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Abstract

We present a high-order accurate scheme for coupled fluid-structure interaction problems. The fluid is dis-
cretized using a discontinuous Galerkin method on unstructured tetrahedral meshes, and the structure uses
a high-order volumetric continuous Galerkin finite element method. Standard radial basis functions are
used for the mesh deformation. The time integration is performed using a partitioned approach based on
implicit-explicit Runge-Kutta methods. The resulting scheme fully decouples the implicit solution proce-
dures for the fluid and the solid parts, which we perform using two separate efficient parallel solvers. We
demonstrate up to fifth order accuracy in time on a non-trivial test problem, on which we also show that
additional subiterations are not required. We solve a benchmark problem of a cantilever beam in a shedding
flow, and show good agreement with other results in the literature. Finally, we solve for the flow around a
thin membrane at a high angle of attack in both 2D and 3D, and compare with the results obtained with a
rigid plate.
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1. INTRODUCTION

Many important scientific and engineering problems require predictions of fluid-structure interaction
(FSI). For example, oscillatory interactions in engineering systems (e.g. aircraft, turbines, and bridges) can
lead to failure. The blood flow in arteries and artificial heart valves is highly dependent on structural inter-
actions. These interactions often involve multiple scales and non-linear effects, which makes it challenging
to solve even relatively simple problems accurately.

In this paper, we present a high-order discontinuous Galerkin (DG) formulation for the Navier-Stokes
equations coupled to a rigid body or a finite element model of a non-linear hyperelastic structure. Many
approaches have been suggested for the simulation of fluid-structure interaction [1, 2, 3], and a common way
to treat the deformable domains is the use of Arbitrary Lagrangian Eulerian (ALE) methods [4, 5, 6, 7, 8].
In these efforts the discretization on the deformable domain is carried out on a deforming grid and thus the
metric changes over time.

For the non-linear structure model we use a continuous Galerkin (CG) finite element discretization,
integrated in time simultaneously with the DG discretization. The forces from the fluid are applied to the
structure as a surface traction, and the structure displacements give a deformation of the fluid domain.

There are two main numerical approaches for the solution of the coupled fluid/structure system. In
the fully coupled (monolithic) approach, the two equations are solved simultaneously. This leads to accu-
rate results, but requires specialized codes and often leads to less efficient solvers. In the weakly coupled
(partitioned) approach, standard solvers are applied for the fluid and structure separately. An appropriate
coupling scheme is then used to account for the interaction between them, often together with repeated
subiterations. This is an efficient and simple method, but can suffer from lower accuracy and instability.
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In previous work [9], we demonstrated a high-order method for fluid-structure interaction problems
using a fully monolithic explicit Runge-Kutta time integrator. While this approach was straightforward, the
explicit time integrator may introduce undesirable timestep restrictions. However, using the same method
with an implicit Runge-Kutta scheme would require forming not only the Jacobian matrices for the fluid
and structure but also for the couplings between them.

In this work we use a partitioned scheme based on implicit-explicit Runge-Kutta [10] methods as pre-
sented in [11]. This scheme avoids solving the fully coupled system, yet still offers arbitrarily high orders
of accuracy in time and the ability to use implicit solvers for both the fluid and the structure. The main
idea is to use the coefficients of the implicit-explicit Runge-Kutta scheme to form a stage predictor for the
fluid-to-structure coupling [12]. This decouples the system into two implicit problems—one for the fluid and
one for the structure—each of which is solved using standard implicit solvers and without subiterations.

There are many other partitioned FSI schemes, many of which employ similar predictor-corrector frame-
works to achieve first [13, 14] or second [3, 15] order accuracy. See [16] for a review of ideas used in partitioned
schemes.

The paper is organized as follows. First we present the equations for both the fluid on the deforming
domain and the non-linear structure. Next we describe a mesh deformation procedure based on radial basis
functions, as well as the numerical solvers, the time integration procedure, and the force predictor. We verify
the high-order accuracy of the scheme using a test problem of a heaving and pitching NACA airfoil in a
laminar flow, subject to a simple smooth heaving motion. In addition we show a standard FSI test problem
consisting of a flexible cantilever behind a square bluff body, showing good agreement with tip displacement
and oscillation frequency to values found in the open literature. Lastly we show results from two and three
dimensional simulations of thin membranes at a high angle of attack.

