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Abstract

We propose a method to generate high-order unstructured curved meshes using the classical Winslow
equations. We start with an initial straight-sided mesh in a reference domain, and fix the position of the
nodes on the boundary on the true curved geometry. In the interior of the domain, we solve the Winslow
equations using a new continuous Galerkin finite element discretization. This formulation appears to pro-
duce high quality curved elements, which are highly resistant to inversion. In addition, the corresponding
nonlinear equations can be solved efficiently using Picard iterations, even for highly stretched boundary layer
meshes. Compared to several previously proposed techniques, such as optimization and approaches based on
elasticity analogies, this can significantly reduce the computational cost while producing curved elements of
similar quality. We show a number of examples in both two and three space dimensions, including complex
geometries and stretched boundary layers, and demonstrate the high quality of the generated meshes and
the performance of the nonlinear solver.
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1. Introduction

High-order methods are receiving considerable interest from the computational community because of
their potential to achieve higher accuracy with reduced computational cost compared to traditional low-
order approaches. The need for curved (or curvilinear) meshes comes from the fact that linear elements are
not adequate for high-order methods, because of the numerical errors introduced by linear approximations
of the domain boundary, which would negate the advantages of using high-order methods. Therefore, curved
meshes are essential for the broader adoption of high-order accurate discretizations.

While block structured grid generators have long supported curved boundaries, the extension to unstruc-
tured meshes has proved to be more difficult. Unstructured meshes are the preferred choice for a wide range
of real-world problems, mainly because of the availability of a number of good methods for automatic tetra-
hedral mesh generation [17, 21, 25, 16] directly from CAD data. These standard mesh generators produce
straight-sided elements, but can be used as a starting point for approximating the physical domain. By
adding extra geometric data, the generated meshes can be curved such that the curvilinear elements well
approximate the curved boundaries.

For simple cases such as well-resolved isotropic triangular elements, a local approach of simply conforming
the boundary of elements which are in contact with the curved boundary will oftentimes generate adequate
curved meshes. However, for more complex 3D domains and large unstructured simplex elements, such an
approach would in general produce low-quality or inverted elements. In addition, high-order methods are
often used for problems which need coarse and highly anisotropic elements, therefore in order to produce
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good quality meshes we need to approach the problem of generating high-order curved meshes in a global
fashion.

Previous work on curved mesh generation include Refs. [3, 12, 23], where various algorithms for curvilinear
meshing are proposed. These methods identify mesh entities that produce invalid elements, and eliminate
these problems by a combination of local mesh refinements, edge and face swaps, and node relocations. In
Ref. [24], some further options were proposed, including hybrid meshing using prism elements close to the
curved boundary, and a curvature-based refinement procedure. Methods based on a solid mechanics analogy
have also been proposed, such as the linear elasticity approaches in Refs. [14, 15, 30, 13] or the Lagrangian
nonlinear elasticity method of Ref. [18]. Finally, several authors have recently considered an optimization
perspective, where the goal is to maximize a Jacobian-based quality measure which penalizes invalid and
distorted elements, see for example Refs. [28, 19, 5, 6].

While many of these methods are highly resistant to inverted elements and typically produce good quality
meshes, they can be computationally expensive in the presence of boundary layers. One of the motivations of
this work is to develop methods which allow for more efficient solvers. In an attempt to reduce computational
costs while not significantly decrease the element quality, we propose the generation of unstructured high-
order meshes by solving the classical Winslow equations. These are second-order nonlinear elliptic partial
differential equations which are obtained by enforcing the computational coordinates to be harmonic. More
specifically, choosing the computational domain (with known coordinates ξ) to be a linear approximation
of the physical domain (with unknown coordinates x); we denote the mapping between the two domains by
ξ = ξ(x) and x = x(ξ). The Winslow equations are then obtained by rewriting the equations ∆xξ(x) = 0
in the computational space; where ∆ denotes the Laplace operator (see Fig. 1). These equations are solved
using a nonlinear Picard approach to obtain the desired physical coordinates. The continuous form of these
equations is known to have the desirable property that it defines a smooth mapping for sufficiently regular
boundary deformations. Although there is no guarantee that the approach will produce a non-inverted
mapping when discretized on a finite-dimensional function space, it does in general produce well-shaped
curved meshes when the mesh resolution is reasonable compared to the level of deformation.

