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We present a high-order accurate scheme for fluid-structure interaction (FSI) simula-
tions of flapping flight. The compressible Navier-Stokes equations are discretized using a
discontinuous Galerkin arbitrary Lagrangian-Eulerian (DG-ALE) method on an unstruc-
tured tetrahedral mesh, and a wing-like structure, represented as a neo-Hookean material,
is discretized using standard continuous Galerkin tetrahedral elements. The time integra-
tion is performed using a partitioned approach based on an implicit-explicit Runge-Kutta
method, with the fluid and structure equations each integrated using the implicit coeffi-
cients, and the fluid-to-structure coupling predicted using a combination of the implicit
and explicit coefficients. This partitioned approach allows the reuse of existing domain
specific efficient parallel solvers. We demonstrate up to fifth order accuracy in time on
a non-trivial test problem, showing that subiterations are not required to achieve design
accuracy. In addition we show several examples of wing-like structures in both two and
three dimensions.

I. Introduction

In this paper, we present a high-order discontinuous Galerkin (DG) formulation for the Navier-Stokes
equations coupled to a finite element model of a thin non-linear structure. Many approaches have been
suggested for the simulation of fluid-structure interaction,1,2, 3 and a common way to treat the deformable
domains is the use of Arbitrary Lagrangian Eulerian (ALE) methods.4,5, 6, 7 In these efforts the discretization
on the deformable domain is carried out on a deforming grid and thus the metric changes over time.

For the non-linear structure model we use a continuous Galerkin discretization, integrated in time si-
multaneously with the DG discretization. The forces from the fluid are applied to the structure, and the
structure displacements provide the deformation of the fluid domain. We note that this monolithic treatment
provides a time-accurate coupling, unlike other approaches where the fluid and the structure are integrated
separately, and forces and displacements are only transferred at the end of each timestep.

In previous work,8 we solved a similar problem using an explicit Runge-Kutta time integrator. While
this approach is simple and does not require any coupling matrices, it may introduce undesirable timestep
restrictions. However, a fully implicit time integrator would require forming not only the Jacobian matrices
for the fluid and the structure problems, but also the couplings between them.

Here, we demonstrate how implicit-explicit Runge-Kutta methods9 can be used to avoid solving the fully
coupled system, with arbitrarily high orders of accuracy in time. We use both the explicit and the implicit
coefficients of the schemes to form a stage predictor for the force from the fluid applied to the structure.10

This decouples the two implicit problems for the fluid and the structure, respectively, which can be solved
using standard implicit solvers.

We present the equations for both the fluid on the deforming domain and the non-linear structure. Next
we describe a mesh deformation procedure based on radial basis functions, as well as the time integration
procedure and the force predictor. We verify the high-order accuracy of the scheme using a test problem of
a heaving and pitching NACA airfoil in a laminar flow, subject to a simple smooth heaving motion. Lastly
we show simulations of flapping flight in both two and three dimensions.
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II. Governing Equations & Discretization

II.A. Compressible Navier-Stokes

The compressible Navier-Stokes equations are written as:

∂ρ

∂t
+

∂

∂xi
(ρui) = 0, (1)

∂

∂t
(ρui) +

∂

∂xi
(ρuiuj + p) = +

∂τij
∂xj

for i = 1, 2, 3, (2)

∂

∂t
(ρE) +

∂

∂xi
(uj(ρE + p)) = − ∂qj

∂xj
+

∂

∂xj
(ujτij), (3)

where ρ is the fluid density, u1, u2, u3 are the velocity components, and E is the total energy. The viscous
stress tensor and heat flux are given by

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xj

δij

)
and qj = − µ

Pr

∂

∂xj

(
E +

p

ρ
− 1

2
ukuk

)
. (4)

Here, µ is the viscosity coefficient and Pr = 0.72 is the Prandtl number which we assume to be constant.
For an ideal gas, the pressure p has the form

p = (γ − 1)ρ

(
E − 1

2
ukuk

)
, (5)

where γ is the adiabatic gas constant. We often use the entropy s = p/ργ for visualization. We impose two
types of boundary conditions – free-stream at the far field, and adiabatic no-slip conditions at the boundaries
of the structure.