2. GOVERNING EQUATIONS

2.1. Compressible Navier-Stokes

The compressible Navier-Stokes equations are written as:

∂

∂t
(ρ) +

∂

∂xj
(ρuj) = 0 (1)

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj + pδij) =

∂

∂xj
τij for i = 1, 2, 3 (2)

∂

∂t
(ρE) +

∂

∂xj
(ρujE + ujp) =

∂

∂xj
(−qj + uiτij) (3)

where ρ is the fluid density, u1, u2, u3 are the velocity components, and E is the total energy. The viscous
stress tensor and heat flux are given by

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xj

δij

)
and qj = − µ

Pr

∂

∂xj

(
E +

p

ρ
− 1

2
ukuk

)
. (4)

Here, µ is the viscosity coefficient and Pr = 0.72 is the Prandtl number which we assume to be constant.
For an ideal gas, the pressure p has the form

p = (γ − 1)ρ

(
E − 1

2
ukuk

)
, (5)

where γ is the adiabatic gas constant. We will also use the entropy s = p/ργ for visualization. We impose
two types of boundary conditions – free-stream at the far field, and adiabatic no-slip conditions at the
boundaries of the structure.
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2.2. Arbitrary Lagrangian Eulerian formulation

The deformable fluid domain is handled through an Arbitrary Lagrangian Eulerian (ALE) formulation. A
point X in a fixed reference domain V is mapped to x(X, t) in a time-varying domain v(t). The deformation
gradient G, mapping velocity vG, and mapping Jacobian g are defined as

G = ∇Xx, vG =
∂x

∂t
, and g = detG. (6)

We remind the readers that a system of conservation laws in the physical domain (x, t)

∂u

∂t
+∇ · f(u,∇u) = 0 (7)

may be written as a system of conservation laws in the reference domain (X, t)

∂U

∂t
+∇X · F (U ,∇XU) = 0 (8)

where the conserved quantities and fluxes in the reference domain are modified appropriately as

U = gu, F = gG−1f − uG−1vG. (9)

Lastly, the gradient in the physical domain may be computed in the reference domain as

∇u = (∇X(g−1U))G−T = (g−1∇XU −U∇X(g−1))G−T . (10)

For more details on this mapping-based ALE formulation, including a discussion on how to enforce the
geometric conservation law (GCL), see [17].

2.3. Neo-Hookean Elasticity Model

We use a hyperelastic neo-Hookean formulation [18] for modeling deformable structures. Here, the
structure position is given by a mapping x(X, t), which for each time t maps a point X in the unstretched
reference configuration to its location x in the deformed configuration. From this we compute the mapping
velocity and deformation gradient as

vG =
∂x

∂t
, and G = ∇Xx(X, t). (11)

We partition the boundary of the structure domain into regions of Dirichlet and Neumann boundary
conditions, ∂V = ΓD ∪ ΓN . On the Dirichlet boundary ΓD we prescribe the material position xD, often
corresponding to no displacement. On the Neumann boundary ΓN we allow for a general surface traction
(i.e., force per unit surface area) which we denote t.

The governing equations for the structure are then given by

∂p

∂t
−∇ · P (G) = b in Ω (12)

P (G) ·N = t on ΓN (13)

x = xD on ΓD (14)

where p = ρvG = ρ ∂x/∂t is the momentum, P is the first Piola-Kirchhoff stress tensor, b is an external
body force per unit reference volume, and N is a unit normal vector in the reference domain.

For a compressible neo-Hookean material the strain energy density is given by

W =
µ

2
(Ī1 − 3) +

κ

2
(J − 1)2 (15)
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where Ī1, the first invariant of the deviatoric part of the left Cauchy-Green deformation tensor, and J , the
determinant of the deformation gradient, are calculated as

Ī1 = J−2/3I1, I1 = trB = tr(GGT ), J = detG. (16)

The constants µ and κ are the shear and bulk modulus of the material.
The first Piola-Kirchhoff stress tensor is computed as

P (G) =
∂W

∂G
= µJ−2/3

(
G− 1

3
tr(GGT )G−T

)
+ κ(J − 1)JG−T . (17)

For two dimensional problems we use a plane strain formulation in which we treat the stretch in the
third dimension as constant [19], thinking of the problem as modeling the cross-section of an infinitely long
prismatic structure. This results in similar equations, requiring only a slight modification to the Piola-
Kirchhoff stress tensor.

3. SPATIAL DISCRETIZATION

3.1. Fluid Spatial / DG

The fluid equations as described in Sec. 2.2 are discretized using a high-order discontinuous Galerkin
formulation with tetrahedral mesh elements and nodal basis functions. The inviscid fluxes are computed
using Roe’s method [20], and the numerical fluxes for the viscous terms are chosen according to the compact
DG method [21]. Below, we summarize this discretization for the ALE system of conservation laws (8). For
simplicity, we change the notation and use lower-case symbols for the solution u, and we omit the subscripts
on the derivative operators. We also split the fluxes into an inviscid component F i(u) and a viscous
component F v(u,∇u), corresponding to the second term in the left-hand side and the entire right-hand
side of equations (1)-(3), respectively.