Solving the Winslow equations (or elliptic mesh generation) is a well-known tool used in the generation of
structured meshes. Grids based on the Winslow equations are the so-called Laplace or Harmonic grids and
were first introduced by A. Winslow [29], and have been studied extensively since them, see for example [27,
26, 10, 2]. While often solved in a finite difference setting, a variational formulation for the equations
was derived in [1]. Approaches using finite element and finite volume methods for mesh smoothing were
previously developed for example in Refs. [7] and [8, 9]. However, we note that these unstructured extensions
are typically used for mesh improvement and smoothing of linear meshes, and not for the curved mesh
generation problem.

In this paper, we describe a new continuous Galerkin finite element formulation of the standard Winslow
equations, which we use for generation of well-shaped high-order unstructured curved meshes. Compared
to other finite element formulations in the literature, our discretization attempts to directly mimic the non-
conservative form used by most finite difference solvers, which allows for a highly efficient Picard solver.
This is achieved by splitting the equations into a system which defines the weak derivatives of the metric
tensor in the same discretization space as the mesh deformation, and re-writing the Winslow equations as
a conservative second-order term plus a first-order term. The resulting formulation is simple to implement,
allows for highly efficient solvers, and typically produces high quality curved meshes. The approach appears
to be particularly effective for anisotropic boundary layers, and we show that the number of Picard iterations
is essentially constant regardless of the refinement level, compared to a standard adaptive Newton solver as
well as a non-linear elasticity solver which both need additional iterations for higher levels of refinement.

We illustrate the performance of our method through examples in two and three dimensions, and analyze
the quality of the generated meshes. Examples include meshes with anisotropic boundary layers, thin regions,
and coarse meshes for complex geometries.
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Figure 1: Winslow Equations in 2D: obtained by enforcing the computational coordinates to be harmonic, that is, the equations
∆ξ(x, y) = 0 and ∆η(x, y) = 0 are rewritten and solved in the computational space.

2. Problem Formulation

Our high-order curved mesh generation approach starts from an initial straight sided mesh of the actual
geometry, which can be generated using a number of well-established approaches. On this computational
domain, or reference domain, we define a space of piecewise polynomials, which we use to represent the
coordinates of the curved physical domain. In this work we simply constrain all the boundary nodes in
the physical domain to be located on the true curved geometry, but more sophisticated node placement
strategies can be employed [30, 20]. The remaining interior nodes are determined from the solution of a
system of second order elliptic equations known as the Winslow equations in the computational domain,
and the corresponding deformed coordinates in the physical domain is the final curved mesh.

The Winslow equations are obtained by enforcing the computational coordinates to be harmonic, as
illustrated in Fig. 1. More specifically, let D ⊂ Rn be the simply connected bounded physical domain
in n space dimensions, C ⊂ Rn the computational domain, and define the mapping x : C → D, where
x = x(ξ) = (x1(ξ), . . . , xn(ξ)). Conversely, the mapping from domain D to C will be denoted by ξ =
ξ(x) = (ξ1(x), . . . , ξn(x)).

In the derivations below, we use Einstein’s summation notation. We define the covariant base vectors as

gi = ∂ix, for i = 1, . . . , n.

Naturally, the covariant metric tensor components gij are defined as the inner product of the covariant base
vectors, i.e,

gij = (gi, gj), for i, j = 1, . . . , n.

