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1 Introduction

In this project, I describe in detail the implementation of a finite element
based solver of the incompressible Navier-Stokes equations on unstructured
two dimensional triangular meshes. I present the equations that are solved,
how the discretization is performed, how the constraints are handled, and
how the actual code is structured and implemented.

Using my solver, I run two traditional test problems (flow around cylin-
der and driven cavity flow) with a number of different model parameters. I
compare the result from the first problem with the solution from ADINA as
well as with values from other simulations. I investigate how much nonlin-
earities I can introduce by increasing Reynold’s number, and I discuss the
performance of my code.

2 Governing Equations and Discretization

2.1 The Incompressible Navier-Stokes Equations

The solver implements the stationary incompressible Navier-Stokes equa-
tions on the following form:
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where u, v are the velocities, p is the pressure, p is the mass density, and v
is the kinematic viscosity (assumed constant throughout the region). The
boundary conditions are prescribed velocities u,v on the walls and inflow
boundaries, as well as prescribed pressure p on the outflow boundary.

2.2 Interpolation

For the finite element solution of the equations (1), I discretize the domain
and the solution variables using P2-P1 triangular elements, see figure 1. The
velocities are represented by the values at the six nodal points per element,
and they are interpolated using second degree polynomials. The pressure is
represented by the three corner nodal values, and interpolated using a linear



Figure 1: The node placement and numbering in the P2 element.

polynomial. This element gives continuous velocities and pressure, and it

satisfies the inf-sup condition.

For the quadratic velocities, I use the following six local interpolation
functions (from [1], although I have changed the node numbering slightly):

hi(r,s) =1 —3r — 35+ 2r? + 4rs + 25*
hi(r,s) = —r 4 212

hi(r,s) = —s + 25

hi(r,s) = 4rs

hi(r,s) = 4s — drs — 45

hi(r,s) = dr — drs — 4r*

and for the linear interpolation of the pressures:



The variables can then be written as functions of the local coordinates:
6
u(r,s) = Z hiu;
i=1
6
v(r,s) = Z hiv;
i=1

3
p(r,s) = hip; (4)
i=1

where u;, v;, and p; are the corresponding nodal values. I use isoparametric
elements, that is, I interpolate the coordinates with the quadratic interpo-
lation functions:

6
x(r,s) = Z hiz; (5)
=1

6
y(r,s) =Y hly; (6)
=1

where x; and y; are the coordinates of the node points in the element. By
differentiating this, I can form a Jacobian according to
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and using this, I can express the derivative operators as
92 NEA
oy Os
I then have interpolations for all variables and their derivatives.

2.3 Finite Element Discretization

To obtain the finite element formulation of the equations, I multiply them
by virtual velocities @, v and virtual pressures p (interpolated in the same



way as the variables), and integrate over the domain:
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Apply the divergence theorem on the diffusive term and set the boundary
integral to zero (natural boundary conditions):
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Insert the expressions for the interpolated variables and split the integral
into a sum of integrals over the elements, to get a set of discrete nonlinear
equations:

Ly(U)

LWU)= |L,(U)| =0 (11)

Ly(U)
where U contains the nodal values of all the degrees of freedom. To solve
this with Newton’s method, I also need to evaluate the tangent stiffness
matrix (see [1] for details):

or [Kull) Ku(U) Kuy(U)
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where each submatrix contains the derivative of the corresponding subvector
of L(U). Using this, I can calculate a local stiffness matrix and a local
residual contribution for each element, and with the direct stiffness method
I can insert these result into the global sparse stiffness matrix and into the
residual vector, respectively.

I evaluate all the integrals using a fifth-order, seven points Gauss in-
tegration rule. This will integrate all the expressions without integration
error, since the highest polynomial degree in L(U) is five (from the nonlin-
ear convective terms).