Following standard procedure for DG discretization of second-derivatives [22], we first introduce the
auxiliary gradient variables q = ∇u, and write (8) as the system of first order equations in the reference
domain

∂u

∂t
+∇ · F i(u)−∇ · F v(u, q) = 0, (18)

∇u = q. (19)

We introduce a computational mesh of the reference fluid domain Ω and denote its elements by Th = {K}.
Furthermore, we introduce the finite element spaces Vph and Σph as:

V ph = {v ∈ [L2(Ω)]5 | v|K ∈ [Pp(K)]5 ∀K ∈ Th}, (20)

Σph = {τ ∈ [L2(Ω)]5×3 | τ |K ∈ [Pp(K)]5×3 ∀K ∈ Th}, (21)

where Pp(K) is the space of polynomial functions of degree at most p ≥ 1 on K, and 3 and 5 refer to the
dimension and number of solution components of the Navier-Stokes equations in three dimensions. To obtain
a form that is appropriate for discretization using the CDG method, we multiply the system of equations
(18)-(19) by test functions v, τ and integrate by parts. Our semi-discrete DG formulation is then expressed
as: find uh ∈ V ph and qh ∈ Σph such that for all K ∈ Th, we have∫

K

∂uh
∂t
· v dx+

∫
K

(
F i(uh)− F v(uh, qh)

)
: ∇v dx

−
∮
∂K

(
F̂ i(uh)− ̂F v(uh, qh)

)
· v ds = 0, ∀v ∈ [Pp(K)]5, (22)∫

K

qh : τ dx+

∫
K

uh · (∇ · τ ) dx−
∮
∂K

(ûh ⊗ n) : τ ds = 0, ∀τ ∈ [Pp(K)]5×3. (23)
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To complete the description we need to specify the numerical fluxes for all element boundaries ∂K. The

inviscid fluxes F̂ i(uh) are computed using Roe’s method [20], and the modification for our ALE formulation

described in [17]. For the viscous fluxes F̂ vh , ûh, we use a formulation based on the CDG method [21], which
is a slight modification of the LDG method [23] to obtain a compact and sparser stencil with improved
stability properties.

First, define a switch function SK
′

K ∈ {−1, 1} for each internal face e that element K shares with a

neighboring element K ′. We require that SK
′

K = −SKK′ , but unlike the standard LDG method no other
restrictions are imposed. Here we use the simple natural switch, which is positive if the global element
number of K is greater than that of K ′, and negative otherwise. The numerical fluxes are then defined as
follows:

• In (23), ûh, is defined by standard “up-winding” according to the switch function:

ûh =

{
u′h if SK

′

K = +1

uh if SK
′

K = −1,
(24)

where u′h is the numerical solution defined by the neighboring element K ′ on the face. Since this
expression does not depend on qh, (23) can be solved element-wise for the gradients qh in each element
K, which therefore can be eliminated from the final discrete system.

• In (22), the numerical fluxes F̂ vh are defined by first introducing the “face gradients” qeh for each face
e of K, using a slight modification of (23):∫

K

qeh : τ dx+

∫
K

uh · (∇ · τ ) dx−
∮
∂K

(ûeh ⊗ n) : τ ds = 0, ∀τ ∈ [Pp(K)]5×3 (25)

with

ûeh =

{
ûh on face e, from equation (24),

uh otherwise.
(26)

These are then used to define the numerical fluxes F̂ vh on face e:

F̂ vh
e

= C11(u′h − uh) +

{
F v(ueh, q

e
h) · n if SK

′

K = +1

F v(ueh
′, qeh

′) · n if SK
′

K = −1
(27)

where ueh
′, qeh

′ are the solutions / face gradients from the neighboring element K ′ on face e. Note
that these fluxes can be seen as “down-winding” according to the switch function. The parameter C11

is used for additional stabilization, here we will use a value of C11 = 10/hmin where hmin is the height
of the element with respect to face e.

For more details on the CDG scheme and its properties, including the compact sparsity pattern of the
stencils, see [21]. At a boundary face, we impose either far field or no-slip conditions weakly through the
fluxes, see [24].

We use standard finite element procedures for the discretization. We define a set of equidistributed nodes
xj , j = 1, . . . , Np, within each element K, where for simplex elements Np =

(
p+D
D

)
in D spatial dimensions.

We then determine the shape functions as the Lagrange interpolation functions φi(x) ∈ Pp(K) such that
φi(xj) = δij . Using these, the solution in each element can be written in terms of its discrete expansion
coefficients ui as:

uh(x) =

n∑
i=1

uiφi(x) (28)
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and similarly for the auxiliary variable qh, the test functions v, τ , and the time-derivatives ∂uh/∂t. We
evaluate all integrals in (22),(23) using high-order Gaussian quadrature rules, and setting the test function
expansion coefficients to the identity matrix and eliminating the local qh variables, we obtain the semi-
discrete form of our equations:

Mf du
f

dt
= rf (uf ), (29)

for solution vector uf , mass matrix Mf , and residual function rf (uf ).

