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Recent theoretical and experimental work has suggested that placing a vertical-axis wind
turbine near a similar turbine that is rotating in the opposite direction may improve the
efficiency of both turbines. A high-order Implicit Large Eddy Simulations (ILES) method
is used to confirm these results by modeling a 2D cross-section of the wind turbines. In
order to account for the moving domain, an element flipping technique is employed. This
approach flips elements and uses an L2-projection on the interfaces between the rotating
turbines and the static outer mesh region. An Arbitrary-Lagrangian-Eulerian method
is used to solve for the dynamic pressure and shear stress on the turbine blades using an
isentropic formulation of the compressible Navier-Stokes equation. Our preliminary results
seem to confirm those of the recently published experiments for straight-bladed, counter-
rotating turbines. When the turbines are oriented such that a line connecting their centers
of rotation is perpendicular to the incident wind direction, the power coefficient of each
turbine can increase by more than 10%. In fact, when the turbines are oriented in a
doublet-like configuration, where the blades travel upwind in the interior region between
the turbines, our simulations show that the power coefficient of each turbine is increased
by 15%. However, unlike the experimental results, when the incident wind is oriented
parallel to this line, the power coefficient of the shadowed turbine is reduced significantly.
We show snapshots of the fluid velocity and hypothesize why the power of the turbines
may be increased due to blockage effects. That is, at certain azimuthal angles the relative
wind speed that the blade encounters is larger than in the isolated case.

I. Introduction

Vertical-axis wind turbines (VAWTs) fell out of favor during the development of the wind energy industry
at the end of the twentieth century due to their inferior efficiency, reliability and structural integrity as
compared to their horizontal-axis counterparts. As the popularity of floating wind turbines continue to
grow (see recent publications such as Refs. 1, 2, 3, 4) researchers are re-examining ways of improving the
efficiency of vertical-axis wind turbines. One such method, which was first theorized by Refs. 5 and 6, is
to use counter-rotating vertical-axis wind turbines. More recently, an experimental wind farm showed that
by using counter-rotating turbines, the energy extraction per planform area could increased by a factor of
ten.7 Interestingly, the experimental data did not show a ‘wake effect’ when one turbine was placed directly
downwind of its counterpart.

By placing two, counter-rotating turbines on a single floating platform, the torque on the platform can
be controlled such that a taut mooring system is no longer necessary to take off power.4 Furthermore, these
turbines have lower centers of gravity than their horizontal-axis counterparts, which make them inherently
more stable. In Ref. 4, we theorize that if multi-MW VAWTs can be proven to operate reliably for the
normal lifetime of a power plant (20-25 years, usually), then the cost of floating offshore wind technologies
may be reduced drastically. Counter-rotating turbines, however, break the circumferential symmetry of a
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single vertical-axis wind turbine, which makes it insensitive to the incident wind direction. Due to this
asymmetry, we expect there to be certain favorable wind directions where the power from the turbines is
maximized. The results from the onshore experimental wind farm show that, indeed, there is a favorable
wind direction, which leads to a great power output of the turbines. For turbines on a floating platform, their
orientation relative to the incident wind direction can more easily be changed in response to the changing
incident wind conditions. We speculate that for the power to be optimized, the wind turbines need to be
oriented properly, or else one turbine will be directly in the wake of the other.

The paper is organized as follows. First, we describe the ILES method and discretization techniques we
used to numerically recreate the 2-bladed VAWT tested by Strickland in Ref. 8. We describe the ‘element-
flipping’ technique that is used to take into account the moving interfaces in the domain between the two
turbines and the static outer mesh. We show how the power coefficients of the turbines vary as a function of
the incident wind direction and other parameters, such as the turbine spacing distance. We conclude with
a discussion on how we believe the power is increased due to a blockage effect of the spinning turbines.

II. Mathematical Model

II.A. Governing Equations

Our simulations are based on an artificial compressibility formulation of the Navier-Stokes equations, which
can approximate nearly incompressible flows well.9 The governing equations are derived from the compress-
ible equations by introducing an artificial equation of state,10 which we define by an isentropic assumption
defined in terms of an artificial Mach number M . The resulting compressibility effects can be shown to scale
as O(M2), and with some assumptions the solution approaches the incompressible case as M goes to zero.
This results in a system of equations in the conserved variables ρ (density) and ρu (momentum). We impose
two types of boundary conditions, free-stream flow (far field) and prescribed velocity (wall).