2.4 Constraint Handling

I impose the boundary constraints by explicitly adding equations and La-
grange multipliers. In particular, I extend the solution vector to

ot = |4 (13)

where A are the Lagrange multipliers, and I solve the following extended
nonlinear system of equations:

(14)

Lo(U.A) = {L(U) +NTA} 0

NU-M
where the constraints are specified as the linear system of equations NU =
M. Similarly, the stiffness matrix is extended according to

(15)

Kext (U, A) = [K(U) NT} |

N 0

The Lagrange multipliers A can be interpreted as the reactions due to the
constraints.

2.5 Nonlinear Solver

The nonlinear equations are solved by iterating with Newton’s method (I
use the notations K, L,U below, but the extended matrix and vectors are
used):

fori=1,2,3,...
K(U(i—l))AU(i) = L(U(i—l))
U@ = =1 L AU®

end

The routine requires an initial guess U(®), and the iterations are contin-
ued until the residual and the correction are small. In particular, I study
LU Y)|o and |[AU®)|, in each iteration, and make sure they approach
ZETO.

3 Implementation

In this section, I discuss how I have implemented the code. It is written
as a Matlab mez-function, which is a way to incorporate external code into



the Matlab programming environment. This is convenient, because it allows
me to use Matlab routines for manipulating meshes, doing postprocessing,
and calling the linear equations solver. But it also allows for the very high
performance of my optimized C++ code.

My code does all parts of the solution process except mesh generation,
solution of linear system of equations, and visualization. In particular, I
create the data structures for storing the sparse stiffness matrix, I compute
local stiffness matrices for each elements, and I assemble them into the global
sparse matrix. I also include the boundary conditions into this matrix.

3.1 Data Structures

The inputs to my code nsasm.cpp are the mesh, the constraints, the cur-
rent solution vector, and the problem parameters according to below. The
number of nodes are denoted by np, the number of elements by nt, and the
number of constrained degrees of freedom by ne.

p - Double precision array with 3xnp elements, containing the nodal coor-
dinates of the mesh.

t - Integer array with 6xnt elements, containing the indices of the nodes
in each element.

npO - Integer, total number of pressure nodes.

e - Double precision array with 3 x ne elements, containing node number,
variables number (0,1, or 2), and value for each constraint.

u - Double precision vector with 2 np+np0O+ne elements, containing the cur-
rent solution vector.

nu - Double precision, kinematic viscosity.

The outputs are the stiffness matrix (described below) and the residual
vector.

3.2 Sparse Matrix Representation

To represent the sparse matrix K, I use the compressed-column format,
which is defined as follows. Let nnz be the number of nonzero elements
in the matrix, and let n be the number of columns. The matrix is then
represented by the following three arrays:



Pr - Double precision vector with nnz elements. Contains the values of each
matrix entry, in column-wise order starting with the lowest column.

Ir - Integer vector with nnz elements. Contains the row indices for each
matrix entry.

Jc - Integer vector with n+1 elements. The ith element is an integer spec-
ifying the index of the first element in the ith column. In particular,
element n+1 is nnz.

The following operations on sparse matrices are implemented:

Creating the matrix. The matrix is created by first counting all the el-
ements in each column. Next, the elements are inserted and sorted
within each column. After this, all duplicate elements can be removed,
and finally the three arrays according to above can be formed.

Setting the value of a matrix element. Since the elements in each col-
umn are sorted, the position of an element can be extracted using a
binary search within the column. The time for this is about the log-
arithm of the number of elements in the column, which is bounded
independently of the size of the mesh.

3.3 Subroutines

The code is implemented in C++, and the following subfunctions are used.

init_shape Initialize the shape functions in local coordinates. This needs
to be done only once, and is extremely fast.

localKL Assemble the K, L contributions from a single element.

sparse_create Create a sparse matrix using the algorithm described pre-
viously.

sparse_set Set the value of an element in the matrix.

assemble Loop over all elements in the mesh, assemble K, L contributions
and insert them into the sparse matrix.

assemble_constr Loop over all the constraints NU = M and update the
global matrix and residual.

