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Abstract

The aeroacoustics of a tuning fork are investigated using a high-order fluid-structure interaction (FSI)
scheme. The compressible Navier-Stokes equations are discretized using a discontinuous Galerkin arbitrary
Lagrangian-Eulerian (DG-ALE) method on an unstructured tetrahedral mesh, and coupled to a non-linear
hyperelastic neo-Hookean model of a tuning fork, discretized using continuous Galerkin finite elements on an
unstructured tetrahedral mesh. The fluid and structure are both integrated implicitly in time using a parti-
tioned approach based on an implicit-explicit Runge-Kutta method. We measure radial sound distributions
which show good agreement with theoretical predictions and physical experiments in the open literature.
In addition we demonstrate how to measure Q factors for several common modes, emphasizing that we can
accurately capture the decay rates arising purely from the interaction of the tuning fork with the air and
without any damping built into the structure model.
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1. INTRODUCTION

There has been growing interest in using physical models based on the fundamental laws of mechanics
to describe and study the acoustics of musical instruments. This field is broadly split into two categories,
depending on the mechanism of sound generation.

The first category includes recorders [1, 2, 3], flutes [4], organs [5], and other wind instruments. Here
the motion of air is often quite complex and models generally require the use of the Navier-Stokes equations
to properly capture the mechanism of sound generation. Recent work has included so-called direct numer-
ical simulations in which the entire domain is modeled using the Navier-Stokes equations and the sound
propagation read directly from the resulting pressure field.

The second category contains instruments which vibrate to produce pressure waves, perhaps with the
help of soundboards or resonator cavities. Notable past work in this category includes guitars [6], pianos
[7], and other stringed instruments [8]. Here one generally creates a model for the strings, soundboard, and
resonator cavity which is then coupled to a fluid model to capture the acoustic propagation. The fluid model
is generally simple, obtained, for example, by linearizing the Euler or Navier-Stokes equations assuming small
perturbations of a constant solution. This typically results in a system of equations analogous to Maxwell’s
equations and which are solved using a finite-difference time-domain method [9].

Here we propose a direct numerical simulation of a three dimensional tuning fork, modeling the fluid
using the compressible Navier-Stokes equations and the structure with a neo-Hookean non-linear elasticity
model. By using high-order spatial discretizations of both the fluid and structure domains, together with
a high-order temporal integration based upon an implicit-explicit Runge-Kutta method, we can accurately
capture the process of sound generation and natural decay rates of the system.

The tuning fork has long been studied. Helmholtz, for instance, observed that the sound generation is
not directionally uniform near the tuning fork. Instead, in Ref. [10] (page 161), Helmholtz observes:
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Figure 1: The dimensions of a cross section of the tuning fork, as well as its material parameters. All distances are given in
cm. The tuning fork is extruded 0.5 cm so that the cross-section of the tines are square.

On striking a tuning-fork and slowly revolving it about its longitudinal axis close to the ear, it will
be found that there are four positions in which the tone is heard clearly; and four intermediate
positions in which it is inaudible. The four positions of strong sound are those in which either
one of the prongs, or one of the side surfaces of the fork, is turned towards the ear.

Helmholtz continues to explain that the sound pattern is due to an interference effect between sound gen-
erated from each of the tines. Further work refined this observation to posit that the radiated sound field
is that of a linear quadrupole, i.e., a sum of two dipole sources of opposite phase whose axes lie on a single
line[11], a result which has been generally validated by experimental measurement[12].

This observation shows that modeling a tuning fork fundamentally requires a three dimensional simula-
tion, as a two dimensional slice would either fail to capture this directivity pattern or would be unable to
properly model the tuning fork itself.

Here we seek to computationally reproduce these measurements of the near-field sound directivity pat-
tern. In addition we study the decay rates for various modes in the tuning fork and demonstrate that a
high-order method can naturally capture these rates without any assumptions beyond the standard physical
parameters for air and steel. In particular we note that we observe proper levels of damping without any
damping terms in the structure model itself.