Furthermore, the contravariant base vectors gi = ∇xξi satisfy

(gi, gj) = δij , for i, j = 1, . . . , n,

where δij is the Kronecker delta.
Next, define the contravariant metric tensor components

gij = (gi, gj), for i, j = 1, . . . , n.

so that gijgjk = δik, and let g be the determinant of the covariant metric tensor g = det(gij).
Consider the arbitrary function φ = φ(ξ) defined in the computational domain C, then φ is also defined

in D through the mapping ξ(x). It is a well-know result from differential geometry that its Laplace operator
can be written as (see, for example, [11])

∆xφ =
1
√
g
∂i
(√
ggij∂jφ

)
. (1)
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Setting φ = ξj in this expression, we get

∆xξj =
1
√
g
∂i
(√
ggij

)
for j = 1, . . . , n. (2)

Finally, we can rewrite equation (1) as

∆xφ =
1
√
g
∂i
(√
ggij

)
∂jφ+ gij∂i∂jφ =(2) ∆xξj∂jφ+ gij∂i∂jφ. (3)

Imposing our computational coordinates to be harmonic, we get

∆xξj = 0, for j = 1, . . . , n.

Plugging this equation into (3), and taking φ = xk it follows that

0 = ∆xxk = gij∂i∂jxk for k = 1, . . . , n,

which leads to the following simple form of the Winslow equations in physical coordinates:

gij∂i∂jxk = 0 for k = 1, . . . , n, (4)

where, again, gij are defined through the relation gijgjk = δik and gij = (∂ix, ∂jx).
Note that equations (4) form a nonlinear system, since the contravariant metric tensor depends on the

unknown solution x. One of the main advantages of this particular formulation is that it allows for a highly
efficient solution strategy using Picard iterations, where the components of gij are computed from an old
solution and a linear problem is solved for a new improved solution.

However, because of the non-conservative form, it is not obvious how to discretize equations (4) using
a finite element approach. In our formulation, we address this by rewriting the equations as a system
involving both x and the new variables α defined as the negative derivatives of the contravariant metric
tensor. Assuming sufficient smoothness of the solution fields, we can then rewrite the Winslow equations
as a conservative second-order term plus a first order term involving α, to obtain the final form of our
governing equations:

∂i(g
ij) + αj = 0, for j = 1, . . . , n, (5)

∂i(g
ij∂jxk) + αj∂jxk = 0, for k = 1, . . . , n. (6)

As mentioned before, we impose standard Dirichlet conditions on the solution field x on the entire
boundary of the computational domain:

x(ξ) = xbnd(ξ), ξ ∈ ∂C, (7)

where xbnd(ξ) represents the true curved boundary.

3. Discretization and Solution Method

3.1. Finite Element Formulation

Our finite element discretization is based on a standard continuous Galerkin formulation of the split form
(5)-(6) of the Winslow equations. Continuous and piecewise polynomial approximation spaces of a given
degree p are used for both α and x. After integrating by parts, we reduce the regularity requirements and
obtain a formulation of this second-order system which is well-defined even for linear elements.

First, we define the elements of the straight sided mesh for the computational domain C,

Th = {K1,K2, . . . },
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where C = ∪K∈ThK. On this triangulation, we define the space of n continuous piecewise polynomials of
degree p by

V ph = {v ∈ [C0(C)]n | v|K ∈ [Pp(K)]n ∀K ∈ Th},

where Pp(K) is the space of polynomials of degree at most p ≥ 1 on K. We also introduce the subspace of
functions in V ph satisfying the non-homogeneous Dirichlet conditions

V ph,D = {v ∈ V ph ,v|∂C = xpbnd},

as well as the homogeneous Dirichlet boundary conditions

V ph,0 = {v ∈ V ph ,v|∂C = 0}.

Here xpbnd is a suitable projection of xbnd onto the space of piecewise polynomials of order p defined over
∂C. In this work, we use a standard nodal interpolant.

Our finite element formulation of (5)-(6) seeks approximate solution fields αh ∈ V ph and xh ∈ V ph,D.