3.2. Structure Spatial / CG

The structure equations as described in Sec. 2.3 are discretized as follows. The domain is represented
using an unstructured simplicial mesh Th, and curved boundaries are fit using isoparametric elements. On
this mesh, we define the space of continuous piecewise polynomials of degree p:

V ph = {v ∈ [C0(Ω)]3 | v|K ∈ [Pp(K)]3 ∀K ∈ Th}, (30)

We also define the subspaces of functions in V ph that satisfy the non-homogeneous Dirichlet boundary
conditions:

V ph,D = {v ∈ V ph | v|ΓD
= xD}, (31)

as well as the homogeneous Dirichlet boundary conditions:

V ph,0 = {v ∈ V ph | v|ΓD
= 0}. (32)

By multiplying (12) by an arbitrary test function z ∈ V ph,0, integrating over the domain V , and applying

Green’s theorem, we obtain our finite element formulation: find xh ∈ V ph,D such that for all z ∈ V ph,0,∫
V

ρ
∂2xh
∂t2

z dX = −
∫
V

P (G(xh)) : ∇z dX +

∮
ΓN

t(xh) · z dS +

∫
V

b · z dX . (33)

The system of equations (33) is implemented using standard finite element techniques. The discrete solution
vector X and the test functions are represented at the nodes using nodal basis functions. The integrals are
computed using high-order Gauss integration rules. The computed elemental residuals are assembled into a
global discrete residual vector R(X), to give the nonlinear ODE

M
d2X

dt2
= R(X) (34)

which we immediately convert to a first-order system by introducing the velocity VG = dX/dt. The discrete
positions and velocities are combined into a single solution vector us = [X;VG], corresponding residual
vector rs(us) = [VG;R(X)], and mass matrix M s = diag(I,M), to obtain the semi-discrete form of our
equations:

M s du
s

dt
= rs(us). (35)

3.3. Coupling / Radial Basis Functions

To simplify the coupling between the fluid and the structure, we insist on two requirements. First, we
insist that the boundary faces of the two meshes are coincident. That is, along the fluid-structure boundary,
each boundary face of the structure mesh directly matches a boundary face of the fluid mesh. Second, we
require that on these interface elements the fluid and structure be discretized using the same polynomial
order. In this work we use the same polynomial order for discretization throughout both domains. Because
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in our ALE formulation we represent the fluid domain deformation using isoparametric elements, these two
requirements ensure that the deformed fluid domain may exactly conform to the deformed structure.

To compute the fluid-to-structure coupling we numerically evaluate the momentum flux through the
boundary faces and provide the quantities to the structure solver as the surface traction. To ensure a highly
accurate coupling this transfer is done at the Gaussian integration nodes, not the solution nodes.

The structure-to-fluid coupling is a deformation of the fluid mesh in response to a change in the structure
position. We represent the deformed fluid mesh and mapping velocity on each element of the fluid mesh using
polynomials of the same order as the fluid discretization. Since we insist that the fluid and structure are
discretized using the same order polynomials, the deformed fluid mesh will exactly conform to the deformed
structure by setting the positions of the boundary fluid nodes to the deformed position of the structure.
But, it is clear that this process alone is insufficient as the structure may undergo a large deformation, hence
requiring interior nodes of the fluid mesh to move as well. There are a several ways to transfer the boundary
displacement of the fluid mesh into a displacement of the interior. In this paper, we employ radial basis
function interpolation [25, 26] which works well for small to moderate deformations.

Here we seek an interpolant giving the deformed fluid mesh position x as a function of the position X
in the reference fluid mesh, and which is of the form

x(X) =

n∑
j=1

αjφ(‖X −Xj‖2) + p(X) (36)

where {Xj} is a set of control points, φ is a radial basis function, and p is a linear polynomial.
The coefficients αj and coefficients of the polynomial p are found by imposing the value of x at the

control points Xj , i.e.,

xj = x(Xj) for j = 1, . . . , N (37)

and additionally requiring

N∑
j=1

αjq(Xj) = 0 (38)

for all polynomials q of degree less than or equal to the degree of p, i.e. 1.
There are various options for the radial basis function φ. Here we choose a compactly supported C2

function

φ(r) =

{
(1− r)4(4r + 1) if 0 ≤ r ≤ 1

0 if 1 ≤ r.
(39)

In our case, the control points Xj are chosen to be all nodes of the reference fluid mesh which lie on
the fluid-structure interface or any other boundary. For the interpolation, the deformed position of the
nodes which lie on the fluid-structure interface have their values specified by the corresponding structure
displacement. The user is free to choose the positions of the other control points to match the problem
description, which in this paper always consists of no displacement.

Given the control values x(Xj), the coefficients of the RBF interpolant may be found by solving a dense
linear system of N +d+ 1 equations in N +d+ 1 variables, where N is the number of boundary nodes and d
is the spatial dimension. For speed, we often precompute the LU factorization of this linear system, allowing
the coefficients αj and p to be efficiently solved using forward and backward substitution. The authors note
that this is by no means the only way to solve for such coefficients, and other solution techniques may be
more appropriate, especially in three dimensions.

We compute the mapping velocity vG as the time derivative of the interpolant (eq. 36),

vG(X) =

N∑
j=1

dαj
dt

φ(‖X −Xj‖2) +
dp

dt
(X). (40)
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Since the coefficients αj and p depend linearly on the displacements at the control nodes, it is clear that the
quantities dαj/dt and dp/dt may be computed by the same procedure using boundary velocities instead of
boundary positions.

