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Abstract We present a numerical framework for simulation of the compressible
Navier-Stokes equations on problems with deforming domains where the boundary
motion is prescribed by moving meshes. Our goal is a high-order accurate, efficient,
robust, and general purpose simulation tool. To obtain this, we use a discontinu-
ous Galerkin space discretization, diagonally implicit Runge-Kutta time integrators,
and fully unstructured meshes of triangles and tetrahedra. To handle the moving
boundaries, a mapping function is produced by first deforming the mesh using a
neo-Hookean elasticity model and a high-order continuous Galerkin FEM method.
The resulting nonlinear equations are solved using Newton’s method and a robust
homotopy approach. From the deformed mesh, we compute grid velocities and de-
formations that are consistent with the time integration scheme. These are used in a
mapping-based arbitrary Lagrangian-Eulerian formulation, with numerically com-
puted mapping Jacobians which satisfy the geometric conservation law. We demon-
strate our methods on a number of problems, ranging from model problems that
confirm the high-order accuracy to the flow in domains with complex deformations.

1 Introduction

Over the last decade, high-order accurate methods such as discontinuous Galerkin
(DG) methods [3, 6] have become increasingly popular for computational fluid dy-
namics simulations [15]. One of the main reasons for this popularity is that the
schemes produce stable discretizations of conservation laws on fully unstructured
meshes of tetrahedral elements, with arbitrary orders of accuracy. More recently,
they have also been applied to problems with moving boundaries and deforming
domains [11], for applications such as flapping flight simulations [16].

A popular technique for handling the deforming domains is the Arbitrary La-
grangian Eulerian (ALE) method [14, 4, 8], which allows for a deforming grid by
using a discretization which accounts for the grid motion. While usually formulated
in a moving grid framework, in [11] it was demonstrated how these schemes can
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be used in a DG setting with a mapping-based formulation and a fixed reference
domain, to easily obtain high-order accuracy in both space and time.

For complex geometries and deformations, this domain mapping has to be solved
for numerically using some type of mesh deformation scheme. In this work, we
show how to do this using a quasi-static nonlinear elasticity approach, similar to the
one used for high-order curved mesh generation in [13]. We show how to use the re-
sulting deformed meshes in a DG-based ALE scheme, and how to derive discretely
consistent grid velocities for diagonally implicit Runge-Kutta methods. Using a non-
trivial test problem we can demonstrate optimal order convergence. We also show
that a lower-order element-wise mapping is preferable to a full isoparametric map-
ping, which is convenient in the case of rigid body motions. Finally we show how
the scheme has been applied to two complex flapping flight applications.

2 Governing Equations

The fluid flow is governed by the compressible Navier-Stokes equations, which can
be written in conservation form as:

∂

∂ t
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∂
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where the conserved variables are the fluid density ρ , momentum in the j-th spatial
coordinate direction ρu j, and total energy ρE. The viscous stress tensor and heat
flux are given by
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Here, µ is the viscosity coefficient and Pr = 0.72 is the Prandtl number which
we assume to be constant. For an ideal gas, the pressure p has the form p =
(γ − 1)ρ (E−ukuk/2), where γ is the adiabatic gas constant. We write the system
of conservation laws (1)-(3) in vector form as

∂u

∂ t
+∇ ·f(u,∇u) = 0, (5)

where u = [ρ,ρu1,ρu2,ρu3,ρE] is the vector of conserved quantities and f is the
corresponding flux function. In our examples we impose two types of boundary
conditions – free-stream conditions and adiabatic no-slip wall conditions.
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The deformable domains are handled through an Arbitrary Lagrangian Eulerian
(ALE) formulation. A pointX in a fixed reference domain V is mapped to x(X, t)
in a time-varying domain v(t). The deformation gradient G, mapping (or mesh)
velocity ν, and mapping Jacobian g are defined as

G= ∇Xx, ν =
∂x

∂ t
, g = detG (6)

The system (5) in the physical domain (x, t) can then be rewritten as a system of
conservation laws in the reference domain (X, t)

∂U

∂ t
+∇X ·F (U ,∇XU) = 0 (7)

where the conserved quantities in reference space are U = gu with the fluxes F =
gG−1f −uG−1ν, and the gradient of the solution is given by

∇u= (∇X(g−1U))G−T = (g−1
∇XU −U∇X(g−1))G−T . (8)

For more details, including a convenient method for satisfying the Geometric Con-
servation Law (GCL) by introducing an additional set of ODEs, see [11].