First consider equation (5). Multiply by an arbitrary test function z = (z1, . . . , zn) ∈ V ph , integrate over
the domain C, and integrate by parts, to obtain the corresponding finite element formulation: Find αh =
(αh1 , . . . , α

h
n) ∈ V ph such that ∫

C

αhj zj dV =

∫
C

gij∂izj dV −
∫
∂C

gij n̂izj dS, (8)

for all z ∈ V ph , where n̂ = (n̂1, . . . , n̂n) is the outward normal at the domain boundary ∂C and the
components gij are defined by element-wise differentiation of the approximate solution xh. The system
(8) is discretized using a standard nodal finite element approach. We consider a nodal basis {ϕk}mk=1 of the
m-dimensional space V ph , and write the approximate solution fields as

αh =

m∑
k=1

αhkϕk, xh =

m∑
k=1

xhkϕk, (9)

where αhk and xhk are the expansion coefficients in the nodal basis. We impose equations (8) for all basis
functions ϕk, k = 1, . . . ,m. We compute the integrals using high-order Gauss integration rules, and after a
standard matrix assembly approach we obtain a system of the form

Mαhj = bj , j = 1, . . . , n, (10)

where M is a symmetric mass matrix, which is constant over all components of αh. Note that our definition
of αh can be seen as a weak projection of the derivatives of gij onto the approximation space V ph .

The finite element formulation of equation (6) with boundary conditions (7) follows the same lines: We
seek a solution xh = (xh1 , . . . , x

h
n) ∈ V ph,D, such that for all functions z = (z1, . . . , zn) ∈ V ph,0 we have∫

C

gij∂jx
h
k∂izk dV −

∫
C

αj∂jx
h
kzk dV = 0. (11)

Similarly to before, we impose equation (11) for z = ϕk, for all k = 1, . . . ,m. For the assembly of these
equations, we treat the coefficients αh and gij as constant fields which leads to a linear system in xh:

Kxhj = cj , j = 1, . . . , n, (12)

which also incorporates the strongly enforced Dirichlet boundary conditions (7).
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3.2. Solution Procedure

Our discretization lead to the final discrete system of equations (10) and (12), which we can write in the
following form to emphasize the nonlinear dependencies:

Mαhj = bj(x
h), j = 1, . . . , n, (13)

K(αh,xh)xhj = cj(α
h,xh), j = 1, . . . , n. (14)

We solve these nonlinear equations using Picard iterations as follows. Set the initial guess to the straight
sided mesh at the interior nodes and to the curved boundary at the boundary nodes:

x(0)(ξ) =

{
xpbnd(ξ), for ξ on ∂C,

ξ, for ξ in C.
(15)

For a given solution iterate x(`), we compute an improved iterate by the following steps:

1. Assemble (13) using xh = x(`) and solve for αh = α(`).

2. Assemble (14) using xh = x(`) and αh = α(`), and solve for x(`+1).

These iterations are repeated until the norm of the difference between two iterates is smaller than a given
tolerance.

We note the following important properties of this solution procedure:

• As defined, the initial guess is highly likely to contain invalid elements. However, the Picard iterations
appear to be quite insensitive to this and typically repairs (or untangles) the curved mesh so that the
final mesh is valid.

• Unlike for example non-linear elasticity based mesh curving approaches, the iterations usually converge
in at most 10-20 iterations, even for highly stretched meshes that produce severe inversions in the initial
guess.

• While the right hand side of equation (13) must be re-assembled in each iteration, the system matrix
M is a standard continuous Galerkin mass matrix which is constant for all iterations and solution
components. It does require a global linear solution to find αh, however, the matrix is well-conditioned
and can be solved by any standard linear solver for SPD systems.

• Both the matrix and the right hand side of equation (14) must be re-assembled in each iteration.
However, the system matrix K is the same for all n solution components, and the systems can again
be solved efficiently using standard solvers for general linear equations.

• All parts of the assembly and linear solution procedures can be parallelized using standard approaches.

In our implementation, we use a direct sparse solver for all 2D and for the small 3D problems. For the
large 3D problems, we use a conjugate gradient / GMRES solver for the two systems, preconditioned by
incomplete factorizations. All our results are computed in serial.

For comparison, in two dimensions, we also solve the non-linear system of equations (13) and (14) by
solving a corresponding residual equation r(αh,xh) = 0 using Newton’s method. Similarly to the Picard
case, we set the initial guess to the straight sided mesh at the interior nodes and to the curved boundary at
the boundary nodes, given by equation (15). As expected, Newton’s method shows poor global convergence
and typically fails to converge for initial conditions with tangled elements. This is the case for most of our
challenging examples, in particular the boundary layer example presented in Section 4.2.