4. IMPLICIT SOLVERS, TEMPORAL DISCRETIZATION, AND PARTITIONING

4.1. Parallel Newton-Krylov Fluid Solvers

The systems of equations produced by the DG discretization are typically very large. We use polynomials
of degree p = 3, which gives 20 degrees of freedom per tetrahedron and solution component. Since we have
5 solution components, a mesh of a hundred thousand tetrahedra (as in §5.4) has 10 million degrees of
freedom. In addition, the Jacobian matrices tend to be less sparse than those typically obtained with low-
order methods. Although we use an efficient compressed compact storage format [27], each Jacobian has
about 3 billion entries, and requires 24GB of storage. It is clear that parallel computers are needed, both
for storing these matrices and to perform the computations.

The parallel 3DG code [28] is based on the MPI interface. The domain is decomposed using the METIS
software [29] and the discretization and matrix assembly are done in parallel. In order to solve the linear
systems in the Newton method, we use an ILU-preconditioned GMRES solver. To maximize the performance
of the preconditioner, we order the elements using the Minimum Discarded Fill (MDF) algorithm [27].

The simulations in this paper were done using an appropriate number of cores, from just a handful of
cores for low fidelity 2D simulations to over 2048 cores for large 3D simulations. The simulation time depends
on the problem, timestep, and tolerances in the Newton and Krylov solvers. In no case did a simulation
last longer than 24 hours. For additional details on the performance of the parallel fluid solver, including
its nearly perfect weak scaling, see [28].

4.2. Sparse Direct Structure Solvers

The system of equations produced by the CG discretization of the structure is generally much smaller
than the that of the fluid, both because the structure domain is physically smaller and because the CG
discretization avoids the duplicate nodes which would appear in a DG discretization. Nonetheless, we still
find it expedient to use a parallel code, again based on MPI. The structure domain is decomposed using
the METIS software [29], and the discretization and matrix assembly are each done in parallel. In order to
solve the linear systems arising from Newton’s method, we call the MUMPS [30, 31] parallel sparse direct
solver, providing the matrix in distributed coordinate form.

The prescribed displacement at Dirichlet boundary nodes is enforced by elimination of the corresponding
variables from the system of equations.

4.3. Implicit-Explicit Runge-Kutta Schemes

Our time integration is based on applying an Implicit-Explicit Runge-Kutta scheme to our system of
differential equations. In general, an IMEX scheme is based on an additive splitting of a differential equation

M
du

dt
= f(u) + g(u) (41)

into non-stiff terms f(u) and stiff terms g(u). The IMEX scheme consists of two paired Runge-Kutta schemes,

an explicit Runge-Kutta scheme Â, b̂, ĉ which is used to integrate f and a diagonally implicit Runge-Kutta
scheme A, b, c which is used to integrate g. Most schemes satisfy ĉ = c, which in particular means that the
first stage of the diagonally implicit Runge-Kutta scheme is explicit. In practice this allows for the following
implicit stages to have higher stage order. Note that the stage times (b and b̂) are not required to be equal,
but will be equal in all cases we consider. The algorithm to advance a solution un at time tn to a solution
un+1 at time tn + ∆t according to the IMEX scheme is presented in Alg. 1.

Note that in order to take one time step with the IMEX scheme, the algorithm involves s implicit solves
of g and s explicit evaluations of f .
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Algorithm 1 Implicit-Explicit Runge-Kutta. Advance a numerical solution un of M(du/dt) = f(u) + g(u)
from tn to time tn + ∆t.

for stages i = 1, . . . , s do

Define the stage solution as u(i)
n = un + ∆t

i−1∑
j=1

âij k̂i + ∆t

i∑
k=1

aijki.

Solve for ki in Mki = g(u(i)
n ). . Implicit solve of g.

Solve for k̂i in Mk̂i = f(u(i)
n ). . Explicit evaluation of f .

end for

Set un+1 = un + ∆t

s∑
i=1

b̂ik̂i + ∆t

s∑
i=1

biki.

In this paper we consider the third, fourth, and fifth order IMEX schemes1 presented by Kennedy &
Carpenter [10]. These methods are L-stable, stiffly accurate, and singly diagonally implicit, and have 4, 6,
and 8 stages respectively. We will later refer to these schemes by their order, calling them ARK3, ARK4,
and ARK5.

4.4. Temporal Integrator

Consider for the moment our system of fluid uf and structure us variables written as a coupled first
order system of ordinary differential equations M du/dt = r(u) where

u =

[
uf

us

]
, r =

[
rf (uf ; x(us))
rs(us; t(uf ))

]
, M =

[
Mf 0
0 M s

]
. (42)

Note that we have highlighted the dependence of the fluid on the structure arising from the ALE mesh
motion x, and the structure on the fluid via the surface traction t.