3 Numerical Schemes

Discretization of the Navier-Stokes equations

Our 3DG flow solver is based on the high-order Discontinuous Galerkin (DG)
method with tetrahedral mesh elements and nodal basis functions. For simplicity,
we change the notation and use lower-case symbols for the solution u, and we omit
the subscripts on the derivative operators. We also split the fluxes into an inviscid
component F i(u) and a viscous component F v(u,∇u). The ALE system (7) can
then be written in a split form as

∂u

∂ t
+∇ ·F i(u)−∇ ·F v(u,q) = 0, (9)

∇u= q. (10)

Next, we introduce a computational mesh Th = {K} of the reference domain Ω ,
and the finite element spaces V p

h and Σ
p
h :

V p
h = {v ∈ [L2(Ω)]5 | v|K ∈ [Pp(K)]5 ∀K ∈Th}, (11)

Σ
p
h = {τ ∈ [L2(Ω)]5×3 | τ |K ∈ [Pp(K)]5×3 ∀K ∈Th}, (12)

where Pp(K) is the space of polynomial functions of degree at most p ≥ 1 on K,
and 3 and 5 refer to the dimension and number of solution components of the Navier-
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Stokes equations in three dimensions. We multiply the system of equations (9)-(10)
by test functions v,τ and integrate by parts. Our semi-discrete DG formulation is
then expressed as: find uh ∈ V p

h and qh ∈ Σ
p
h such that for all K ∈Th, we have∫

K

∂uh

∂ t
·vdx+

∫
K

(
F i(uh)−F v(uh,qh)

)
: ∇vdx

−
∮

∂K

(
F̂ i(uh)− ̂F v(uh,qh)

)
·vds = 0,∀v ∈ [Pp(K)]5 (13)∫

K
qh : τ dx+

∫
K
uh · (∇ ·τ )dx−

∮
∂K

(ûh⊗n) : τ ds = 0,∀τ ∈ [Pp(K)]5×3 (14)

To complete the description we need to specify the numerical fluxes for all element
boundaries ∂K. The inviscid fluxes F̂ i(uh) are computed using a standard approx-
imate Riemann solver and the modification for our ALE formulation described in
[11]. For the viscous fluxes F̂ v

h , ûh, we use a formulation based on the Compact
DG (CDG) method [10]. At a boundary face, we impose either far field or no-slip
conditions weakly through the fluxes.

Using a standard finite element procedure, we obtain the semi-discrete form of
our equations:

M
dū
dt

= r̄(ū), (15)

for discrete solution vector ū, mass matrix M , and residual function r̄(ū). We in-
tegrate this system of ODEs in time using Diagonally Implicit Runge-Kutta (DIRK)
methods [1], where the solution is advanced from time tn to tn+1 by:

Mk̄i = r̄

(
tn + ci∆ t, ūn +∆ t

s

∑
j=1

ai jk̄ j

)
, i = 1, . . . ,s (16)

ūn+1 = ūn +∆ t
s

∑
j=1

b jk̄ j. (17)

We consider a variety of DIRK schemes, but in particular the 2- and 3-stage L-stable
schemes presented in [1]. Note that the implicit scheme requires inversion of matri-
ces of the form M− aii∆ tdr̄/dū. This is accomplished by using a preconditioned
parallel Newton-Krylov solver, see [12] for details.

Computation of gradients and mesh velocities

The ALE equations (7) require the mesh deformation gradient G, which is com-
puted as the gradient of the mesh position x. The ∇X g−1 term is computed as

∇X g−1 =
−1
g2 ∇X g =

−1
g2 ∇X detG (18)
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where the gradient of detG is computed component-wise using the formula

d det(G)

dXi
= det(G) tr

(
G−1 dG

dXi

)
(19)

with dG/dXi computed numerically.
Next we consider the computation of the mesh velocity ν = ∂x/∂ t. Depending

on the specifics of the problem there are a few different ways in which the mesh
velocities may be calculated. In the simplest case the mesh motion may be given
as an analytic function of time, in which case we may simply take the derivative to
compute the mesh velocity. For example, if the mesh position is given by an inter-
polation of a deformation of the boundary using radial basis functions [2], it is often
natural to use the same interpolation process to interpolate boundary deformation
velocities into mesh velocities.

However, if only numerical values of the mesh position are available we must
resort to a numerical differentiation procedure to compute the mesh velocity. It is
desirable to use a definition which uses specific details of the time integrator used
for the time integration. We say a method of calculating mesh velocities is con-
sistent if, when integrated using the numerical method they recover the numerical
mesh positions. This was done in, for example, [9] for several explicit multistep
and Runge-Kutta methods. Here we show an extension of this idea to the case of
diagonally implicit Runge-Kutta methods.

