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ABSTRACT  
  
 At present, there is a consensus that various Stress Driven Rearrangement 
Instabilities (SDRI) are the implications of the mathematically rigorous theoretical Gibbs 
thermodynamics. Many applied researchers and practitioners believe that SDRI are also 
universal physical phenomena occurring over a large range of length scales and applied 
topics. There is a multitude of publications claiming experimental observation of the 
SDRI based phenomena. This opinion is challenged by other highly respected scholars 
claiming theoretical inconsistencies and multiple experimental counterexamples. Such an 
uncertainty is too costly for further progress on the SDRI topic. The ultimate goal of our 
project  is to resolve this controversy.  

 The project includes experimental, theoretical, and numerical studies. Among 
various plausible manifestations of SDRI, the authors focused only on two most 
promising for which the validity of the SDRI has already been claimed by other 
researchers: a) stress driven corrugations of the solid-melt phase interface in macroscopic 
quantum 4He and b) the dislocation-free Stranski-Krastanov pattern of growth of 
semiconductor quantum dots. We devised a program and experimental set-ups for testing 
applicability of the SDRI mechanisms using the same physical systems as before but 
using implications of the SDRI theory for 2D patterning which have never been tested in 
the past.  
  
INTRODUCTION 
 

It is widely believed that the Gibbs variational paradigm (Gibbs, 1868, 1870) can be 
used as a reliable foundation of thermodynamics of heterogeneous systems allowing for 
the exploration of equilibrium and stability in these systems. Although universal stability 
conditions of such systems can be found in many textbooks on thermodynamics, they are, 
in fact, valid for the systems with liquid phases only. An adequate stability theory of 
heterogeneous systems with solid phases was suggested in 1982 and its basic results were 
summarized in a monograph (Grinfeld, 1991). The main conclusion of the theory was 
totally unexpected: contrary to the existing experimental data and observations, the 
theory claims that various morphological instabilities at the phase interfaces in 
heterogeneous systems should exist. Similarly to the consideration of Gibbs this general 
stability theory was based on the reliable foundation of nonlinear elasticity. Therefore, 
any possibility of artifacts, which are quite often generated by linear elasticity, was 
eliminated. Therefore, a difficult dilemma appeared: to accept the existence of multiple 



undetected instabilities or to recognize the limited predictability potential of Gibbs 
classical paradigm. The controversy is still far from convincingly resolved. Physicists, 
however, took the possibility of multiple morphological instabilities seriously.  They 
started to adopt the exact theory to their traditional techniques and look for potential 
experiments and existing data that would bring the results from the world of abstract 
ideas to the world of real physical phenomena. In addition to the experiments with the 
instability of “stressed crystal – melt” in 4He, suggested by Grinfeld (1986), several other 
possibilities have been suggested (Nozieres, 1989, Carolis et al, 1989, Srolovitz, 1989, 
Leo and Sekerka, 1989, and many others later on). On the theoretical side, it was 
demonstrated that the many conclusions of the exact nonlinear theory of SDRI can be 
obtained on the basis of linear elasticity (Nozieres, 1989). That was quite an unexpected 
development since the classical theory of elastic stability cannot be based on linear 
elasticity, in principle: neither at finite nor at infinitesimal deformations. The analysis by 
Nozieres has changed the attitude of specialists regarding the earlier exciting paper of 
Asaro and Tiller (Asaro and Tiller, 1972) and has returned it to active life. Nozieres 
(Nozieres, 1989) made a remarkable effort to prove the “stressed crystal – melt” 
instability by appealing directly to a variational principle of minimum energy. 
Unfortunately, this part of Nozieres work, which is not based on assumption of linearity, 
still remains unappreciated by interested communities.  

Of various SDRIs effects, two plausible manifestations have received the most 
attention: i)stress driven corrugations of the solid-melt phase interface in macroscopic 
quantum 4He and ii) the  Stranski-Krastanov pattern of growth of semiconductor quantum 
dots. The first one was announced by Grinfeld (1986) and experimentally confirmed by 
Torii and Balibar (1992) and Thiel et al. (1992). The latter plausible manifestation was 
suggested by Srolovitz (1989) – its role has grown considerably after observation of the 
dislocation-free Stranski-Krastanow pattern of epitaxial growth of nanoscale solid films 
(Eaglesham and Cerullo, 1990, and LeGueus et al., 1990).  