An alternative for the cases where the standard Newton’s method does not converge is to use the
adaptive Newton solver proposed in [18]. Instead of solving the residual equation r(αh,xh) = 0 directly, we
use homotopy in a new scalar variable β. We define a series of problems rβ(αhβ ,x

h
β) = 0, parametrized by

β, with Dirichlet boundary conditions

xhβ(ξ) = (1− β)xpref + βxpbnd, for ξ ∈ ∂C,
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where xpbnd are the original boundary conditions associated with the problem r(αh,xh) = 0, and xpref are
the boundary nodes on the reference mesh. By slowly increasing β from 0 to 1, we approach the actual
problem with boundary conditions xpbnd. This results in a series of well-behaved problems that can be solved
using regular Newton iterations.

The selection of the sequence of β-values can be automated in an adaptive way by monitoring the Newton
convergence. If the method does not converge or inverted elements are found during the assembly process,
then ∆β is reduced. If the Newton method converges fast enough, ∆β is increased. For more details on the
implementation of this procedure, see [18]

4. Results

Here we give a number of examples of our approach and study the quality of the generated curved meshes
as well as the behavior of the solution procedure. In all our examples below, we use polynomial approxima-
tions of degree p = 4 unless otherwise specified. To measure how much an element has been deformed, we
use the determinant of the Jacobian matrix of the mapping x = x(ξ) between the computational and the
physical domain. More specifically, let J(ξ) = det(∂x/∂ξ), and define the quality of an element to be the
scaled Jacobian [3]

I =
minξ∈κ J(ξ)

maxξ∈κ J(ξ)
.

In practice, we approximate this expression by evaluating the Jacobian at the points of a high-order Gauss
integration rule.

We note that I ≤ 1, and that I = 1 for all straight-sided simplex elements. Therefore, this measure will
not capture well the element quality of the corresponding mesh element [4]. On the other hand, if I has a
negative or very small value, it indicates that the element is inverted or close to degenerate. The presence of
such elements in the mesh decreases the quality of the domain discretization and makes the corresponding
systems of equations ill-conditioned.

4.1. Simple isotropic mesh

We start our examples with a two dimensional isotropic mesh. Fig. 2 shows a zoom-in around the curved
boundary of the initial configuration, and the final curved mesh.

Straight sided mesh and initial configuration Final curved mesh

Figure 2: Curved mesh generation using the Winslow Equations

Even in this simple case, the local technique of conforming the boundary of elements which are in contact
with the curved boundary does not produce a valid mesh (see Fig. 3.a). The elliptic smoothing will generate
a final valid mesh, and the quality of the elements on the curved boundary can be seen in Fig. 3.b.
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a) Conforming boundary nodes only

Scaled Jacobians I

-0.2 0 0.2 0.4 0.6 0.8 1

N
u
m

b
e
r 

o
f 
e
le

m
e
n
ts

10
0

10
1

10
2

b) Converged Winslow smoothing

Figure 3: A simple example of isotropic two dimensional curved mesh generation. Initially, inverted elements are generated
when conforming the boundary nodes to match the true geometry; these elements are later untangled and the solver produces
a final valid mesh.
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We also note that the elements further away from the boundaries are very close to straight sided.
Therefore, when plotting the scaled Jacobians for all the examples in this paper we only consider elements
that are adjacent to the curved boundary and their 4 closest neighbors.

4.2. Anisotropic triangular mesh and refinement study

Here we test our method for an anisotropic boundary layer mesh. We also study the behavior of our
solver as well as two other solvers as we locally refine the mesh in the normal direction, producing a sequence
of increasingly stretched meshes. The original mesh is a mapped Cartesian grid, with each quadrilateral
element split into two triangles with alternating directions (see Fig. 4). At each refinement level, we split the
elements adjacent to the boundary in the normal direction, which results in a graded mesh with a growth
factor of two. We perform up to four levels of these refinements, giving element aspect ratios up to about
100:1.

