n−1)
i

)
= 0



Generalized Reduced-Gradient Approach

Optimizer drives, Primal returns QoI values, Dual returns QoI gradients

OPTIMIZER MESH MOTION

PRIMAL PDE

DUAL PDE

µ

x, ẋ

x, ẋ
∂x
∂µ ,

∂ẋ
∂µ

u(n), k(n)i

J,C

dJ
dµ ,

dC
dµ



Adjoint Method to Compute QoI Gradients

Consider the fully discrete output functional F(u(n), k(n)i ,µ)

Represents either the objective function or a constraint

The total derivative with respect to the parameters µ, required in

the context of gradient-based optimization, takes the form

dF
dµ

=
∂F
∂µ

+

Nt∑
n=0

∂F
∂u(n)

∂u(n)

∂µ
+

Nt∑
n=1

s∑
i=1

∂F

∂k(n)i

∂k(n)i
∂µ

The sensitivities,
∂u(n)

∂µ
and

∂k(n)i
∂µ

, are expensive to compute,

requiring the solution of nµ linear evolution equations

Adjoint method: alternative method for computing
dF
dµ

that

require one linear evolution evoluation equation for each quantity

of interest, F



Fully Discrete Adjoint Equations: Dissection

Linear evolution equations solved backward in time

Primal state u(n)
i required at each stage of dual problem

Heavily dependent on chosen output

λ(Nt) =
∂F
∂u(Nt)

T

λ(n−1) = λ(n) +
∂F

∂u(n−1)

T
+

s∑
i=1

∆tn
∂r
∂u

(
u(n)

i , µ, tn−1 + ci∆tn
)T

κ
(n)
i

MTκ
(n)
i =

∂F
∂u(Nt)

T
+ biλ

(n) +

s∑
j=i

aji∆tn
∂r
∂u

(
u(n)

j , µ, tn−1 + cj∆tn
)T

κ
(n)
j

Gradient reconstruction via dual variables

dF
dµ

=
∂F
∂µ

+ λ(0)T ∂u0

∂µ
+

Nt∑
n=1

∆tn
s∑

i=1

κ
(n)
i

T ∂r
∂µ

(u(n)
i , µ, t(n)i )



Energetically Optimal Flapping, Thrust Constraint

minimize
µ

−
∫ 3T

2T

∫
Γ

f · ẋ dS dt

subject to
∫ 3T

2T

∫
Γ

f · e1 dS dt = q

U(x, 0) = Ū(x)

∂U
∂t

+∇ · F(U,∇U) = 0

Isentropic, compressible,

Navier-Stokes

Re = 1000, M = 0.2

y(t), θ(t), c(t) parametrized via

periodic cubic splines

Black-box optimizer: SNOPT

y(t)

θ(t)

l
l/3

c(t)

Airfoil schematic, kinematic description



Optimal Control - Fixed Shape

Fixed Shape, Optimal Rigid Body Motion (RBM), Varied x-Impulse

Energy = 9.4096

x-impulse = -0.1766

Energy = 0.45695

x-impulse = 0.000

Energy = 4.9475

x-impulse = -2.500

Initial Guess
Optimal RBM

Jx = 0.0

Optimal RBM

Jx = −2.5



Optimal Control, Time-Morphed Geometry

Optimal Rigid Body Motion (RBM) and Time-Morphed

Geometry (TMG), Varied x-Impulse

Energy = 9.4096

x-impulse = -0.1766

Energy = 0.45027

x-impulse = 0.000

Energy = 4.6182

x-impulse = -2.500

Initial Guess
Optimal RBM/TMG

Jx = 0.0

Optimal RBM/TMG

Jx = −2.5



Adjoint Method for Periodic PDE-Constraints

Following identical procedure as for non-periodic case, the adjoint

equations corresponding to the periodic conservation law are

λ(Nt) = λ(0) +
∂F
∂u(Nt)

T

λ(n−1) = λ(n) +
∂F

∂u(n−1)

T
+

s∑
i=1

∆tn
∂r
∂u

(
u(n)

i , µ, tn−1 + ci∆tn
)T

κ
(n)
i

MTκ
(n)
i =

∂F
∂u(Nt)

T
+ biλ

(n) +

s∑
j=i

aji∆tn
∂r
∂u

(
u(n)

j , µ, tn−1 + cj∆tn
)T

κ
(n)
j

Dual problem is also periodic

Solve linear, periodic problem using Krylov shooting method
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Domains with Large Deformations

For large deformations, it is in general not possible to deform the

meshes smoothly – remeshing required

For efficient numerical schemes, use local mesh operations

Radial basis functions

Nonlinear elasticity



The DistMesh Mesh Generator

High quality meshes obtained using the DistMesh algorithm
[Persson, Ph.D. thesis, ’05]

1. Start with any topologically correct initial mesh
2. Move nodes to find force equilibrium in edges

Project boundary nodes using implicit geometry φ(x)

Update element connectivities with Delaunay

Excellent properties:

Very simple (1 page of MATLAB)
Implicit geometries→ No CAD required
Very high element qualities
Moving meshes/deforming domains

Widely used:

Numerous books and courses
Rewritten in C, C++, C#, Fortran 77/90,
Python, Mathematica, Octave