II.B. Arbitrary Lagrangian Eulerian formulation

The deformable fluid domain is handled through an Arbitrary Lagrangian Eulerian (ALE) formulation. A
point X in a fixed reference domain V is mapped to x(X, t) in a time-varying domain v(t).

The deformation gradient G, mapping velocity ν, and mapping Jacobian g are defined as

G = ∇Xx, ν =
∂x

∂t
, g = detG (6)

A system of conservation laws in the physical domain (x, t)

∂u

∂t
+∇ · f(u,∇u) = 0 (7)

is rewritten as a system of conservation laws in the reference domain (X, t)

∂U

∂t
+∇X · F (U ,∇XU) = 0 (8)

where the conserved quantities and fluxes in reference space are

U = gu, F = gG−1f − uG−1ν (9)

and

∇u = (∇X(g−1U))G−T = (g−1∇XU −U∇X(g−1))G−T (10)

The equations are discretized in space using a high-order discontinuous Galerkin formulation with tetra-
hedral mesh elements and nodal basis functions. The inviscid fluxes are computed using Roe’s method,11

and the numerical fluxes for the viscous terms are chosen according to the compact discontinuous Galerkin
(CDG) method.12 After discretizing, we obtain the semi-discrete form of our equations:

Mf du
f

dt
= rf (uf ; x), (11)
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for solution vector uf , mass matrix Mf , and residual function rf (uf ; x). Observe that we have written the
residual function in such a way as to highlight the dependence on the ALE mesh motion x. For more details
see reference 13.

The geometric conservation law (GCL) can be enforced using a simple technique involving an auxiliary
equation. However, since the experiments in reference 13 indicate that high-order approximation spaces are
less sensitive to the GCL condition, we are for simplicity not enforcing it in our results here.

II.C. Neo-Hookean Elasticity Model

We use a non-linear hyperelastic neo-Hookean formulation14 for modeling deformable structures. Here, the
structure position is given by a mapping x(X, t), which for each time t maps a point X in the unstretched
reference configuration to its location x in the deformed configuration. From this we compute the mapping
velocity and deformation gradient as

v =
∂x

∂t
and F = ∇Xx(X, t). (12)

We partition boundary of the structure domain into regions of Dirichlet and Neumann boundary condi-
tions, ∂V = ΓD ∪ΓN . On the Dirichlet boundary ΓD we prescribe the material position xD, or equivalently
the material velocity vD. On the Neumann boundary ΓN we allow for a general surface traction (i.e., force
per unit surface area) which we denote t.

The governing equations for the structure are then given by

∂p

∂t
−∇ · P (F ) = b in Ω (13)

P (F ) ·N = t on ΓN (14)

x = xD on ΓD (15)

where p = ρv = ρ ∂x/∂t is the momentum, P is the first Piola-Kirchhoff stress tensor, b is an external body
force per unit reference volume, and N is a unit normal vector in the reference domain.

For a compressible neo-Hookean material the strain energy density is given by

W =
µ

2
(Ī1 − 3) +

κ

2
(J − 1)2 (16)

where Ī1, the first invariant of the deviatoric part of the left Cauchy-Green deformation tensor, and J , the
determinant of the deformation gradient, are calculated as

Ī1 = J−2/3I1, I1 = detB = det(FF T ), and J = detF . (17)

The constants µ and κ are the shear and bulk modulus of the material.
The first Piola-Kirchhoff stress tensor is computed as

P (F ) =
∂W

∂F
= µJ−2/3

(
F − 1

3
tr(FF T )F−T

)
+ κ(J − 1)JF−T . (18)

For two dimensional problems modeling the cross-section of a long prismatic structure we use a plane
strain formulation in which we treat the stretch in the third dimension as constant.15 This results in similar
set equations, requiring only a slight modification to the Piola-Kirchhoff stress tensor.