II.B. Model Turbine

The VAWT chosen for this study was the one built and tested by Strickland and reported in Ref. 11 as
well as in Ref. 8. Since the model VAWT was actually tested in a tow-tank, the average chord Reynolds
number for turbine blades is approximately 40 · 103. A schematic of the experimental test setup is shown in
Fig. 1. The width of the tow tank was 5 m, so the effect of the side walls on the turbine blades is negligible.
However, the bottom of the blades were only approximately 35 cm away from the bottom of the tank, so
the proximity of this boundary on the blades could have a significant effect on the flow around the blades.
The physical parameters of the VAWT are shown in Table 1. The definitions of these parameters as well as

Figure 1. Schematic of tow tank experiment of low Re VAWT performed by Strickland in Ref. 11 and 8.

2 of 12



the definition of the azimuthal angle used for this study are shown in Fig. 2, where the 2-bladed VAWT is
shown in plan view. The tip speed ratio λ = ω1R/U∞ was fixed at 5.0 for this study. The tip speed ratio is
defined as the ratio of the speed of the blade relative to the incident wind speed U∞. In Ref. 11, the authors
do not explicitly report the blade offset distance c0 as a percentage of the total chord length c, which is
the distance from the leading edge of the airfoil to the blade mounting point, along the chord line of the
airfoil. However, from the discussion on pages 57 and 59 of 11 on the measurement of the moment about
the quarter-chord, we infer that c0 = c/4. From this section, we also infer that the intended blade offset
pitch angle α0, as shown in Fig. 2, to be 0◦. Yet, the authors report uncertainty in the measurement of the
azimuthal angle on the order of 1◦. The determination of the actual α0 used in the experiments is discussed
in Ref. 12. We chose the static ‘toe-out’ angle of each of the airfoils α0 to be 2◦, since it best matches the
experimental data.
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Figure 2. Plan view of 2-bladed VAWT with definitions of angle of attack α, blade offset pitch angle α0, chord length
c, blade offset distance c0, VAWT radius R, azimuthal angle θ, and VAWT angular velocity ω1.
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Figure 3. Plan view of counter-rotating VAWTs with definitions of VAWT radius R, azimuthal angular offset θ̄1, and
normalized distance D̄.
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Parameter Value Unit

c 9.14 cm

R 61.0 cm

λ 5 -

α0 -2 deg

c0 0.25c cm

Table 1. Geometry and turbine parameters for the VAWT simulated in this study.

III. Numerical Approach

The initial spatial mesh at t = 0.0

Figure 4. The unstructured triangular mesh for the double VAWT simulations. The initial mesh is showed on the top,
where all the edge flipping operations happen in the area colored in red. To illustrate the mesh motion, three zoom-in
plots are shown at the bottom for the area circled by a yellow window in the top plot.

III.A. Computational Domain and Moving Mesh Strategy

We use an unstructured triangular mesh for the physical domain, see Fig. 4. A hybrid structured approach
is used to form the boundary layer elements around the airfoils. The rest of the computational mesh is
fully unstructured and is generated using the DistMesh mesh generator.13 We use a slight refinement of the
elements in the area behind the trailing edge of the airfoils in order to improve the resolution. In addition, as
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high-order methods require meshes with curved boundaries, we use the elasticity-based approach proposed
in Ref. 14 to produce well-shaped meshes with globally curved elements.