The DistMesh Mesh Generator

Spring-based non-linear compressive
force analogy for mesh motion

p(n+1) = p(n) + δ
∑

i

Fi

|Fi(l)| =

k(l− l0) if l ≥ l0,

0 if l < l0,

Perform topological transformations

(“edge flips”) to improve element

connectivities



The DistMesh Mesh Generator on Surfaces



Element flips and DistMesh in 3D

Local element flips for 3D tetrahedra:

Restricts the topology changes to a small number of elements



Moving Meshes

In addition to generating high-quality initial meshes, the DistMesh

algorithm is excellent for iterative generation of moving meshes

The resulting mesh sequence involves two types of operations:
1 Smooth node movements
2 Localized element topology updates

This allows for integration with efficient numerical schemes



Space-time Mesh Generation

Local mesh operations significantly simplify the process of

space-time slab mesh generation

Each local prism triangulation depends on the choice of the

diagonals on the lateral faces

A depth-first algorithm for the global assignment of diagonals



Edge collapsing and Edge splitting

Two more local mesh operations for adding and removing nodes:



Space-Time Discontinuous Galerkin Formulation

Fully unstructured space-time DG method:
Fully consistent discretization in both space and time
Allows for arbitrary mesh deformations and topology changes

Define the broken DG spaces Vh
T and Σh

T associated with a
triangulation T h

[0,T] = {K} of the space-time domain Ω[0,T] as:

Vh
T = {v ∈ [L2(Ω[0, T])]5 | v|K ∈ [Pp(K)]5 ∀K ∈ T h

[0,T]},

Σh
T = {σ ∈ [L2(Ω[0, T])]5×3 | σ|K ∈ [Pp(K)]5×3 ∀K ∈ T h

[0.T]},

Discretize the first-order system using a standard DG formulation
on the space-time domain Ω[t1, t2].

−
∫

K
F̃inv(uh) : ∇XTvh dx +

∮
∂K

(˜̂Finv · n) · vh ds

= −
∫

K
Fvis(uh, qh) : ∇Xvh dx +

∮
∂K

(F̂vis · ns) · vh ds, ∀vh ∈ Vh
T∫

K
qh : σh dx = −

∫
K

uh · (∇X · σh) dx +

∮
∂K

(ûh ⊗ ns) : σh ds, ∀σh ∈ Σh
T .



Example: Euler Vortex, Convergence

Propagate an Euler Vortex on a

fixed domain but moving mesh

Optimal order of convergence

O(hp+1) for fixed and moving

mesh.
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Example: Spinning Cross

Flow around a spinning cross with

ω = 1, Reynolds number 3000, Mach

0.2, polynomial degree p=2.

Graded mesh around cross moves

rigidly with geometry movement

Mesh improvement techniques

applied to the remaining elements



Example: Tandem Foils

Two foils are placed very close and rotated based on

θ = A sin(−2πft) with A = π/6 and f = 0.05. Reynolds number

3000, Mach 0.2, polynomial degree p=2.



Example: Tandem Foils
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Fully unstructured 4D space-time mesh generation

4D is difficult to visualize, and we extend concepts such as

‘Prisms’ and ‘Lateral Faces’ using combinatorial notions

2D ‘Prism’ 3D Prism 4D ‘Prism’

2D Prism 3D Prism 4D Prism

Geometry of Bottom/Top Face Line Segment Triangle Tetrahedra

Geometry of Lateral Faces Line Segment Rectangle Triangular prism

Number of Lateral Faces 2 3 4

Number of Diagonals
(2

2

) (3
2

) (4
2

)



Fully unstructured 4D space-time mesh generation

The following result can be shown for obtaining valid simplex
triangulations of a simple 4D prism:

Theorem

If the 4D prism mesh is constructed purely by simple 4D-prisms, the indexing
approach can always triangulate the prism mesh into a valid simplex mesh.
More precisely, in each simple 4D-prism, if we have the ordered vertices
{pV,t

(1), p
V,t
(2), p

V,t
(3), p

V,t
(4)} with I(1) < I(2) < I(3) < I(4), the simple 4D-prism is

triangulated by the following four 4D-simplices with vertex sets

T1 = {pV,t
(1), p

V,t+∆t
(1) , pV,t+∆t

(2) , pV,t+∆t
(3) , pV,t+∆t

(4) },

T2 = {pV,t
(1), p

V,t
(2), p

V,t+∆t
(2) , pV,t+∆t

(3) , pV,t+∆t
(4) },

T3 = {pV,t
(1), p

V,t
(2), p

V,t
(3), p

V,t+∆t
(3) , pV,t+∆t

(4) },

T4 = {pV,t
(1), p

V,t
(2), p

V,t
(3), p

V,t
(4), p

V,t+∆t
(4) }



Extruded 3D Euler vortex convergence test

Initial mesh at t = 0
Moving mesh at t = T

Sample solution
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Summary

DG and related high-order methods are getting sufficiently mature

to handle realistic problems

For moving domains with large deformations, novel mesh

generation techniques and numerical schemes are required

Constructive methods for generation of unstructured space-time

3D/4D simplex meshes

Applications in DNS/LES/DDES flow problems, flapping flight,

wind turbine simulations, etc
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