Since the successful experiments (Torii and Balibar, 1992 and Thiel et al, 1992) 
there has been no other  published experimental work on the SDRI “stress crystal – melt” 
during the past 14 years. According to Nozieres (Nozieres, 1993), there is a conceptual 
problem with  the SDRI-based interpretation of the dislocation free Stranski-Krastanow 
pattern of epitaxial growth.   In the authors’ opinion these circumstances demand a more 
careful experimental verification of the SDRI-based interpretation of the two phenomena. 
Therefore, we suggest some new experiments with helium crystals and nanoscale solid 
thin films based on other conclusions of the SDRI theory. This combined effort is the 
main thrust of our research and of this paper.  

Because of natural page limitation of this short paper neither of the aspects of the 
SDRI topic can be discussed in a detailed manner here. A much more complete 
description of the connection between the topics of Helium crystals and quantum dots can 
be found in Grinfeld (1993, 1994, 1995) (in particular, interested readers can find there a 
detailed derivation of the key formula (1) of this project). The advantages of using 
experiments with Helium crystals for studies of various materials science systems have 
been discussed in the special paper “Helium crystals as a probe in materials science” ���
Balibar and Nozieres (1994). Currently, both areas have the same main goal: it is to 
demonstrate the SDRI is not just a theoretical artifact of Gibbs thermodynamics but also a 
physical reality. A lot can be gained by studying the two phenomena in parallel. 



Similarity in observed patterns would be strong evidence that both phenomena are indeed 
based on the same SDRI mechanism. Strong differences in the observed patterns would 
show that, at least, one of the phenomena has nothing in common with the SDRI 
mechanism (the Nozieres conjecture of 1993). 

 
 
THE MORPHOLOGICAL INSTABILITY OF EPITAXIAL FILM VIA 
NOZIERES METHOD 
 

Since Nozieres method is based on linear elasticity, it cannot be treated as a reliable 
thermodynamically acceptable proof of the SDRI. But it seems to be extremely 
convincing for a majority of physicists, and it is a very useful shortcut for getting the 
main quantitative results quickly.   Let us consider a thin crystalline film of a thickness H 
coherently attached to a solid crystalline substrate with mismatch in the lattice 
parameters. It is the typical situation in various applications (epitaxial crystal growth, 
"coating" with thin films, engineering of interfaces and composites, etc...) that the films 
appear to be highly stressed. The stresses can be produced, say, by the misfit in the lattice 
parameters of the epitaxial film and the substrate or by the thermal stresses due to a 
discrepancy in the expansion coefficients of the film and the substrate. We use the 
notation 1T , 2T  for the in-plane principal misfit stresses generated in the unbounded film 
of uniform thickness. These parameters (together with the directions of the principal 
stresses) completely characterize the stressed state of the film with flat boundary since 
the upper boundary of the film is traction-free. The stressed crystalline film accumulates 
a certain amount of energy, E , consisting of two parts: the bulk (elastic) energy eE  and 
the  surface energy Esurf.  A corrugated film with the thickness deviation described by the 
function ),( 21 xxMε  of the in-plane coordinates 21 , xx will accumulate less elastic energy 
(Ee

corr), compared with the energy of a flat film (Ee flat), which was calculated explicitly 
for the case of isotropic elastic substances by Nozieres (1989) and Grinfeld (1993, 1994, 
1995). Referring interested readers to these publications for details, we present only a  
typical result for the case when the film and substrate have the same  shear modulus µ  
and  Poisson ratio ν :  
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(1) shows that the minimum energy surface pattern changes dramatically i) with changing 
external stresses T1 and T2  , as in the quantum helium experiments or ii) for different 



lattice mismatch epitaxial systems, as in the quantum dot experiments. Experimental 
verification of this very implication of the SDRI theory is one of the central thrusts of our 
project.   
 
THE EXPERIMENTS WITH QUANTUM 4He  

 
As is well known, 4He remains in liquid state down to absolute zero.  If the liquid 

4He is pressurized to 25 bars, it crystallizes into hcp solid phase at temperatures below 
1.5 K.  The liquid/solid interface of 4He at low temperatures has many advantages in the 
study of SDRI such as small latent heat in liquid/solid conversion, rapid melting and 
freezing and efficient normal/superfluid convective heat flow.  The length scale involved 
in the spatial variation in SDRI on 4He solid is truly macroscopic (on the order of 
millimeters).  The small magnitudes of both the surface tension and the shear modulus 
lead to relatively small critical uniaxial stress for the onset of SDRI. 