2. MODEL, GOVERNING EQUATIONS, & SPATIAL DISCRETIZATION

2.1. The Model

The dimensions of the tuning fork considered are shown in Fig. 1. The two tines have a square cross
section with dimensions 0.5 cm by 0.5 cm and are approximately 8.5 cm long. They connect to a stem which
is 0.5 cm by 0.5 cm in cross section and 4.0 cm long. The tines are separated a distance of 0.9 cm. While
these dimensions are typical for a tuning fork, it is important to note that this model is not based upon
a physical tuning fork and in particular the fundamental mode does not correspond to a standard musical
pitch.

The tuning fork is modeled after steel, using the physical parameters density ρ = 7800 kg/m3, Young’s
Modulus E = 200 GPa, and Poisson’s ratio ν = 0.29. In our work we have chosen to hold the tuning fork
by rigidly clamping the square face at the base of the stem.

Approximations of a tuning fork using a beam model [13] predict symmetric in-plane modes with fre-
quencies of
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Figure 2: The tuning fork (gray) inside the computational domain.

where L is the length of the tines and K is the radius of gyration (1/
√

12× 0.5 cm in our case). Using the
physical parameters for steel, this gives approximate values of the first two frequencies:

f1 ≈ 566.3 Hz and f2 ≈ 3546 Hz. (2)

As is customary, we will refer to the first mode as the fundamental or principal mode. This is the dominant
mode when the tuning fork is struck and corresponds to the pitch that is heard. In this mode the two tines
move in a symmetrical fashion — at any moment either both towards each other or both away from each
other. The second mode is called the clang mode and corresponds to a symmetric mode where the tips of
the tines move towards each other while the middle of the tines move away from each other, and vice versa.

In addition to symmetric in-plane modes, there are also a few other natural classes of modes. Asymmetric
in-plane modes are ones where the tines of the tuning fork move in the same direction. Here it is difficult
to have a theoretical formula for the frequencies because the stem also plays a large role in the motion.
Out-of-plane modes are ones where the tines of the tuning fork leave the plane, either in a symmetrical or
asymmetrical fashion.

Before moving on we finally note that we model the tuning fork as immersed in air. The air is assigned typ-
ical values: density ρ = 1.24 kg/m3, speed of sound c = 343.0 m/s, and dynamic viscosity 1.836·10−5kg/(m s).
The simulation domain is a box which extends 10 cm from the tuning fork in each of the Cartesian directions.
More specifically the tuning fork is centered in a box of dimension 32.5 cm × 21.9 cm × 20.5 cm. Note that
this domain is almost entirely near-field, as the wavelengths for the two symmetric in-plane modes (eq. 2)
are:

λ1 = 60.5 cm and λ2 = 9.67 cm. (3)

These lengths are both on the order of, or larger than, the size of the computational domain. A schematic
of the tuning fork and the domain is shown in Fig. 2.
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2.2. Compressible Navier-Stokes

The air is modeled using the compressible Navier-Stokes equations, which are a non-linear system of
equations which can be written in conservation form as:

∂

∂t
(ρ) +

∂

∂xj
(ρuj) = 0 (4)

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj + pδij) = +

∂

∂xj
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∂
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∂
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(−qj + uiτij) (6)

where the conserved variables are the fluid density ρ, momentum in the j-th spatial coordinate direction
ρuj , and total energy ρE. The viscous stress tensor and heat flux are given by
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)
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Here, µ is the dynamic viscosity and Pr = 0.72 is the Prandtl number which we assume to be constant. For
an ideal gas, the pressure p has the form

p = (γ − 1)ρ

(
E − 1

2
ukuk

)
, (8)

where γ = 1.4 is the adiabatic gas constant. We impose an adiabatic no-slip boundary condition on the
boundary with the tuning fork. The far walls of the simulation domain should represent an infinite do-
main, i.e., be perfectly absorbing. However here we use a characteristic free-stream type boundary which
is a first-order approximation of the out-going wave condition. For this problem, this appears to be suf-
ficiently accurate, and we have not observed any spurious modes corresponding to the dimensions of the
computational domain.