0 refinements

Final curved mesh, convergence in 10 iterations

1 refinement

Final curved mesh, convergence in 11 iterations

2 refinements

Final curved mesh, convergence in 11 iterations

3 refinements

Final curved mesh, convergence in 12 iterations

Figure 4: Refinement study: the reference mesh is locally refined close to the boundary layer, and our Winslow smoothing
scheme is used to generate the corresponding curved mesh. We observe that the number of Picard iterations required for
convergence remains mainly constant. The figures show the final curved meshes for the four refinement levels.
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We see that even for the cases where the boundary layer is highly stretched, our solution method is
capable of producing well-shaped curved elements. The most refined mesh is shown in Fig. 5 as a closer
zoom-in around the curved boundary, as well as the corresponding histogram of the scaled Jacobians.

3 refinements

(a) Initial configuration of finest refinement level

3 refinements

(b) Final curved mesh of finest refinement level

Figure 5: Refinement study: In (a) and (b), we see a zoom-in on the curved boundary layer mesh for the finest refinement level
in our study, in the initial and final configurations.

We count the number of iterations the method takes to converge, and observe that it remains mainly
constant as we refine the mesh. The fact that the number of iterations does not depend on the refinement
level is quite remarkable, since other approaches such as the elasticity analogies typically require a number
of small steps that scales by the inverse of the thickness of the boundary layer. If we use the Winslow
formulation with the adaptive Newton solver discussed in Section 3.2 instead of the Picard linearization, we
also do not observe the independence of the number of iterations on the refinement level. This is illustrated
in Fig. 6, where we directly compare the number of iterations versus refinement level for our Winslow
formulation using Picard iterations as well as Newton’s method, and for the non-linear elasticity approach
[18].

The graph clearly shows how the Newton solver and the non-linear elasticity solver need an increasing
number of iterations as the mesh is refined. Also note that these two solvers require a higher cost per
iteration than the Picard iterations, since they involve larger coupled linear systems of equations. As an
example, for the finest mesh in this 2-D case each non-linear elasticity solution was about 3.5 times slower
than a Winslow-Picard solution, and each Winslow-Newton solution was about 30 times slower (due to
the full coupling between all components). Therefore, in our experience the Winslow-Picard solver is often
magnitudes faster than the alternatives, although this is highly dependent on the implementation and the
solver choices.

4.3. Airfoil quad-mesh

To demonstrate that our method is also suitable for higher orders of approximation, we consider a
quadrilateral mesh with a stretched boundary layer and polynomial degrees p = 7. The reason we use
quadrilateral elements for this example, is that they are implemented more efficiently in our code for high
polynomial degrees (using outer product Gauss-Lobatto nodes). The final curved mesh is valid and its
scaled Jacobians are plotted in Fig. 7. Note that unlike for simplex elements, the scaled Jacobian measure
for quadrilateral elements can be less than one even for all straight-sided elements. However, it is still a
useful measure and in particular it shows that the element is non-inversed if positive.
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(a) Scaled Jacobian for final curved mesh
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(b) Iterations comparison

Figure 6: (a) The scaled Jacobians for the boundary elements and their four closest neighbors. (b) A comparison of the number
of iterations for non-linear elasticity [18] and our Winslow formulation using both the Picard and the Newton solver. Note that
the linear systems solved in each iteration are much larger for the Newton solver and the non-linear elasticity solver, but for
simplicity we only compare the number of iterations.

4.4. Simple tetrahedral mesh example

Next, in Fig. 8 we show the results of the generation of a tetrahedral curved mesh for a door hinge struc-
ture. The initial straight-sided mesh was obtained through the NETGEN mesh generator [22]. While this
example does not have any stretched elements, it shows that the procedure handles general 3D unstructured
Delaunay meshes well.

4.5. Tetrahedral mesh of cylindrical component

Here we use a geometry of a cylindrical component with thin walls, and again generate an unstructured
tetrahedral mesh using the NETGEN mesh generator, see Fig. 9 and 10. Note that the inner and the outer
surfaces of the cylinder are meshed independently from the CAD geometry, the nodes are not necessarily
aligned in a straight-forward way. Also, the volume mesh consists of only a single layer of unstructured
tetrahedra. The scaled Jacobians show that it is indeed difficult to curve these elements, but the Winslow
procedure does again succeed in producing a valid mesh after only four Picard iterations.