As the two turbines rotate, the mesh has to be moved accordingly. However, since the turbines rotate
individually around their center axes, we cannot simply rotate the entire mesh like was done in the single
turbine case in Ref. 12. Instead, we use the following moving-mesh strategy that incorporates rigid rotations
that stretch the elements as well as techniques to change the element connectivities to prevent poor element
qualities. First, we partition the mesh into three parts – two circular meshes around the two turbines and
one rectangular mesh with two holes for the rest of the outside area. The two circular meshes are rigidly
rotated according to the motion of the two wind turbines, and the outer mesh remains static. To glue all
these parts together, we connect the boundary nodes of each part together and form two intermediate layers
of triangular elements (the area colored in red in Fig. 4). Due to the rigid rotations, the elements in these
intermediate layers will become stretched and eventually inverted without connectivity changes. To address
this problem, at each time step we update the mesh connectivity in the intermediate layers by edge flipping
operations.15 As shown in Fig. 5, we consider a pair of adjacent triangles where at least one of them has an
unsatisfactory element quality. We then flip their shared edge and produce two new triangles sharing the
new edge but with better element qualities. During each time step, we can perform this operation multiple
times until the quality of all the elements in the intermediate layers are above a certain threshold.

Figure 5. A local topology change for two adjacent triangles (a so-called element flip), which improves the quality of
the elements.

Figure 6. The mapping between the reference domain and the physical domain in the ALE framework.

III.B. Arbitrary-Lagrangian-Eulerian (ALE) Framework

For the turbine simulations, we account for the moving and deforming domains by the mapping-based
Arbitrary Lagrangian-Eulerian (ALE) formulation proposed in Ref. 16. As illustrated in Fig. 6, we denote
the time-varying domain as v(t) ∈ Rn and consider the governing equations of the compressible isentropic
flow in v(t) as a system of conservation laws,

∂u

∂t
+∇ · f(u,∇u) = 0 (1)

where u is the vector of conserved variables and f is the flux function.
The ALE formulation then chooses a fixed reference domain as V , and constructs a smooth mapping

G(X, t) : V → v(t) between the reference domain and the moving domain. Based on this mapping, we
define the deformation gradient G, mapping velocity vX and mapping Jacobian g as

G = ∇XG, vX =
∂G
∂t
, g = detG. (2)

5 of 12



Using these quantities, we can rewrite the conservation law (1) as a new system in the domain V ,

∂U

∂t
+∇X · F (U ,∇XU) = 0 (3)

with new solution vector U and new flux functions F . We refer to Ref. 16 for more details on these functions
and for the derivation of the transformation.

III.C. Discontinuous Galerkin Discretization

Next, we introduce our numerical discretization for equation 3 in the reference domain, which is based on a
nodal Discontinuous Galerkin (DG) method. A standard procedure17 is used for the viscous terms, where
the system is split into a first-order system of equations:

∂U

∂t
−∇X · F (U , q) = 0 (4)

∇XU = q. (5)

Next we introduce a conforming triangulation T h = {K} of the computational domain V into elements K.
On T h, we define the broken spaces VhT and ΣhT as the spaces of functions whose restriction to each element
K are polynomial functions of degree at most p ≥ 1,18

VhT = {v ∈ [L2(D̄)]m | v|K ∈ [Pp(K)]m ∀K ∈ T h}, (6)

ΣhT = {σ ∈ [L2(D̄)]m×n | σ|K ∈ [Pp(K)]m×n ∀K ∈ T h} (7)

where n is the spatial dimension, m is the number of solution components, and Pp(K) denotes the space of
polynomials of degree at most p ≥ 1 on K. Then the DG formulation for equations (4) and (5) becomes:
find Uh ∈ VhT and qh ∈ ΣhT such that for each K ∈ T h, we have∫

K

∂Uh

∂t
· vhdx−

∫
K

F inv(Uh) : ∇Xv
h dx+

∮
∂K

̂(F inv · n) · vh ds

= −
∫
K

F vis(Uh, qh) : ∇Xv
h dx+

∮
∂K

̂(F vis · n) · vh ds, ∀vh ∈ VhT (8)∫
K

qh : σh dx = −
∫
K

Uh · (∇X · σh) dx+

∮
∂K

̂(Uh ⊗ n) : σh ds, ∀σh ∈ ΣhT . (9)

Here, we have split the flux function into an inviscid and a viscous part according to F (U ,∇XU) =
F inv(U) + F vis(U ,∇XU). For the numerical fluxes in the boundary integrals, we use Roe’s method19 to
approximate the inviscid flux and we treat the viscous flux using the Compact Discontinuous Galerkin (CDG)
method.20 From equations (8) and (9), a non-linear semi-discrete system is assembled using a standard
finite element approach, which we solve using a parallel high-order diagonally implicit Runge-Kutta (DIRK)
solver.21

III.D. Local L2-Projections

The ALE framework relies on the mapping G(X, t) being smooth, which is only possible if the mesh can
be moved without connectivity changes. To allow for the frequent element edge flips in our moving-mesh
strategy, we employ the L2-projection strategy proposed in Ref. 15 to locally interpolate the solutions between
the old and the new meshes.