2.3. Arbitrary Lagrangian Eulerian formulation

The deformable fluid domain is handled through an Arbitrary Lagrangian Eulerian (ALE) formulation.
In this method, a simple change of variables reduces the complexity introduced by the variable geometry
to that of solving a transformed conservation law on a fixed reference mesh. In particular, no remeshing or
interpolation is required as the domain deforms.

Here a point X in a fixed reference domain V is mapped to x(X, t) in a time-varying domain v(t). The
deformation gradient G, mapping velocity ν, and mapping Jacobian g are defined as

G = ∇Xx, ν =
∂x

∂t
, and g = detG. (9)

A system of conservation laws in the physical domain (x, t)

∂u

∂t
+∇x · f(u,∇xu) = 0 (10)

is rewritten as a system of conservation laws in the reference domain (X, t)

∂U

∂t
+∇X · F (U ,∇XU) = 0 (11)

where the conserved quantities and fluxes in reference space are

U = gu, F = gG−1f − uG−1ν. (12)
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The equations are discretized in space using a high-order discontinuous Galerkin formulation with tetra-
hedral mesh elements and nodal basis functions. The inviscid fluxes are computed using Roe’s method [14],
and the numerical fluxes for the viscous terms are chosen according to the compact discontinuous Galerkin
(CDG) method [15]. There are many other options for numerical fluxes, see e.g. references [16, 17], and we
do not expect the choice to be significant in our study. After discretizing, we obtain the semi-discrete form
of our equations:

Mf du
f

dt
= rf (uf ; x), (13)

for solution vector uf , mass matrix Mf , and residual function rf (uf ; x). Observe that we have written
the residual function in such a way as to highlight the dependence on the ALE mesh motion x. For more
details see reference [18].

The geometric conservation law (GCL) can be enforced using a simple technique involving an auxiliary
equation. However, since the experiments in reference [18] indicate that high-order approximation spaces
are less sensitive to the GCL condition, we are for simplicity not enforcing it in our results here.

2.4. Neo-Hookean Elasticity Model

We use a non-linear hyperelastic neo-Hookean formulation [19] to model the tuning fork. Here, the
structure position is given by a mapping x(X, t), which for each time t maps a point X in the unstretched
reference configuration to its location x in the deformed configuration. From this we compute the mapping
velocity v and deformation gradient F as

v =
∂x

∂t
and F = ∇Xx(X, t). (14)

Note that F here is not the Navier-Stokes flux function as defined in the previous subsection.
We partition boundary of the structure domain into regions of Dirichlet and Neumann boundary condi-

tions, ∂V = ΓD ∪ ΓN . On the Dirichlet boundary ΓD (i.e., the base of the tuning fork) we prescribe the
material position xD, or equivalently the material velocity vD. On the Neumann boundary ΓN we allow for
a general surface traction (i.e., force per unit surface area) which we denote t.

The governing equations for the structure are

∂p

∂t
−∇ · P (F ) = b in Ω (15)

P (F ) ·N = t on ΓN (16)

x = xD on ΓD (17)

where p = ρv = ρ ∂x/∂t is the momentum, P is the first Piola-Kirchhoff stress tensor, b is an external body
force per unit reference volume, and N is a unit normal vector in the reference domain.

For a compressible neo-Hookean material the strain energy density is given by

W =
µ

2
(Ī1 − 3) +

κ

2
(J − 1)

2
(18)

where Ī1, the first invariant of the deviatoric part of the left Cauchy-Green deformation tensor, and J , the
determinant of the deformation gradient, are calculated as

Ī1 = J−2/3I1, I1 = trB = tr(FF T ), and J = detF . (19)

The constants µ and κ are the shear and bulk modulus of the material.
The first Piola-Kirchhoff stress tensor is computed as

P (F ) =
∂W

∂F
= µJ−2/3

(
F − 1

3
tr(FF T )F−T

)
+ κ(J − 1)JF−T . (20)
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After writing the system in a first order formulation in the displacement x and momentum p variables,
the equations are discretized in space using a standard high-order continuous Galerkin formulation with
tetrahedral mesh elements and nodal basis functions. This results in a semi-discrete system:

M s du
s

dt
= rs(us; t), (21)

for solution vector us containing discretized positions and momenta, mass matrix M s, and residual function
rs(us; t) where again t is a surface traction (and not time). Note in this form it is most natural to impose
the Dirichlet conditions in the momentum variables only, letting them be integrated into the corresponding
changes in position.