After writing the system in a first order formulation in the displacement x and momentum p variables,
the equations are discretized in space using a standard high-order continuous Galerkin formulation with
tetrahedral mesh elements and nodal basis functions. This results in a semi-discrete system:

M s du
s

dt
= rs(us; t), (19)

for solution vector us containing discretized positions and momenta, mass matrix M s, and residual function
rs(us; t). Note in this form it is often more natural to impose the Dirichlet conditions in the momentum
variables only, letting them be integrated into the corresponding changes in position.
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II.D. Coupling / Radial Basis Functions

To simplify the coupling between the fluid and the structure, we insist on two critical requirements. First, we
insist that the boundary faces of the two meshes are coincident. That is, along the fluid-structure boundary,
each boundary face of the structure mesh directly matches a boundary face of the fluid mesh. Second, we
require that the fluid and structure be discretized using the same polynomial order.

To compute the fluid-to-structure coupling we numerically evaluate the momentum flux through the
boundary faces and provide the quantities to the structure solver as the surface traction. To ensure a highly
accurate coupling this transfer is done at the Gaussian integration nodes, not the solution nodes.

The structure-to-fluid coupling is a deformation of the fluid mesh in response to a change in the structure
position. We represent the deformed fluid mesh and mapping velocity on each element of the fluid mesh using
polynomials of the same order as the fluid discretization. Since we insist that the fluid and structure are
discretized using the same order polynomials, the deformed fluid mesh may exactly conform to the deformed
structure by setting the positions of the boundary fluid nodes to the deformed position of the structure. Since
the structure may undergo a large deformation, we use radial basis function interpolation16,17 to deform the
fluid mesh to maintain high element quality and prevent element inversion.

The radial basis function interpolant gives the deformed fluid position x as a function of the reference
position X and has the form

x(X) =
n∑
j=1

αjφ(‖X −Xj‖2) + p(X) (20)

where {Xj} is a set of control points, φ a radial basis function, and p linear polynomial. Here we choose a
compactly supported C2 function

φ(r) =

(1− r)4(4r + 1) if 0 ≤ r ≤ 1

0 if 1 ≤ r.
(21)

The coefficients αj and coefficients of the polynomial p are found by imposing the value of x at the
control points Xj , i.e.,

xj = x(Xj) for j = 1, . . . , N (22)

and additionally requiring

N∑
j=1

αjq(Xj) = 0 (23)

for all polynomials q of degree less than or equal to the degree of p, i.e. 1.
The control points {Xj} are set to be all nodes on the boundary of the fluid mesh. Those nodes along

the fluid-structure interface have their position xj set from the current displacement of the structure. Nodes
at the far-field boundary of the fluid are generally held at a fixed position.

II.E. Temporal Integrator

Consider for the moment our system of fluid uf and structure us variables written as a coupled first order
system of ordinary differential equations M du/dt = r(u) where

u =

[
uf

us

]
, r =

[
rf (uf ; x(us))

rs(us; t(uf ))

]
, M =

[
Mf

M s

]
. (24)

Note that we have highlighted the dependence of the fluid on the structure arising from the ALE mesh
motion x, and the structure on the fluid via the surface traction t. Because the surface traction t enters the
structure equation rs linearly, we may rewrite the equation as

rs(us; t(uf )) = rss(us) + rsf (t(uf )) (25)

= rs(us; t̃) + rsf (t(uf )− t̃) (26)
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where t̃ is a another surface traction. We generally think of t̃ as a predicted value of t(uf ) and refer to it as
a predicted fluid-to-structure coupling.