It is clear that each local edge flip replaces two old elements by two new elements. Denote the old pair by
{K1,K2} and the new pair by {K̃1, K̃2}, see Fig. 7. We can easily form the 4 sub-triangles {K̃1 ∩K1, K̃1 ∩
K2, K̃2 ∩K1, K̃2 ∩K2} by finding the edge intersections. Suppose {φi1, φi2, . . . , φiN} are basis functions of the

old element Ki and {φ̃i1, φ̃i2, . . . , φ̃iÑ} are basis functions of the new element K̃i. Write the numerical solution

Uh as a linear combination of the basis functions of the old element Ki as

Uh =

N∑
j=1

U i
jφ

i
j . (10)
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The old pair The new pair Sub-triangles
Figure 7. Local element splitting for edge flips.

The L2-projection then computes an approximate solution Ũh to Uh on the new element K̃i as

Ũh =

Ñ∑
j=1

Ũ i
j φ̃

i
j , (11)

by solving the linear system

M


Ũ i

1

Ũ i
2

...

Ũ i
Ñ

 = P 1


U1

1

U1
2
...

U1
N

 + P 2


U2

1

U2
2
...

U2
N

 (12)

where

Mj,k =

∫
K̃i

φ̃ikφ̃
i
jdx, P 1

j,k =

∫
K̃i∩K1

φ1
kφ̃

i
jdx P 2

j,k =

∫
K̃i∩K2

φ2
kφ̃

i
jdx. (13)

Equation 12 can be solved for Ũh and used as the transferred solution to resume the time-stepping process
on the new mesh. The details on this derivation can be found in Ref. 15.

Our combined method for the moving-mesh strategy, ALE framework, DG scheme and local L2-projection
is summarized in algorithm 1.

Algorithm 1 Discontinuous Galerkin ALE Method with Local L2-Projections

Require: Triangulation T h and initial solution Uh,t0 at t0
Require: Time step ∆t and mesh quality threshold δ
Ensure: Solution Uh,ti for each time step ti until time T
while t0 < ti ≤ T do

Rigidly rotate the two circular meshes
Compute deformation gradient G, mapping velocity v and mapping Jacobian g
Solve Uh,ti by the DG method with the ALE framework
if min quality of K ∈ T h < δ then

Create T̃ h by local element flipping
Solve for Ũh,ti by local L2-projections
T h ← T̃ h
Uh,ti ← Ũh,ti

end if
end while
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IV. Results

To explore the efficiency of the turbines the tangential force on each airfoil of the turbines is calculated.
The sectional tangential force coefficient is usually defined as,

CjT,i(θ) =
F jT,i(θ)

1/2ρU2
∞c

(14)

where F jT,i is the sectional tangential force of the ith blade on the jth turbine, with i = 1, .., Nb and j = 1, 2.

For a straight-bladed VAWT, the power coefficient of the jth turbine Cjp is a function of the average of the

tangential force coefficient over one revolution, C̄jT and other parameters, such that

CjP =

Nb∑
i=1

ω
2π

∫ 2π

0
F jT,i(θ)Rdθ

1/2ρU3
∞2R

=

Nb∑
i=1

λC̄T,i
2

c

R
(15)

In the following section we define an average power coefficient for the turbine pair as

C∗p =
C1
p + C2

p

2C̄p
(16)

where C̄p is the average power coefficient of an isolated turbine. To calculate this baseline value, the rotational

speed of one of the turbines is set to null, such that θ̇2 = 0 and ran the same simulations. Varying which
turbine was frozen and the incident wind direction resulted in less than 5% variation of the power coefficient
of the isolated turbine.