3. COUPLING & TEMPORAL DISCRETIZATION

3.1. Coupling / Radial Basis Functions

The coupling between the fluid and structure is simplified by creating fluid and structure meshes which
are conformal along the fluid-structure interface. By this, we mean that there is a one-to-one mapping
between the boundary faces of each mesh on the shared interface. In addition we discretize the fluid and
structure using elements of the same polynomial order to ensure that the deformed fluid domain can exactly
conform to the deformed structure.

To compute the fluid-to-structure coupling we numerically evaluate the momentum flux through the
boundary faces and provide the quantities to the structure solver as the surface traction. To ensure a highly
accurate coupling this transfer is done at the Gaussian integration nodes, not the solution nodes.

The structure-to-fluid coupling is a deformation of the fluid mesh in response to a change in the structure
position. We represent the deformed fluid mesh and mapping velocity on each element of the fluid mesh using
polynomials of the same order as the fluid discretization. Since we insist that the fluid and structure are
discretized using the same order polynomials, the deformed fluid mesh may exactly conform to the deformed
structure by setting the positions of the boundary fluid nodes to the deformed position of the structure.
Since the structure may undergo a large deformation, we use radial basis function interpolation [20, 21] to
deform the fluid mesh to maintain high element quality and prevent element inversion.

The radial basis function interpolant gives the deformed fluid position x as a function of the reference
position X and has the form

x(X) =

n∑
j=1

αjφ(‖X −Xj‖2/r0) + p(X) (22)

where {Xj} is a set of control points, φ is a radial basis function, r0 is a characteristic distance, and p is a
linear polynomial. Here we choose a compactly supported C2 function

φ(r) =

{
(1− r)4(4r + 1) if 0 ≤ r ≤ 1

0 if 1 ≤ r.
(23)

The coefficients αj and coefficients of the polynomial p are found by solving the linear system

xj = x(Xj) for j = 1, . . . , N (24)

0 =

N∑
j=1

αjq(Xj) for all linear polynomials q (25)

where the control points {Xj} are set to be all nodes on the boundary of the fluid mesh and their control
values {xj} are either the current displacement of the structure or the reference location depending on
whether the node is along the fluid-structure interface or at a far boundary.
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3.2. Temporal Integrator

Consider for the moment our system of fluid uf and structure us variables written as a coupled first
order system of ordinary differential equations

Mf du
f

dt
= rf (uf ; x(us)) (26)

M s du
s

dt
= rs(us; t(uf )). (27)

where we explicitly show the coupling as arising through the ALE mesh motion x and surface traction t.
We integrate the system using a high-order predictor-corrector method based upon an implicit-explicit

(IMEX) Runge-Kutta scheme, where in essence the fluid-to-structure coupling is integrated explicitly and
the remaining terms in the system are integrated implicitly. Here we use the ARK3 coefficients of Kennedy
and Carpenter [22] which is a 4 stage method. We use standard notation, letting s denote the number of
stages, and aij , âij , bi, and ci denote the coefficients of the implicit scheme, explicit scheme, weights, and
nodes respectively.

The time integration scheme is written out fully in algorithm 1. For more details see references [23, 24,
25, 26].

Algorithm 1 Time integration scheme for the FSI system in equations 26 and 27, using the s-stage implicit-
explicit Runge-Kutta scheme (aij , âij , bi, ci). Given the structure (usn) and fluid (ufn) values at time tn,
compute the values at tn+1 = tn + ∆t.