In addition, observe that the discretized structure equation may be separated into two terms

rs(us; t(uf )) = rss(us) + rsf (t(uf )) (43)

where the first gives the structure dynamics in the absence of an applied surface traction and the second
accounts for the additional dynamics from the applied surface traction. Since the second term is linear in t,
if t̃ is any other surface traction, we may write the structure equation as

rs(us; t(uf )) = rs(us; t̃) + rsf (t(uf )− t̃) (44)

Here we will generally think of t̃ as a predicted value of t(uf ) and refer to it as a predicted fluid-to-structure
coupling.

Using this formulation, we may split equation 42 as

M
du

dt
=

[
0

rsf (t(uf )− t̃)

]
+

[
rf (uf ; x(us))
rs(us; t̃)

]
(45)

where we intend to integrate the first term explicitly and the second term implicitly. Observe here how
the predicted fluid-structure coupling allows us to complete the implicit solve in two phases, first calling a
structure solver to compute the stage value of us and then calling a fluid solver to compute the stage value
of uf . We use the parallel solution techniques described in sections 4.1 and 4.2 where the compute cores
are reused between each phase. There is no load balancing required between the two phases because they
are performed sequentially.

1Kennedy & Carpenter’s paper calls these schemes ARK3(2)4L[2]SA, ARK4(3)6L[2]SA, and ARK5(4)8L[2]SA respectively.
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Our scheme differs slightly from the standard IMEX formulation in that we avoid evaluating the explicit
terms rsf but instead update the stage flux for the structure equation using the corrected value of the coupling
t(uf ). Note that this naturally allows per stage Gauss-Seidel iterations where we treat the corrected fluid-
to-structure coupling as the new predicted value and repeat the stage calculations. It has been reported
that using one or more Gauss-Seidel iterations can improve the stability of the overall method [11], but we
emphasize that these iterations are generally not required to achieve the design accuracy of the method.

Here we use the predictor suggested by van Zuijlen et al [12], namely the predicted value t̃ at stage i is
a linear combination of the corrected values t at previous stages

t̃i =

i−1∑
j=1

âij − aij
aii

tj (46)

where aij (resp. âij) are the coefficients from the implicit (resp. explicit) Runge-Kutta integration scheme.
The time integration scheme is written out fully in Alg. 2.

Algorithm 2 Time integration scheme for the FSI system in equation 42. Given the structure (usn) and
fluid (ufn) values at time tn, compute the values at tn+1 = tn + ∆t.

Set tn,1 = t(ufn,1) . Evaluate fluid-to-structure coupling (surface traction)

Set ksn,1 = M−1
s rs(usn,1, tn,1) . Evaluate structure residual

Set kfn,1 = M−1
f rf (ufn,1,x(usn,1)) . Evaluate fluid residual

for stage i = 2, . . . , s do
Set t̃n,i =

∑i−1
j=1

âij−aij
aii

tn,j . Predict the fluid-to-structure coupling

Solve for ksn,i in Msk
s
n,i = rs(usn,i, t̃n,i) . Implicit structure solve

where usn,i = usn + ∆t
∑i
j=1 aijk

s
n,j

Solve for kfn,i in Mfk
f
n,i = rf (ufn,i,x(usn,i)) . Implicit fluid solve

where ufn,i = ufn + ∆t
∑i
j=1 aijk

f
n,j

Set tn,i = t(ufn,i) . Correct the fluid-to-structure coupling

Set ksn,i = M−1
s rs(usn,i, tn,i) . Re-evaluate structure residual

end for
Set usn+1 = usn + ∆t

∑s
i=1 bik

s
n,i . Advance structure

Set ufn+1 = ufn + ∆t
∑s
i=1 bik

f
n,i . Advance fluid

5. RESULTS

5.1. Pitching and Heaving Airfoil

To validate the high-order convergence in time, we considered a simple test problem consisting of a
pitching and heaving NACA 0012 airfoil. The airfoil is allowed rotate around a fixed pivot in the interior of
the airfoil, as shown in Figure 1. Since the airfoil is treated as a rigid body, the structure variables consist
only of the pitching angle θ and the angular velocity ω. The fluid is assigned no-slip boundary conditions
on the interface with the airfoil, which contributes a torque τ about the pivot of the airfoil.

The position of the pivot follows a prescribed vertical motion y(t) between t = 0 and t = 1 which is
a Hermite polynomial satisfying y(0) = 0, y(1) = 1/4, and y′(0) = y′(1) = 0. In addition the airfoil is
subjected to a torsional restoring force with torsional spring constant k. The equations of motion of the
airfoil written as a first order system are

∂θ

∂t
= ω (47)

I
∂ω

∂t
= −kθ − τ − lm cos(θ)y′′(t) (48)
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θ(t)

y(t)

l

Figure 1: Schematic for the pitching and heaving airfoil.

where I is the moment of inertia (around the pivot), l is the distance from the pivot to the center of mass,
and m is the total mass of the airfoil.