Using this formulation, we may split equation 24 as

M
du

dt
=

[
rf (uf ; x(us))

rs(us; t̃)

]
+

[
rsf (t(uf )− t̃)

]
(27)

where we intend to treat the first term implicitly and the second term explicitly using an implicit-explicit
Runge-Kutta (IMEX) scheme. In this paper we investigate the ARK3, ARK4, and ARK5 coefficients of
Kennedy and Carpenter.9 We use the letter s to denote the number of stages, and the standard variable
names aij , âij , bi, and ci to denote the coefficients of the implicit scheme, explicit scheme, weights, and
nodes respectively.

Our scheme differs slightly from the standard IMEX formulation in that we avoid evaluating the explicit
terms rsf but instead update the stage flux for the structure equation using the corrected value of the
coupling t(uf ). This naturally allows per stage Gauss-Seidel iterations where we treat the corrected fluid-
to-structure coupling as the new predicted value and repeat the stage calculations. It has been reported
that using one or more Gauss-Seidel iterations can improve the stability of the overall method,18 but we
emphasize that these iterations are generally not required to achieve the design accuracy of the method.

Here we use the predictor suggested by van Zuijlen et al,10 namely the predicted value t̃ at stage i is a
linear combination of the corrected values t at previous stages and the implicit and explicit Runge-Kutta
scheme coefficients:

t̃i =

i−1∑
j=1

âij − aij
aii

tj . (28)

The time integration scheme is written out fully in algorithm 1. For more details see reference 19.

Algorithm 1 Time integration scheme for the FSI system in equation 24, using the s-stage implicit-explicit
Runge-Kutta scheme (aij , âij , bi, ci). Given the structure (usn) and fluid (ufn) values at time tn, compute the
values at tn+1 = tn + ∆t.

Set tn,1 = t(ufn,1) . Evaluate fluid-to-structure coupling (surface traction)

Set ksn,1 = M−1
s rs(usn,1, tn,1) . Evaluate structure residual

Set kfn,1 = M−1
f rf (ufn,1,x(usn,1) . Evaluate fluid residual

for stage i = 2, . . . , s do
Set t̃n,i =

∑i−1
j=1

âij−aij
aii

tn,j . Predict the fluid-to-structure coupling

Solve for ksn,i in Msk
s
n,i = rs(usn,i, t̃n,i) . Implicit structure solve

where usn,i = usn + ∆t
∑i
j=1 aijk

s
n,j

Solve for kfn,i in Mfk
f
n,i = rf (ufn,i,x(usn,i)) . Implicit fluid solve

where ufn,i = ufn + ∆t
∑i
j=1 aijk

f
n,j

Set tn,i = t(ufn,i) . Correct the fluid-to-structure coupling

Set ksn,i = M−1
s rs(usn,i, tn,i) . Re-evaluate structure residual

end for
Set usn+1 = usn + ∆t

∑s
i=1 bik

s
n,i . Advance structure

Set ufn+1 = ufn + ∆t
∑s
i=1 bik

f
n,i . Advance fluid

III. Results

III.A. Pitching and Heaving Airfoil

To validate the high-order convergence in time, we consider a simple test problem consisting of a pitching
and heaving NACA 0012 airfoil. The airfoil of chord length 1 is allowed rotate around a fixed pivot in the
interior of the airfoil, as shown in figure 1. Since the airfoil is treated as a rigid body, the structure variables
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θ(t)

y(t)

l

Figure 1. At left, the schematic for the pitching and heaving NACA0012 airfoil. At right, the computational reference
mesh used for the fluid.

consist only of the pitching angle θ and the angular velocity ω. The fluid is assigned no-slip boundary
conditions on the interface with the airfoil, which contributes a torque τ about the pivot of the airfoil.

The vertical position of the pivot follows a prescribed C3 blending motion

y(t) =


0 if t ≤ 0

A(−20t7 + 70t6 − 84x5 + 35t4) if 0 ≤ t ≤ 1

A if 1 ≤ t

(29)

where A is the heaving amplitude. In addition the airfoil is subject to a torsional restoring force with spring
constant k. The equations of motion of the structure, written as a first order system, are

∂θ

∂t
= ω (30)

I
∂ω

∂t
= −kθ − τ − lm cos(θ)y′′(t) (31)

where I is the moment of inertia (around the pivot), l is the distance from the pivot to the center of mass,
and m is the total mass of the airfoil.