IV.A. Parameter Study

In order to maximize the synergistic effect, the distance between the centers of rotation of the turbines
2RD̄was varied to determine the optimal distance between the turbines. The results of this parameter study
are shown in Fig. 8.

The circumferential direction represents the direction the incident wind originates from. The radial
direction represents the normalized power coefficient C∗p . For β1 = 90◦, 270◦, C∗p < 0 due to the shadowing
effect from the upwind turbine, which can be seen in Fig. 11, as well. This effect was not seen in the
experimental study reported in,7 who even saw a slight jump in the efficiency around β1 = 105◦ (which is
195◦ in their figure since their orientation of β1 is offset by 90◦).

We use the vocabulary developed for counter-rotating cylinders studied in 22, such that when the wind
comes from the ‘North’ (β1 = 0◦) the configuration is ‘doublet-like’, while when the wind comes from the
‘South’ (β1 = 180◦), it is ‘reverse doublet-like’. From Fig. 8, it is clear that the turbines are most efficient
in the ‘doublet-like’ configuration, gaining nearly 30% total power from their isolated counterparts. This
synergistic effect is almost as large in the ‘reverse doublet-like’ configuration.

In Ref. 4, the turbines are forced to counter-rotate at the same speed using a timing belt system, to
control the platform orientation. Thus, the angular offset of the turbines, denoted as θ̄1 and portrayed in
Fig. 3, is fixed in time. Figure 9 shows the variation of the average power coefficient when the angular offset
of the turbines is changed to 30◦ and 90◦. The plot shows that the power coefficient is fairly insensitive to
this variation.

IV.B. Flow Structure

To further explore the results, we can visualize the fluid velocity at certain time instants ~U = [u, v]. Figure
11 shows a time instance of the domain with the color representing the magnitude of the fluid velocity in
the direction of the incident wind speed. Clearly, the flow is accelerated between the turbines by over 50%.

u∗(~x, t) =
~U(~x, t) · ~β1

|U∞|
(17)

However, when β1 is orthogonal to the orientation of the platforms, the upstream turbine retards the incident
flow to such a degree that the power produced by the downstream turbine is actually negative, which means
that the turbine needs power to spin. Hence, the polar plots in Figs. 8 and 9 show negative total power
produced by the turbine pair.
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Figure 8. Average power coefficient of counter-rotating wind turbines as a function of wind direction and turbine
spacing.

V. Conclusions and Future Work

To the authors’ knowledge the findings presented herein represent the first preliminary study of counter-
rotating vertical-axis wind turbines using high-order LES techniques. The results confirm that the synergistic
effect between the counter-rotating turbines (found from previous experimental work described in 7) may be
up to 25-30%. However, the optimal angle to maximize this beneficial is quite different than the one which
has been previously published. We find that either the ‘doublet-like’ or ‘reverse doublet-like’ configurations
are the optimal orientations for the turbines.

There are many reasons why the work here may not agree with the previously published experimental
data. Namely, the simulations performed in this study were in 2D using uniform incident flow. At the
experimental field site, the incident wind is certainly turbulent with a vertical variation proportional to the
atmospheric boundary layer. Furthermore, under certain tip-speed ratios (for instance, λ < 5 as shown in 12),
three-dimensional effects become significant. The turbines used in the experimental study were purchased
from Windspire EnergyTM, who uses proprietary airfoil shapes on their turbines. Thus, an exact numerical
replica could not be built.

V.A. Future Work

In the future, we hope to perform a more in-depth analysis of the flow fields and momentum fluxes to
determine how the blockage effects of the turbines can cause the flow around the turbines to accelerate.
We surmise that it is this accelerated flow field, which leads to an increase in the relative wind speed over
certain range of azimuthal angles, that may lead to increase power production of the turbines. However,
this argument would only hold for the case of a ‘doublet-like’ configuration. The physical mechanism for the
increased power production in the ‘reverse doublet-like’ configuration remains an open question.
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Figure 9. Average power coefficient of counter-rotating wind turbines as a function of wind direction and turbine offset
angle θ̄1 (see Fig. 3).
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