Set tn,1 = t(ufn,1) . Evaluate fluid-to-structure coupling (surface traction)

Set ksn,1 = M−1
s rs(usn,1; tn,1) . Evaluate structure residual

Set kfn,1 = M−1
f rf (ufn,1; x(usn,1)) . Evaluate fluid residual

for stage i = 2, . . . , s do
Set t̃n,i =

∑i−1
j=1

âij−aij
aii

tn,j . Predict the fluid-to-structure coupling

Solve for ksn,i in Msk
s
n,i = rs(usn,i; t̃n,i) . Implicit structure solve

where usn,i = usn + ∆t
∑i
j=1 aijk

s
n,j

Solve for kfn,i in Mfk
f
n,i = rf (ufn,i; x(usn,i)) . Implicit fluid solve

where ufn,i = ufn + ∆t
∑i
j=1 aijk

f
n,j

Set tn,i = t(ufn,i) . Correct the fluid-to-structure coupling

Set ksn,i = M−1
s rs(usn,i; tn,i) . Re-evaluate structure residual

end for
Set usn+1 = usn + ∆t

∑s
i=1 bik

s
n,i . Advance structure

Set ufn+1 = ufn + ∆t
∑s
i=1 bik

f
n,i . Advance fluid

4. RESULTS

Finally, we present results for a single three-dimensional tuning fork simulation. We created two un-
structured tetrahedral meshes, one for the fluid and structure. The structure mesh contained about 2,200
tetrahedra which for our polynomial degree p = 3 gives about 13,600 high-order nodes, or 82,000 degrees
of freedom. The fluid mesh consisted of approximately 23,200 tetrahedra which for our polynomial degree
p = 3 gives 464,000 high-order nodes, or 2,320,000 degrees of freedom (see Fig. 3). Using these meshes the
equations of motion for the tuning fork and fluid were discretized in space as described in sections 2.2–2.4.

The tuning fork was initialized by linearly skewing the tines apart from each other so that at the tip the
interior spacing increased by 0.014 cm and the exterior spacing increased by 0.029 cm. We note that this is
a highly nonphysical excitation, but was intended to validate the robustness of the solver and ensure that
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(a) Along the tuning fork axis. (b) Perpendicular to the tuning fork axis.

Figure 3: The computational mesh for the tuning fork (green) and two different cross sections of the computational mesh for
the fluid (blue) in a region near the tuning fork.

many of the symmetrical modes of the tuning fork would be excited. The tines were then released and the
system integrated in time using the algorithm in section 3.2. A timestep of ∆t = 50µs was used and the
system was solved until T = 30 ms for a total of 600 time steps. This timestep corresponds to a sampling
frequency of 20 kHz allowing us to resolve frequencies below 10 kHz. We note that this timestep corresponds
to a CFL number of approximately 100 for the fluid, compared to an explicit RK4 scheme, based on the
sound speed and the size of the smallest elements.

Because of rather severe initial transients due to the highly deformed configuration of the structure, a
timestep of ∆t/5 was used for the first 5 timesteps. Each time step took approximately one minute on 768
processors, for a total simulation time of approximately 10 hours.

4.1. Pressure Time Series

We measured the pressure at several locations surrounding the tuning fork, in each case recording the
value relative to the baseline pressure p0 = 1.012× 105 Pa. In Fig 4 we present a time series for the pressure
at three locations, each in a plane perpendicular to the axis of the tuning fork intersecting the tuning fork
0.5 cm away from the tips of the tines. The locations shown are all a distance of 5.0 cm from the axis of the
tuning fork, making angles of 0◦, 45◦, and 90◦ with the axis which passes through both tines. Observe that
the high frequency modes decay quickly over the first 10 ms or so, leaving a signal which is almost entirely
composed of the principal frequency.

We also present cross sectional visualizations of the pressure at two representative sequences of frames in
Fig. 5. The first sequence, 4.00 ms to 4.10 ms, is before the initial transients have decayed. In this sequence
we can see that a high frequency mode, most likely the clang mode, is dominant. In the second sequence,
23.60 ms to 24.00 ms, we see approximately one quarter period of the fundamental mode.