Given the mesh position xi at stages i = 1, . . . ,s, we say the mesh velocities νi at
stages i = 1, . . . ,s are stage consistent if

xi = x0 +∆ t
s

∑
j=1

ai jν j, i = 1, . . . ,s (20)

where x0 is the initial mesh position and ai j are the Runge-Kutta coefficients.
In the case when A is of full rank, i.e., a fully implicit Runge-Kutta or diagonally

implicit Runge-Kutta method, some algebraic manipulation allows us to write the
stage mesh velocity as a linear combination of the mesh positions

νi =
s

∑
j=1

(A−1)i j
x j−x0

∆ t
, i = 1, . . . ,s. (21)

For a diagonally implicit Runge-Kutta method A−1 is lower triangular so each stage
mesh velocity may be calculated using only mesh positions from that and previous
stages. This preserves an obvious time dependency relationship and may be desir-
able, especially in cases when the stage mesh position is calculated on-the-fly from
current stage variables as in the case of a fluid-structure interaction problem [5].

If the first stage of the Runge-Kutta scheme is explicit, say in an ESDIRK
method, the coefficient matrix A will not be invertible and thus a different approach
is required. In fact, it is clear that the stage mesh velocities νi are not even uniquely
defined in terms of the stage mesh positions xi. In this case it is natural to require
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an initial mesh velocity ν0. The first (explicit) stage mesh velocity ν1 is set to this
value and mesh velocities at later stages are then uniquely given by eq. (20). The
ESDIRK schemes we have considered all have the first same as last property, that
is, the final stage coefficients are the same as the weights, and so it is natural to use
the mesh velocity at the final stage νs of one timestep as the initial mesh velocity in
the following timestep.

4 Mesh Deformation

For the mesh deformation, we use a quasi-static hyperelastic neo-Hookean formu-
lation [7]. The deformation is given by a mapping x(X) which maps a point X in
the unstretched reference configuration Ω to its location x in the deformed config-
uration. We differentiate x with respect to space to obtain the deformation gradient
tensor G asG= ∇Xx(X). The governing equations are then given by

−∇ ·P (G) = b in Ω , (22)
x= xD on Γ , (23)

where P is the first Piola-Kirchhoff stress tensor and b is an external body force
per unit reference volume, which we typically assume is zero. On the boundary of
the domain Γ = ∂Ω we have assumed Dirichlet boundary conditions, i.e., specified
material positions xD.

In this work we use a compressible neo-Hookean material model, with first Piola-
Kirchhoff stress tensor given by [7]

P (G) =
∂W
∂G

= µJ−2/3
(
G− 1

3
tr(GGT )G−T

)
+κ(J−1)JG−T , (24)

where the constants µ and κ are the shear and bulk modulus of the material. For
two-dimensional problems we use a plane strain formulation in which we treat the
stretching in the third dimension as constant.

To develop a finite element formulation for (22)-(23), we define the space of
continuous piecewise polynomials of degree p:

V p
h =

{
v ∈ [C0(Ω)]3

∣∣ v|K ∈ [Pp(K)]3 ∀K ∈Th
}
, (25)

where the domain Ω is divided into elements Th = {K}, and Pp(K) is the space
of polynomial functions of degree at most p ≥ 1 on K. Furthermore, we define
the subspaces of functions in V p

h that satisfy the non-homogeneous as well as the
homogeneous Dirichlet boundary conditions:

V p
h,D =

{
v ∈ V p

h

∣∣ v|∂V = xp
D

}
, (26)

V p
h,0 =

{
v ∈ V p

h

∣∣ v|∂V = 0
}
. (27)
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Here, xp
D is a suitable projection of xD onto the space of piecewise polynomials of

order p defined over ∂V . By multiplying (22) by an arbitrary test function z ∈ V p
h,0,

integrating over the domain V , and integrating by parts, we obtain our finite element
formulation: find xh ∈ V p

h,D such that for all z ∈ V p
h,0,∫

V
P (G(xh)) : ∇z dV =

∫
V
b ·z dV. (28)

This system of equations is generated using standard finite element techniques. Us-
ing nodal basis functions, the computed elemental residuals are assembled into a
global discrete system of equations r̄(x̄) = 0. We solve this system using a stan-
dard Newton method, which involves the Jacobian matrix K = ∂ r̄/∂ x̄ which is
evaluated for each element and assembled into a global matrix. The prescribed dis-
placement at the boundary nodes is imposed by elimination of the corresponding
variables from the system of equations. The linear systems that arise are solved
using a direct sparse solver. For problems with complex deformations, we use the
simple homotopy approach described in [13] to obtain global convergence.