The non-dimensionalized constants chosen for this problem are I = 1, k = 0.1, l = 0.2, M = 1, and
A = 1. The airfoil has chord length 1, and the pivot located along the chord a distance 1/3 from the leading
edge. The far field fluid has non-dimensionalized velocity u = [1, 0]T , density 1, Mach 0.2, and Reynolds
number 1000. The initial conditions of the airfoil are no pitching and no angular velocity, i.e, θ(0) = 0 and
ω(0) = 0. To initialize the fluid at time t = 0 we freeze the structure and solve for the steady state fluid
solution. The evolution of the system is shown in figure 2.

The temporal convergence of the angle of attack θ(t) was measured by comparing the solution to the
results using an explicit fourth order Runge-Kutta method (RK4) with a suitably small timestep. In general
we observe that we can achieve third, fourth, and fifth order accuracy using the additive Runge-Kutta
methods of the same order, as can be seen in figure 3. In each case we also solved the fully-coupled
(monolithic) fluid-structure system using the implicit coefficients of the scheme, by performing Gauss-Seidel
subiterations until achieving numerical convergence. This resulted in a negligible increase in accuracy despite
a tremendous increase in computational cost.

We emphasize that a näıve staggered method would generally achieve first, or at most second, order
accuracy in time. Here, we are able to achieve up to 5th order accuracy in time while reusing the same fluid
and and structure solvers that would be used in a staggered scheme.

III.B. Flapping Wing, 2D

We model a two dimensional flapping wing as a thin rectangular structure of chord length 1 and height
0.06 whose endpoints are heaved according to a prescribed vertical motion. The leading (“left”) and trailing
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t = 0.0 t = 0.4 t = 0.8

t = 1.2 t = 1.6 t = 2.0

Figure 2. The airfoil at various times (Mach number). The airfoil is heaved upwards between time t = 0 and t = 1.

(“right”) edges follow a sinusoidal motion with a phase lag of 60◦. Specifically,

yl(t) = A sin(2πft) (32)

yr(t) = A sin(2πft− φ) (33)

where A = 0.5, f = 0.2, and φ = π/3. A schematic of the model along with the material parameters is
shown in figure 4.

For consistency in the initialization of the fluid, the structure was forced into a 0◦ angle of attack at time
t = 0 by multiplying the yl- and yr-coordinates by a smooth C3 blending function which was 0 at t = 0
and 1 at t = 1/(4f). This creates a somewhat violent initial motion and in some cases introduces transient
modes in the structure which decay after a few periods of heaving.

The structure was always started with no velocity and in a rectangular configuration with height h = 0.06
and length l = 1. In some cases the structure was prestretched by an amount ∆ by changing the reference
dimensions of the structure to lref = l/∆ and href = h∆2ν , where ν is Poisson’s ratio. This is not a
stationary configuration for the structure, but the initial transients decay quickly and do not cause any
difficulties in the simulation.

The structure was discretized using 44 degree 3 polynomial elements for a total of 268 nodes or 1072
degrees of freedom. The fluid was discretized using 2575 degree 3 polynomial elements for a total of 25,750
nodes or 103,000 degrees of freedom. A timestep of ∆t = 5 × 10−3 was used to integrate the system until
time T = 20.0.

We investigated several different material parameters and prestretching factors, and show the results of
the simulations at several times in figure 5. Note that the varying parameters greatly impact the ability of
the structure to align with the incident flow. Each simulation took approximately 3 hours on 48 CPU cores.