The non-dimensionalized constants chosen for this problem were I = 1, k = 0.1, l = 0.2, and M = 1.
The airfoil has chord length 1, and the pivot located along the midline a distance 1/3 from the leading edge.
The far field fluid has velocity u = [1, 0]T , density 1, Mach 0.2, and a Reynolds number of 1000. To initialize
the system at time t = 0 we let the structure be at rest and solve for the steady state solution of the fluid.
The evolution of the system is shown in Figure 2.

To validate the temporal convergence of the scheme we measured the relative error in the angle of attack
θ(t) as compared to the solution of the same system using an explicit fourth order Runge-Kutta method
with a suitably small timestep. A plot of the observed relative error as a function of timestep for the
third, fourth, and fifth order ARK coefficients is shown in Figure 3. Note that in each case, the scheme
exhibits convergence at the designed rate. For comparison we also solved the fully-coupled (monolithic)
fluid-structure system using the implicit coefficients of the ARK scheme, by performing many Gauss-Seidel
subiterations until achieving numerical convergence. This resulted in a negligible increase in accuracy despite
a tremendous increase in computational cost. The plot demonstrates that this partitioned approach can
attain up to 5th order accuracy in time, without subiterations or a specialized coupled solver.

5.2. Cantilever Behind Rigid Square Body

Next we consider a variation on a standard fluid-structure interaction benchmark [32], which consists of
a flexible cantilever behind a rigid square body as shown in Figure 4.

The cantilever and square body are assigned no-slip boundary conditions. We impose a far field boundary
condition at the far walls, with the far field conditions corresponding to uniform flow to the right at 51.3 cm/s.
To approximate incompressible flow, we assign a far field Mach number of 0.2. The flow has Reynolds number
Re = 333 based on the dimension of the bluff body (1 cm).

The initial conditions are not consistently defined in the literature, and it has been observed that there
is some sensitivity to the initial conditions in the results [33]. Here we follow [34] and start with imperfect
flow conditions and the cantilever at rest.

We model the cantilever using the neo-Hookean formulation as described in Sec. 2.3, instead of the
St. Venant-Kirchhoff model as the test problem describes. We are careful to assign the same elastic moduli,
which are specified as Young’s modulus E = 2.5× 105 Pa and Poisson’s ratio ν = 0.35. The shear and bulk
moduli are then calculated as µ = E/(2(1 + ν)) and κ = E/(3(1− 2ν)).

The fluid domain was triangulated using 6576 degree 3 elements, for a total of 65,760 high-order nodes.
The cantilever was triangulated using 64 degree 3 elements. The system was integrated in time using the
ARK3 coefficients and a fixed time step of 1 × 10−3 s. One Gauss-Seidel iteration was performed at each
integration stage to increase the stability of the coupling.

The Reynolds number considered is high enough that the flow separates at the bluff body and produces a
von Kármán vortex street. This causes the cantilever to begin oscillating and after a period of a few seconds

11



t = 0.0 t = 0.4 t = 0.8

t = 1.2 t = 1.6 t = 2.0

Figure 2: The airfoil at various times (Mach number). The pivot location of the airfoil is smoothly moved upwards between
time t = 0 and t = 1.

the fluid-cantilever system settles into a nearly periodic state. Figure 6 shows the vertical displacement of
the tip as a function of time.

The observed tip vertical amplitude and oscillation frequency are compared to the existing literature in
Table 1. Our observed a maximal tip amplitude of 1.12 cm and oscillation frequency of 3.18 Hz show good
agreement with values obtained in the literature, which were computed using different fluid, structure, and
temporal discretizations.

5.3. Membrane, 2D

Next we considered a thin rectangular membrane with length 1 and height 0.01 in uniform incoming flow
at a 10◦ angle of attack. This structure was modeled using the standard volumetric equations as described
in Section 2.3, with highly anisotropic elements. We applied no-slip conditions on the membrane boundary
and far field boundary conditions on the far fluid domain boundaries. The far field flow was set to unit
density, unit velocity in the x direction, Mach 0.2, and Reynolds number of 1000. We assigned Dirichlet
boundary conditions of no displacement to the front and rear faces of the membrane.

The membrane was set to a non-dimensionalized density of ρ = 40.0, Poisson’s ratio of ν = 0.3. We
explored two different Young’s moduli of E = 1× 103 and E = 5× 103. For comparison we also investigated
a fixed, rigid plate.

The membrane was discretized using 44 degree 3 triangular elements, and the fluid was discretized using
2575 degree 3 triangular elements. See Figure 7. The system was integrated in time using the ARK3
coefficients and a timestep of 2× 10−3.

A time history of the three cases is shown in Fig. 8. Here we see that the rigid plate is causing significant
leading edge separation. This is avoided in the flexible membranes which are able to align with the incident
flow, resulting in smaller vortices, at least for the higher stiffness membrane.