5 Results

Deformed mesh quality

As a test problem to demonstrate the quality of the nonlinear elasticity based mesh
deformation, we consider a square with a smaller square removed from the center:

Ω = [0.0,1.0]2 \ [0.4,0.6]2. (29)

The domain is triangulated in a structured fashion using isoparametric elements of
polynomial degree 2. We fix the outer boundary of the domain and rotate the inner
boundary about the center, [0.5,0.5]T , by an angle θ . Clearly, for increasing θ any
deformation strategy will eventually fail and produce invalid elements. However, for
moderate angles this is a good test case for comparing different methods.

We first perform the mesh deformation using the commonly used radial basis
function interpolation [2]. Here we seek an interpolant giving the deformed mesh
position x as function of the positionX in the reference mesh, of the form

x(X) =
n

∑
j=1
α jφ j(‖X−X j‖2/r j)+p(X) (30)

whereX j are a set of control points, φ j radial basis functions, r j characteristic radii,
and p a linear polynomial. The coefficients α j and coefficients of the polynomial
p are found by imposing the value of x at the control points X j, and additionally
requiring that the function preserves polynomial deformations of degree less than or
equal to the degree of p. We solve the resulting linear system using a direct solver.
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Fig. 1 Mesh deformation using radial basis function interpolation (top) and using the quasi-static
nonlinear elasticity method (bottom).

There are many choices of radial basis functions, but on the recommendation of
[2] we use a C2 compactly supported function

φ(r) =

{
(1− r)4(4r+1) if 0≤ r ≤ 1
0 if 1≤ r.

(31)

with characteristic radius 1, which gave the best results for several different RBF
interpolants and radii examined. The resulting deformed mesh for rotations of 30◦,
60◦, 90◦, and 120◦ are shown in Fig. 1 (top). Here we see that this mesh deformation
method does a very good job with the small deformation (30◦), but has some diffi-
culty with larger deformations. In particular, some elements have already inverted
(i.e., the determinant of the local Jacobian mapping is negative) by 90◦.

In addition one can easily show that a non-inverting deformation of a 180◦ rota-
tion of the inner square is not possible using this technique for any choice of radial
basis function interpolant. To see this, recall that the deformed position of any node
depends linearly on the positions of the boundary nodes. Since a +180◦ and −180◦

rotation of the inner square would lead to the same locations of the boundary nodes,
the RBF interpolant is unable to distinguish between these two cases. In particular,
a curve connecting the left outer boundary to the left inner boundary in the unde-
formed mesh would have to pass both under the square in the +180◦ rotation and
under the square in the −180◦ rotation, which is not possible.

In the bottom plots of Fig. 1 we repeat the same experiment, this time using
the nonlinear elasticity deformation method. Here we set ν = 0.40 and a spatially
varying E according to

E(x) = 1+
100

1+(d(x)/d0)2 (32)
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where d0 = 0.05 and d(x) = max{0.0,min(dist(x,Γin)−d0,dist(x,Γout)+2d0)}.
Here, Γin and Γout are the inner and outer boundaries. This expression for E was
chosen to cause more deformation to occur in the intermediate region between the
inner and the outer boundaries, which is desirable. As the figure shows, the resulting
mesh still has not inverted, even at a rotation of 120◦, although the element quality
does become quite poor for the larger rotations. These results are significantly bet-
ter than what we could achieve even with the best possible parameters for the RBF
deformation.

Because the deformation equations are nonlinear, the system may exhibit multi-
ple solutions for a given configuration of the boundary. In particular, the zero that we
find is going to be dependent upon the initial approximation in the Newton solver. In
particular this means that we are in principle able to construct deformed meshes cor-
responding to +180◦ and −180◦ rotations of the inner boundary using essentially a
homotopy of intermediate rotations.

Convergence test, expanding pressure wave

To study the accuracy of the Arbitrary Lagrangian-Eulerian formulation, we con-
sider a case with a specified analytic mesh deformation and compare the spatial
convergence for several deformation strategies. As a non-trivial test problem, we
consider a viscous flow problem with a small Gaussian perturbation in the density
and the pressure of an otherwise constant state.

As the domain we choose Ω = [0,1]2 with far-field boundary conditions on the
left, bottom, and right walls and an adiabatic no-slip condition on the top wall. The
momentum is initialized as ρu = 0, and the spatially varying initial density and
pressure are ρ = ρ∞ϕ(x) and p = p∞ϕ(x), respectively, where

ϕ(x) = 1+d0 exp(‖x− x0‖2
2/r2

0) (33)

and the non-dimensionalized far-field density ρ∞ = 1. The far-field pressure p∞ is
calculated using the non-dimensionalized sound speed a∞ = 5. The perturbation
parameters where chosen as d0 = 0.1, r0 = 0.1, and x0 = [0.5,0.7]T .