4.6. Tetrahedral mesh of a NACA 0012 wing

Here we consider an unstructured mesh of an extruded NACA 0012 airfoil with rounded edges, see Fig. 11.
The mesh has a slightly stretched boundary layer, typical for LES-type simulations, with an aspect ratio of
about 10:1. Note the highly coarse elements at the rounded wing-tip, which proved to be challenging for
the Picard solver and in order to obtain a converged solution we had to prescribe the corner node locations
of all the tetrahedral elements to their original positions in the straight sided mesh. This technique appears
to improve the convergence properties of the Picard iterations in general, but for simplicity we only apply
it to this example.

We note that the highly distorted elements are located around edges of high curvature, as expected.
Fig. 12 shows that only a few elements have a scaled Jacobian smaller than 0.3. With the prescribed
element corner positions, our solver converged in only nine iterations.
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Final curved mesh Final curved mesh – boundary close up
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Figure 7: Curved mesh generation of an airfoil with quadrilateral mesh. Here we use polynomial approximations of degree
p = 7.
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Initial straight mesh Final curved mesh

Scaled Jacobians

Figure 8: Curved mesh generation of a door hinge geometry. The top figures show the initial straight sided mesh and the final
curved mesh. The bottom figures show the scaled Jacobians, both as histogram and a surface plot.
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Initial straight mesh Final curved mesh

Curved mesh, split view Curved mesh, zoom-in at the thin structure

Figure 9: Curved mesh of a cylindrical component with thin structures. Note that the volume mesh consists of only a single
layer of unstructured tetrahedra, and the inner and outer surfaces are meshed independently.

Scaled Jacobians

Figure 10: Scaled Jacobians for the final curved mesh of the cylindrical component. Note that many of the elements are highly
distorted but still valid, due to the coarse mesh and the thin structure.
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Curved mesh, elements with I < 0.5 Curved mesh, elements with I < 0.5

Figure 11: NACA 0012 airfoil final curved mesh: highly distorted elements are located around edges of high curvature.

Figure 12: Scaled Jacobians of NACA 0012 wing final curved mesh. We report numbers for all elements on curved boundary
and their four closest neighbors. Note that there are only a few elements with scaled Jacobians smaller than 0.3.
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4.7. Tetrahedral mesh of Falcon aircraft

In our final example we consider a complex geometry of a complete Falcon aircraft configuration, see
Fig. 13. The mesh is approximately isotropic, however, the tetrahedra are very coarse close to regions with
high curvature which makes this a challenging case for mesh curving. Once again, we note that although
the initial curved mesh has many inverted elements, the final converged mesh converged after 29 iterations
and has a smallest scaled Jacobian of about 0.2.
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Figure 13: Falcon aircraft configuration: The top right plot shows the elements with scaled Jacobian smaller than 0.5. Note
that in the initial condition, where the elements are only curved locally, we have many inverted elements (I < 0). All of these
are untangled by the Winslow smoothing scheme and the final result is a mesh with well-shaped elements.

5. Conclusions

We have presented a new approach for generating high-order curved meshes using the classical Winslow
equations. We use a continuous Galerkin finite element formulation based on a split form of the equations,
which in particular allows for efficient solution using Picard iterations. The linear systems that arise are
small (only one solution component) and easy to solve by direct or iterative methods.

We demonstrated the procedure in both two and three dimensions, using triangular, quadrilateral, and
tetrahedral meshes. In all examples, we were able to produce valid meshes with well-shaped elements, even
when considering challenging geometries with thin structures and anisotropic boundary layer elements.
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The Winslow smoothing along with our finite element formulation has proven to be particularly inter-
esting in the presence of boundary layers. Unlike many other methods, the number of iterations the method
requires to converge appears to remain constant as the mesh is refined with increasing aspect ratios. This
could translate into performance advantages of the order of magnitudes for many problems.
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