Recall that the sound pressure level Lp, measured in dB above a standard reference level, is calculated
as

Lp = 10 log10

(
prms

2

pref2

)
, (28)

where prms is the root mean square of the signal (relative to the baseline pressure) and pref is a reference
pressure typically set to 2×10−5 Pa [27]. By taking a Fourier transform of the last 9 periods of the pressure
signal at location A, we show the sound pressure level for various frequency in Fig 6. In addition we
linearized the tuning fork model around the reference configuration (in the absence of air) and show several
computed eigenfrequencies with a description of their corresponding eigenmodes. Due to the comparatively
short length of time simulated, the resolution from the Fourier transform is somewhat lacking especially in
the low frequency regime. We will return to this point later in section 4.4.
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Figure 4: Time series data for the relative pressure at three locations each a distance 5.0 cm from the axis of the tuning fork in
a plane perpendicular to the axis. The plane is located such that the tines of the tuning fork extend a distance 0.5 cm through
the plane. The outer box shows the boundary of computational domain.

(a) t = 4.00 ms (b) t = 4.05 ms (c) t = 4.10 ms

(d) t = 23.60 ms (e) t = 23.80 ms (f) t = 24.00 ms
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Figure 6: The sound pressure level Lp relative to a reference pressure 2 × 10−5 Pa for a range of frequencies, as measured
over the last 9 periods of the base frequency as observed at location A. The frequencies of several eigenmodes of the linearized
structure are shown for comparison.

4.2. Angular Dependence

The directionality of the sound field radiated by a tuning fork may also be measured. The tuning fork
is thought to be well modeled by a linear quadrupole, i.e., two dipoles of opposite phase whose dipole axes
lie along a single line. A formula for the resulting pressure field is derived as [11, 12]

p(r, θ) =
A

r

[
(1− 3 cos2 θ)

(
ik

r
− 1

r2
+
k2

3

)
− k2

3

]
(29)

where A is a normalization constant, r is the distance from the linear quadrupole source, k = 2π/λ is
the wave number, and i indicates an out-of-phase term. The product kr is generally used to separate the
so-called near-field kr � 1 from the far-field kr � 1.

From this formula we compute the angular and radial dependence on the sound pressure level for an
idealized linear quadrupole:

Lp = 10 log10

(
‖p(r, θ)‖2

pref2

)
. (30)

In Fig. 7, we compare this idealized angular dependence to measured sound pressure levels at a variety of
distances from the axis of the tuning fork. In each case the measurements were done in the same plane as
our previous measurements (see Fig. 4a). As is typical, we have normalized each plot to the maximum value
so that the maximum sound pressure level is shown as 0 dB.

Perhaps the most striking aspect of the directivity plots is the sharp decrease in sound pressure levels
between regions of maxima. For instance, we observe a SPL drop of over 40 dB for 4 specific angles when
measuring 2.5 cm away from the axis of the tuning fork. Next observe that we accurately capture the
expected 5 dB drop in the maximum sound pressure level between the 0◦–180◦ and the 90◦–270◦ axes.

Also notable is the relatively good agreement between the measured sound pressure levels and the linear
quadrupole source behavior, especially at the larger radii of 7.5 cm and 10.0 cm. For smaller radii the system
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(d) 10.0 cm

Figure 7: The relative sound pressure levels by angle at various distances from the axis of the tuning fork measured in 1◦

increments, averaged over nine periods of the fundamental mode. Each plot has been normalized to its maximum value. The
theoretical curve for a linear quadrupole as given in Eq. 29 is shown in a solid line. The tines of the tuning fork lie at 0◦ and
180◦. Notice the 5 dB difference in sound pressure level between the two maxima in the extreme near-field.
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is likely no-longer well-modeled by an idealized linear quadrupole as the finite size effects of the actual tuning
fork are likely to play a larger role. We note that our observed disparity between measurements and the
linear quadrupole at 2.5 cm has a similar character to previous experimental measurements (c.f., Fig. 9b
in Ref. [12]) wherein the lobes at 90◦ and 270◦ are observed to be wider than those of an idealized linear
quadrupole, and the lobes at 0◦ and 180◦ are observed to be narrower.