As it was already mentioned, the SDRI 
“stressed crystal – melt” was experimentally 
confirmed by Torii and Balibar (1992) and Thiel 
et al. (1992). In order to make further studies we 
built a cryogenic optical interferometer 
apparatus including piezoeletric transducers for 
applying 2D-stresses to the 4He crystal. Such a 
setup permits experimental verification of 
different surface patterns implied by the formula 
(1) and others announced in Grinfeld (1993 - 
1995) and Kassner et al (2003). 

An example of an interference pattern is 
shown in Figure 1. Here, the chamber is cooled 
to 1.25 K and pressurized to the melting 
pressure of 25 bars.  After a solid seed appears, 
its size is decreased to less than 0.5 mm by 
removing helium from the chamber. When 

applied stress exceeds the threshold value for the sample, spectacular localized and 
irregular patterns begin to develop. The high values of applied stress induce several 
regions to form deep valleys whose nascent stages can be seen by the dense curled up 
interference line pattern  (indicating rapid change in solid height). The lines become so 
dense as to produce dark patches in several regions. The relaxation phenomenon is a 
topic of future studies. Our observations indicate that the critical threshold strain is in a 
range which is fairly close to the theoretical predictions. Since our interference pattern 
does not show any periodicity, it is not possible to make comparison with the predicted 
critical wavelength.  In view of our observation that the strain is not uniformly applied 
onto the sample, it may not be unreasonable that the instability does not form regular 
periodic pattern. Further optimization of this experiment is necessary in order to 
unambiguously verify the SDRI in the quantum Helium case.  
 
THE DISLOCATION-FREE PATTERN OF EPITAXIAL GROWTH IN 
SEMICONDUCTOR NANO-FILMS 

Figure 1. Interference pattern in solid 
helium-melt interface with externally 

applied stress. 



 
Another manifestation of SDRI as implied by formula (1) relates to the dislocation-

free-Stranski-Kranstanov (DFSK) growth of quantum dots. ARL’s interest in the DFSK 
pattern of epitaxial growth of solid nanofilms goes well beyond the more limited goals of 
this project. With increasingly reduced dimensions of electronic devices, it will be 
necessary to explore quantum size effects in materials and devices at the nano-scale. 
Thus, the experimental and theoretical results offered by this project are extremely 
valuable and easily transferable at a later stage to the wide variety of strain-induced self-
assembling nanostructures and devices. We wish to explore the question (Nozieres, 1993) 
on the validity of SDRI mechanism of DFSK pattern for materials that are of particular 
interest (e.g. InAs, GaAs, SiGe, etc). 

Hundreds of experimental papers relating to III-V quantum dots have been 
published over 10-15 years. They have been reviewed in recent monographs (Bimberg, 
Grundmann, and Ledentsov, 1999; Yao and Woo, 2001). We refer interested readers to 
these comprehensive reviews. Contrary to our project, however, none of the experiments 
mentioned in these reviews has been designed from the standpoint of verification of 
applicability of the SDRI mechanism. 

Our experimental work involves the growth of a series of strained-layer samples 
and the subsequent characterization of the morphology and the nanostructure using 
atomic force and transmission electron microscopy. An example experiment is a 
comparison of InAs grown on GaAs substrates (a system currently being used to form 
quantum dots as shown in Figure 2) with GaAs grown on InAs substrates (with a 
potential to form quantum antidots).  These are binary semiconductors in which the strain 
induced in the thin epitaxial films would be equal in magnitude but opposite in sign 
(compressive for the former and tensile for the latter).  This is an ideal system for testing 

the predictions of the 
theoretical model. 
We have 
characterized the 
dependence on the 
growth temperature 
of the size, shape, 
and number density 
of a series of InAs 
quantum dots grown 
on GaAs substrates.  

Complementary growths of GaAs films on InAs substrates are in progress.  Another test 
experiment involves growth of the In(x)Ga(1-x)As on InP substrates where the structure can 
be in tension or compression as a function of x. The results from the characterization of 
the morphology and nanostructure will be eventually correlated with the growth 
parameters and the theoretical studies and discussed in the light of the current theoretical 
views for the underlying mechanism. 
  
NUMERICAL MODELING/VISUALIZATION OF DEFORMABLE STRESSED 
CRYSTALS 
 

Figure 2  Cross sectional transmission electron micrograph of defect-free 
InAs quantum dots. 