The lift and drag coefficients as a function of time for the rigid plate and two membranes are plotted in
Fig. 9. In each case the coefficients were computed using a planform area of 1. The long term trend shows

12
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ARK4, and ARK5 schemes achieve the expected order of accuracy. Solving the fully-coupled (“FC-”) system using the implicit
method from the IMEX scheme shows a negligible increase in accuracy despite a large increase in computational cost. A basic
staggered weak coupling scheme is shown for comparison.
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Figure 4: Flexible cantilever behind a rigid square body. All distances shown are in cm.
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Figure 5: The the cantilever near maximal displacement (Entropy).
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Figure 6: The vertical displacement of the cantilever tip as a function of time.

Author Fluid Structure Coupling f(Hz) dmax(cm)

Kassiotis et al.[35] FVM FEM P-BGS 2.98 1.05
Wood et al.[36] FVM FEM P-BGS 2.94 1.15
Yvin[37] FVM FEM P-BGS 3.16 1.20
Olivier et al.[38] FVM FVM P-BGS 3.17 0.95
Habchi et al.[39] FVM FVM P-BGS 3.25 1.02
Walhorn et al.[34] Stabilized FEM FEM P-BGS 3.14 1.02
Wall and Ramm[32] Stabilized FEM FEM P-BGS 2.99 1.22
Matthies and Steindorf[40] FVM FEM P-BN 3.13 1.18
Dettmer and Perić[41] Stabilized FEM FEM P-NR 3.03 1.25
Present study DG FEM FEM IMEX 3.18 1.12

Table 1: A comparison of the oscillation frequency and maximal vertical tip displacement of the cantilever from the open
literature, as reproduced from [39]. The coupling abbreviations stand for partitioned block Gauss-Seidel, partitioned block-
Newton, and partitioned Newton-Raphson.
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(a)

(b)

Figure 7: (a) The undeformed fluid (green) and structure (blue) meshes for the 2D Membrane at a 10◦ angle of attack. (b)
The region near the structure is enlarged.

that the flexible membranes are able to increase the lift coefficient without a significant increase in drag,
agreeing with the results in [9, 42].

5.4. Membrane, 3D

In three dimensions we considered an extruded form of the 2D membrane module from Sec. 5.3. The
membrane has length and width 1 and height 0.01 and is placed in uniform flow at an atan(5/12) ≈ 22.6◦

angle of attack. The fluid was assigned no-slip conditions at the membrane boundary and far field conditions
at the far boundaries. The far field flow was set to unit density ρ = 1.0, unit velocity u = [1.0, 0, 0.]T , Mach
0.2 and Reynolds number of 2000. The membrane was assigned Dirichlet boundary conditions on the leading
and trailing faces. The physical parameters of the membrane were chosen as density ρ = 100.0, Young’s
modulus E = 1× 103, and Poisson’s ratio ν = 0.35.

The membrane was discretized using 1317 highly anisotropic degree 3 elements. The fluid mesh had
108,358 degree 3 elements, for a total of about 2.17 million high-order nodes or almost 11 million degrees of
freedom. A cross-section of the fluid mesh is shown in Fig. 10.

A timestep of 1×10−3 was used and the system was solved until T = 3.0. The Mach number is shown on
iso-entropy surfaces for several time steps in Figure 11. Here we see that the leading edge of the membrane
aligns with the incoming fluid and successfully prevents leading edge separation. In addition we see that
the fluid curls around the sides of the membrane and exhibits a classic roll-up behavior. For comparison, in
Figure 12 we show the behavior of a fluid when the membrane is replaced by a fixed rigid plate of the same
dimensions.

6. CONCLUSIONS

We have presented a high-order accurate scheme for fluid-structure interaction problems. By using a
predictor for the fluid-to-structure coupling, the method allows the reuse of existing domain specific fluid
and structure solvers while still maintaining a high-order of time accuracy. The accuracy in time was verified
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Rigid Plate Membrane (E = 5× 103) Membrane (E = 1× 103).

Figure 8: The rigid plate and two membranes at time T = 1.0 (top), 2.0, 3.0, 4.0, 5.0, 6.0, and 7.0 (bottom). (Entropy).
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Figure 9: Lift and drag coefficients as a function of time for a rigid plate and two flexible membranes at 10◦ angle of attack.

Figure 10: A cross section of the fluid mesh (blue) and entire structure mesh (green) in the reference configuration (left) and
typical deformed configuration (right).
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t = 0.0 t = 0.6 t = 1.2

t = 1.8 t = 2.4 t = 3.0

Figure 11: A three dimensional membrane at various times (Mach number on iso-entropy surfaces). The leading edge of the
membrane aligns with the fluid and prevents separation.

using a grid convergence study. The overall implementation was validated by comparing results of a standard
test FSI test problem to other values reported in the literature. Lastly, we demonstrated the applicability
of this method to large three dimensional simulations.

In some cases one subiteration was used at each stage of the time integration scheme to improve the
stability of the method. Futher work will be required to fully understand the stability gained from one or
more subiterations.
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