The fluid is modeled using the compressible Navier-Stokes equations (1)–(3),
with dynamic viscosity µ = 1/1000. The background mesh was deformed using an
analytic mapping

x(X ,Y, t) = X +Asin(2πX)sin(2πY )sin(2π f t), (34)
y(X ,Y, t) = Y +Asin(2πX)sin(2πY )sin(4π f t), (35)

with amplitude A = 0.05 and frequency f = 20.
For the time-integration, we use an explicit RK4 scheme with a sufficiently small

∆ t so that the spatial errors are dominating. We integrate until a final time of T =
1/20, which is one entire period of the mesh deformation so that the mesh starts in an
undeformed configuration at time t = 0 and returns to an undeformed configuration
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Fig. 2 An expanding pressure wave on a deforming mesh using a linear deformation (top) and an
isoparametric deformation (bottom), for polynomial degrees p = 5. (Pressure).

at time t = T . This allows us to measure the accuracy of the ALE mapping by
comparing the numerical solution of the problem at t = T to one obtained on a
non-deforming mesh.

The domain Ω is discretized using a regular grid of triangles with element size h,
and we use polynomial degrees p = 1 through 5 within each element. Numerically
the mesh deformation is represented on each element using either a linear p = 1
representation or an isoparametric representation. A time series of the solution on
two meshes is shown in Fig. 2.

We observe that both deformation strategies are able to accurately capture the
radiating pressure wave. Notice that when we represent the mesh deformation using
p = 1 elements the resulting map x(X, t) is piecewise linear and hence the ALE
formulation in Sec. 2 simplifies significantly as the deformation gradient G and
mapping determinant g are both constant. This also simplifies the calculation of the
viscous derivative as an entire term ∇X(g−1) vanishes. However, a p = 1 mesh de-
formation representation is likely not able to capture complicated boundary motions
as accurately as the isoparametric p = 5 representation.

The relative accuracy of using a p = 1 deformation instead of an isoparametric
can be discussed. We would expect the linear p = 1 mapping to produce slightly
better results because it introduces less variations in the solution fields. This intuition
is reflected in a numerical convergence plot which is shown in Fig. 3. Here we
measure the error in the solution at t = T in the discrete maximum norm for a non-
deforming fixed mesh, a p= 1 deformation, and an isoparametric deformation (‘Full
P’) for elements of order p = 1 through 5. In general we observe convergence orders
at the expected p+1 rate for all the cases. For the lower p the difference in accuracy
between the three methods is difficult to ascertain. However, for higher p there is a
notable difference in accuracy between the three methods, with the fixed mesh being
the most accurate and the isoparametric deformation being the least accurate.
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Fig. 3 Spatial convergence in
the discrete maximum error at
the final simulation time for
an expanding pressure wave
for meshes of polynomial
degree p = 1 to 5. The defor-
mation is either linear (P1) or
isoparametric (Full P).
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From this experiment we can generally recommend using a linear representation
of the mesh deformation if possible. If not, the isoparametric deformation gives
adequate results and is able to represent a much larger class of deformations. Mixed
approaches should be feasible and represent a possible compromise.

Flapping wing applications

As two final examples, we show how our methods have been successfully applied
to flapping flight problems. In Fig. 4, the simulation of a pair of flapping bat wings
is shown. A representative surface mesh frame was chosen for the reference do-
main, and a high-quality tetrahedral mesh of the domain was generated (left plot).
This mesh was then deformed for each subsequent time frame using the nonlinear
elasticity approach (middle plot), and a preliminary simulation at a low Reynolds
number was performed (right plot).

The second example is from [16], where several energetically optimal flapping
wing designs were computed using a multi-fidelity approach. These designs were
simulated using the high-fidelity DG framework presented here. Fig. 5 (top) shows
the mesh deformation, and the bottom plots show flow fields from a sample design.

G(X, t)

Fig. 4 A large deformation example of the flapping flight of a bat. The reference mesh (left) is
deformed in time using the nonlinear elasticity approach which maintains the high-quality of the
elements (middle). The right plot shows a sample solution field.
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Fig. 5 High-order simulation of energetically optimal flapping wings (from [16]). The figures
show a reference mesh, two deformed meshes, and some flow fields for a sample design.
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