 
Computational work is based on numerical analysis of the mathematical problem 

formulated in the concluding section “The problem of equilibrium shape of deformable 
crystal” of the monograph (Grinfeld,1991) and analyzed further by Grinfeld (1991, 
1993), Spencer and Tersoff (1997), Bonnetier et al. (1999) and others.  

Multiple publications in physical literature related to numerical simulations of the 
SDRI effects appeared during last 10-15 years as well (we refer interested readers to the 
publications [21] and references therein). By its very nature, each scheme of numerical 
simulation brings one or numerical artifacts. The way to avoid these artifacts is to use a 
battery of various numerical schemes the hope that artifacts will be eventually eliminated 
by comparison. 

Our numerical simulation of the quasi-static interface evolution is based on a 
combination of the level set method (Sethian, 1999, Osher and Fedkiv, 2002), the finite 
element procedure described in Fix and Strang (1974), and the moving mesh generation 
method of Strang and Persson (2005). The deformed interface is represented implicitly 
and propagated using the level set method. The elastostatic problem is discretized with a 
finite element method, using the same grid as the interface representation. A highly 
efficient matrix-free multigrid solver is used to solve the linear systems of equations, 
which allows us to use millions of degrees of freedom on a standard desktop computer. 

The prestraining εx, εy is applied on the discretized system by writing the total 
displacement field as a sum of a given stretched field U0 = εx X + εy Y and an unknown, 
periodic perturbation U. We then solve for U in KU = -KU0, where K is the stiffness 
matrix with boundary conditions incorporated.  

 Figure 3 shows the results of a three 
dimensional simulation. Our computational 
domain is a block of dimensions 4×4×1, 
discretized with a grid of size 193×193×49 for a 
total of 1,825,201 nodes and 5,475,603 degrees 
of freedom. Initially, the surface is located a 
distance 0.66 from the bottom of the domain, 
and the height is perturbed at each node in the x1, 
x2-plane by normally distributed random 
numbers with a standard deviation 0.0025. The 
material has Young’s modulus E = 1, Poisson’s 
ratio ν = 0.3, and surface tension and σ  = 0.05 
in the simulation. Qualitatively, our pattern 
resembles the corrugation pattern obtained by 

the McGill Advanced Materials group which can be found at 
www.miam.mcgill.ca/people.html.  

The boundary conditions specify the displacement in the z-direction (z = 0 at the 
bottom face), and all displacements zyx uuu ,,  are periodic at the left/right and the 

front/back faces. We use a timestep ∆t1 = 0.05σ  for the curvature independent part, and 
∆t2 = ∆t1/10 for the motion by curvature. Animations of the quasi-static time evolution 
can be found at www-math.mit.edu/~persson/qdots. 
 
CONCLUSIONS 

Figure 3. Morphology of the surface of 
stressed crystal - final configuration from 
the numerical modeling . 



 
The existence of various SDRIs is an implication of Gibbs thermodynamics. 

Although there are several plausible physical manifestations of the SDRI it still remains 
unclear/unproved/challenged whether the SDRI is in fact the real physical mechanism of 
these phenomena. Currently, low temperature physics and solid-state nano-epitaxy 
physics have the same common goal regarding the SDRI: it is to demonstrate that the 
SDRI is not just a theoretical artifact of Gibbs thermodynamics but also a physical 
reality.   

Experts of the SDRI topic in low temperature physics do not accept the SDRI as the 
underlying mechanism of the Dislocation-Free Stranski-Krastanov pattern of epitaxial 
growth (Nozieres, 1993). We do not completely share their opinion. We are certain, 
however, that criticism of low temperature physicists should not be ignored or silenced. 
On the contrary, we take this criticism seriously and think it should be discussed widely 
and openly. Yes, there are several plausible physical manifestations of the SDRI. But, 
there are also thousands of observations and experiments obviously contradicting 
predictions of the SDRI theory.  

It would be naïve to expect that ultimate conclusion can be made overnight based on 
one single effort like ours. We strongly believe, however, that only carefully and 
meticulously designed multiple experiments are able the resolve the controversy of the 
two respectful groups of researchers. First fruits of the experimental program discussed 
above confirm the Nozieres (1993) conjecture to a certain extend. It would be premature, 
however, to make the ultimate decision of applicability of the SDRI mechanism for the 
Dislocation-Free Stranski-Krastanov pattern.  It seems reasonable, however, to follow the 
advice of Nozieres and to begin thinking seriously about finding alternative physical 
mechanisms of nucleation and evolution of quantum dots.  
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