Adaptive Unstructured Mesh Generation using
Distance Functions

Per-Olof Persson (persson@math.mit.edu)
Gilbert Strang (gs@math.mit.edu)

Department of Mathematics, MIT

Abstract

We present a simple and adaptable mesh generation algorithm for geometries specified
implicitly by their signed distance functions. The Delaunay algorithm determines a topology,
then we iteratively find a force equilibrium in the element edges, and position the boundary
nodes using the distance function and its gradient. A given function specifies the element size
distribution, and we show how geometry adaption can be obtained from a discretized distance
function. The algorithm generalizes to any dimension, and we show examples of hybrid mesh
generation and moving boundary problems in combination with the level set method.
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Project web page (source code, documentation, examples):

http://math.mit.edu/” persson/mesh



Introduction

Distance functions
e Geometry boundary specified as zero level set of scalar function
()
e Signed distance function: p(x) < 0 inside geometry, |Vo(x)| =1
e Given by:
— Analytical function (simple geometries, boolean solid
operations)
— Procedural function (distance to polygons or curves)

— Discretization on background mesh (Cartesian or unstructured,
level set method)

Mesh generation

e Traditional meshing algorithms (Delaunay refinement, Advancing
front) first have to find and represent the boundary ¢(x) explicitly,
which is inconvenient and expensive (in particular for 3-D
geometries and moving boundaries).

e We use an iterative physically-based method, where the node
locations are found by a force equilibrium in a truss structure. The
boundaries are accessed indirectly by evaluations of ¢(x).
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The Meshing Algorithm

Distribute point Triangulate Force equilibrium
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Distribute points inside the region according to size function
h(z,y), and reject points outside geometry (p(z,y) > 0).

2. Obtain topology by Delaunay triangulation.

. Find force equilibrium iteratively using Forward Euler, updating

the topology when necessary.

Pn+l = Dn + AtF(pn>

Assign nonlinear forces in edges depending on current edge length ¢
and desired length £:

Assign reaction forces at boundaries, by repositioning node points
after each step using distance function: ey «— € — V() - ¢(x)

Updated Node L ocation
= (xy) — Od(xy)d(x.y)




Results (2-D)

2-D Meshes
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Results (3-D and 4-D)

3-D Meshes
e Tetrahedral meshes of unit ball (left) and cylinder with hole (right)

e Surface mesh plots and “split views”

4-D Hypersphere

e p(x)=r—1withr = Z?:l x?
e hy = 0.2 gives 3,458 nodes and 59, 222 elements
e No plots, hard to visualize! Instead indirect verifications:

— Mesh volume V} = 4.74 (expected value 72/2 = 4.93)

— Hyper-surface area S; = 16.3 (surface area 272 ~ 19.7 of a 4-D
ball). Deviations because of the approximation of the curved
surface with simplices.

— Poisson’s equation —V?u = 1, bnd cond’s v = 0],—;. Analytical
solution u = (1 — r?)/8, linear FEM error |le]|oo = 7.9 - 1074



Automatic Generation of Size Functions

(for example Cartesian grid, but also unstructured meshes)

Curvature given by distance function, kK =V

Ve

TV

Systematic method for computation of h(x) on a background mesh

Satisfies curvature, feature size, numerical, and grading constraints

e PDE-based approach for computation of medial axis transform and

local feature size

e PDE-based approach for gradient limiting:

Signed Distance Function

Total htot=min(h h

curv’ Ifs)

0.05

Curvature Adaption hC

urv

Gradient Limited h

3

Numerical adaptive solver easily incorporated

h(@) = min(ho(z') + Clla — 2||)

Generalizes to higher dimensions without modifications

@
u

Local Feature Size hIfs

An example mesh

%
4y
VAYS
#V

VAT
SSSSEERR

VAVAVA
VAVA
i

iy
VAV

SEN

VAVA
Q/

a4

Ay

R
<]
1

V4

%

VAN <X
N ISR
S VAVAVAN g o
ISAAFAIANIIRE
R AR

e

7a)




Element Quality

e Our physically-based method tends to generate meshes with very
high element qualities, see plots below

e Histograms show “radius ratio” quality measure, ¢ = nr/R where n
is the dimension, r is the inradius, and R is the circumradius of the
element

e Standard Laplacian smoothing of the node positions in the
Delaunay Refinement mesh will not give the same high quality,
topology changes also required

e Similar results in 3-D, where face swapping and edge flipping are
applied in both cases

Delaunay Refinement Method

140

120

100

80

60

# Elements

40

0

0.7 0.8 0.9 1
Element Quality

Physically-Based Method

140

120

100

80

# Elements

60

40

20

0 -
0.7 0.8 0.9 1
Element Quality



Numerical Adaptivity

Applications

e Model problem: —Awu = 0 in domain, u(r, ) = sin(46/7) on
boundary, refinement based on energy norm error estimate

e Interpolate size function h(x) from error indicator on unstructured
mesh from previous iteration

e Use previous mesh as initial condition in iterations, less expensive
than remeshing from scratch

Longest edge refinement
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Physically based refinement

YA
ND

Ay WWAYAYA)

.
OIS

oo

N N
A VAVAVA

KX

vavi,
KX
SRR

5
K
S
5
Sk

KRR

N
5%
O

N

oy
X
an
2R
e
e:
LR
K7
<
gy
\

AVAY
ERX
KA
PR

SERK

>
K
3
&

NN
Y.
L
K

Moving Interfaces with Topology Changes

e Implicit functions handle topology changes in any dimension

e Use level set method on background mesh for interface propagation

e Multiphase flow, fluid-structure interact., shape optimization, etc
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Applications

Semi-structured Hybrid Meshing
e Unstructured mesh for offset curve p(x) —§

e The structured grid is easily created with the distance function

Conclusions

e Unstructured mesh generation for geometries represented by their
signed distance functions

e No explicit representation of boundary curves/surfaces

e Generalizes to higher dimensions (even > 3-D)

e Automatic PDE-based generation of size function

e Fasy to implement (50 lines of MATLAB code, see web page)
e Very high element qualities

e Applications: Simple mesh generation, moving interfaces with
topology changes, hybrid meshes, etc