III.C. Flapping Wing, 3D

In three dimensions we consider a thin prismatic triangular structure of root chord length 1, tip-to-tip span
length 3, thickness 0.01, and 0◦ sweep, as shown in figure 6. The leading edge of the wing is driven in a
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10-2 10-1 100

Time step ∆t

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

R
e
la

ti
v
e
 e

rr
o
r 

in
 θ

(t
)

1
1

1

3

1

4

1

5
Weak Coupling

ARK3

FC-ARK3

ARK4

FC-ARK4

ARK5

FC-ARK5

Figure 3. The relative error in angle of attack, ‖θ(t)− θexact(t)‖∞/‖θexact(t)‖∞, as a function of timestep. The ARK3,
ARK4, and ARK5 schemes achieve the expected order of accuracy. Solving the fully-coupled (“FC-”) system using the
implicit method from the IMEX scheme shows a negligible increase in accuracy despite a large increase in computational
cost. A basic staggered weak coupling scheme is shown for comparison.

0 1

yl(t)

yr (t)

−2 5
−3

3

u∞

h

Structure
h = 0.06
l = 1.0
ρs = 200
νs = 0.40
Es = 1× 103 or 5× 103

Fluid & Flow
ρ∞ = 1.0
u∞ = 1.0
Ma∞ = 0.2
Re = 2000

Figure 4. The two dimensional wing model in non-dimensionalized coordinates. The left and right endpoints of the
structure follow a prescribed motion.
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E = 5× 103

∆ = 1.5
E = 1× 103

∆ = 1.2
E = 1× 103

∆ = 1.1

Figure 5. The two dimensional wing (black) at time T = 17.0 (top), 18.0, 19.0, and 20.0 (bottom). The structures have
varying Young’s modulus E and prestretching factor ∆, and range from nearly rigid (left) to quite flexible (right).
(Entropy).
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sinusoidal skewing motion in the y-z plane, namely

x(t,X, Y, Z) = X (34)

y(t,X, Y, Z) = cos(θ(t))Y (35)

z(t,X, Y, Z) = sin(θ(t))|Y |+ Z (36)

where the dihedral angle θ(t) follows a sinusoidal pattern

θ(t) = θ0 cos(2πft), (37)

with amplitude θ0 = π/12 and frequency f = 0.2.

u∞

1

3

z thickness =10−2

x

y

Structure
ρs = 200
νs = 0.35
Es = 5× 103

Fluid & Flow
ρ∞ = 1.0
u∞ = 1.0
Ma∞ = 0.2
Re = 500

Figure 6. The overhead view of the three dimensional wing which is uniformly extruded in the z direction. Dirichlet
conditions are imposed along the planes given by the solid lines. The leading edge is driven with a sinusoidal flapping
motion in the y-z plane, and the root chord is held fixed.

To introduce some additional rigidity into the structure, it was prestretched by a factor ∆ by changing
the dimensions of the reference structure to

spanref = span/∆ (38)

chordref = chord/∆ (39)

thicknessref = thickness/∆−ν . (40)

We used a prestretching factor ∆ = 1.05. To avoid strong initial transients in the structure we began the
simulation by first allowing the structure to relax into a steady state configuration at the top of the flapping
stroke and in the absence of the fluid.

The structure was discretized using 498 degree 2 tetrahedral elements for a total of 1197 nodes and 7182
degrees of freedom. The fluid was discretized using 22,683 degree 2 tetrahedral elements for a total of 226,830
nodes or 1,134,150 degrees of freedom. A timestep of ∆t = 5 × 10−3 was used to integrate until the time
T = 5.5 which corresponds to a little more than one complete stroke.

The simulation was run on 192 CPU cores and took approximately two hours to complete. See figure 7.
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t = 0.0 t = 0.5 t = 1.0

t = 1.5 t = 2.0 t = 2.5

t = 3.0 t = 3.5 t = 4.0

t = 4.5 t = 5.0 t = 5.5

Figure 7. A three dimensional wing at various times (Mach number on iso-entropy surfaces).
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