4.3. Quality Factor

A major quantity of interest in a resonator system is the Q factor or quality factor. There are two
equivalent definitions for the Q factor, one based on energy storage and losses and another based on resonance
bandwidth. Here we consider the former, defining the Q factor as

Q = 2π
E

∆E
(31)

where E is the total energy stored in the resonator and ∆E is the energy dissipated per cycle. Since
∆E � E, a bit of algebra shows that we can equivalently define the Q factor as the number of periods
required for the energy to decay by e−2π. In other words, Q = 2πfτ if the energy signal decays like e−t/τ .
Since we have seen that the tuning fork emits an almost entirely pure signal at the fundamental frequency
after 10 ms, we will consider 1 cycle to be one period of the fundamental mode.

We calculate the total energy of the tuning fork as

E =

∫
V

W dx︸ ︷︷ ︸
potential

+

∫
V

1

2
ρv2 dx︸ ︷︷ ︸

kinetic

(32)

where V is the reference configuration, ρ is the reference density, v is the material velocity, and W is the
strain energy density as defined in equation 18.

We show the potential, kinetic, and total energy contained within the tuning fork as a function of time
in Fig. 8a. Note the large initial losses due to the decay of high-frequency transients followed by a region of
little decay. By changing the scale of the vertical axis we can better highlight the slow decay of the energy
in the tuning fork, as shown in Fig. 8b. Here we have fit an exponential decay curve to the total energy
for the values after 10 ms. We see that the best fit curve quite closely approximates the decay in energy
over many cycles, with only some small intra-cycle deviations as the tuning fork does not emit energy at a
constant rate.

The best fit exponential has the form E ≈ A exp(−t/τ) where we find A = 0.798 mJ and τ = .96 s. Since
the fundamental frequency is f = 564 Hz we easily calculate the Q factor to be 3400 which is in the range
expected for a tuning fork.

4.4. Filter Diagonalization & Harmonic Inversion

Another way to measure the Q factor is by running the pressure time series through a so-called harmonic
inversion process. Here we approximate the pressure by a sum of decaying exponential functions:

p(t) ≈
∑
k

dke
−iωkt (33)

with complex-valued parameters dk and ωk, where ωk encodes the resonant frequency and Q factor of the
k-th mode.

There are many such ways to create such a series. For example, the Fourier transform (Fig. 6) is already
such a series, however its numerical stability comes at the expense of poor frequency resolution because the
ωk are fixed with a linear spacing of O(1/T ) where T is the duration of the time series.

Here we employ the filter diagonalization method [28, 29, 30], using the freely available Harminv software
[31]. We use the pressure time series data from location A (see Fig. 4a) as the input signal and specify a
frequency window of 100 Hz to 10, 000 Hz. The method identifies the fundamental frequency f = 562.6 Hz
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(b) Zoomed in view with a best-fit curve.

Figure 8: Kinetic, potential, and total energy of the tuning fork.
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Frequency (Hz) Q Factor Notes

196.0 453.1 Asymmetric in-plane
562.2 3414.0 Fundamental mode

1459.0 194.8 Asymmetric in-plane
3424.0 22.8 Clang mode

Table 1: Significant frequencies and Q factors observed in the time series pressure data at location A (see Fig. 4a) during
5.0 ms ≤ t ≤ 30.0 ms, as extracted by the filter diagonalization method.

with corresponding Q factor 3414.0. In addition, several other modes are well resolved and are shown in
table 1. These modes include the clang mode and two asymmetric in-plane modes, each of which has a much
smaller Q factor than the fundamental mode. Note that the identified frequencies are in good agreement
with the modes predicted by the linear eigenvalue analysis as shown in Fig. 6.

5. CONCLUSIONS

In this paper we have demonstrated how high-order fluid-structure interaction methods can accurately
capture the dynamics of a tuning-fork, providing accurate predictions of frequencies, angular sound pressure
level distributions, Q factors, and damping rates.

Future work includes more realistic initial conditions (e.g., an impulsive hit with a mallet), a larger
computational domain for far-field measurements, improved absorbing boundary conditions on the far walls,
and the addition of a resonance box. In addition more work could be done to explore the higher symmetric
modes as well as the asymmetric and out-of-plane modes.

Lastly we mention that techniques similar to the ones used in this paper could be used to simulate a
variety of other instruments including gongs, xylophones, and marimbas.
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