The Newton iterations are done with just a few lines of Matlab code:



for ii=1:8

[K,L]=nsasm(p,t,np0,e,u,nu);

du=-lusolve(K,L);

u=u+du;

disp(sprintf(’%20.10g %20.10g’ ,norm(L,inf) ,norm(du,inf)));
end

The disp statement prints the residual and the correction norms. I use this
to determine if the iterations converge or not.

To solve for AU®, T use the SuperLU solver, which is a direct sparse
solver based on Gaussian elimination (see [2] for more details). It uses min-
imum degree reordering of the nodes to minimize the fill-in, and it achieves
high performance by using machine optimized BLAS routines. It is one of
the fastest direct solvers currently available.

4 Numerical Results

I have studied two common test problems when verifying the results from
my solver. In the first model, I compute the flow around a cylinder in two
dimensions. Here I perform “the ultimate” verification test: I solve the same
problem both in ADINA and with my solver, and compare each entry of the
solution vectors.

In the second test, I simulate the flow inside a closed cavity. By gradually
increasing the nonlinearities, I can solve the problem for up to Re = 2000.
I also study the performance of my solver and look at the sparsity pattern
of the stiffness matrix.

4.1 Flow around Cylinder

As a first test case, I use a benchmark problem described in [3]. The geom-
etry and the boundary conditions are shown in figure 2. The mass density
is p = 1.0kg/m?, the kinematic viscosity is v = 107m?/s, and the inflow
condition is

u(0,y) = 0.3 - 4y(0.41 — y)/0.41%. (16)

This gives a Reynolds number Re = 20 (based on the diameter of the cylinder
and the mean inflow velocity).

First, I create the geometry and the mesh in ADINA, and solve using
the ADINA solver. The result from this can be seen in figure 3 and 4. 1
then export the mesh and the solution as text files, to be imported into my
solver.
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Figure 2: The geometry and the boundary conditions of the cylinder flow
test problem.

Figure 3: The mesh used for the cylinder flow test problem. The mesh
contains 1932 nodes and 910 elements, and the problem has a total of 4802
degrees of freedom.



ADINA

TIME 1.000

ADINA

MAXIMUM Y-VELOCITY
A 0.4030 TIME 1.000
MINIMUM
> -0.009027
0.3800
0.3300
02700
02100
0.1500
0.0800
0.0300
z

TIME 1.000

ADINA

MAXIMUM Z-VELOCITY

A 02275 TIME 1.000

MINIMUM

* -0.2084
0.1800

t 0.1200
0.0600
0.0000
-0.0600
-0.1200
-0.1800
z

TIME 1.000

MAXIMUM NODAL_PRESSURE

A 01416 TIME 1.000

MINIMUM

* -0.04161
0.1250
0.1000
0.0750
0.0500
0.0250
0.0000
-0.0250

Figure 4: The solution computed with ADINA. The plots show the horizon-
tal velocity (top), the vertical velocity (middle), and the pressure (bottom).
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Iteration | Residual |L(U)|s | Correction |AU|s
1103 0.3919054892
2 | 0.0005369227832 | 0.1807048561
3 | 0.0001834679858 | 0.02923728665
4 1 8.995892913e-06 0.002214673874
5 | 3.005130956e-08 6.152489805e-06
6 | 1.064214025e-13 2.838728076e-11
7 | 1.682750064e-18 | 9.540392778e-17
8 | 1.950663938e-18 1.02987605e-16

Table 1: The convergence of the Newton iterations on the test problem.
The convergence is quadratic, showing that the tangent stiffness matrix is
correct, and machine precision is obtained after only 7 iterations.

When I run this problem with my solver, I get the residuals and cor-
rections according to table 1. Machine precision is achieved in only seven
iterations, and the convergence is indeed quadratic as expected with the full
Newton’s method.

I can compare my solution with the solution from ADINA in every node.
The result is that the solutions differ by only 5 x 10~7. This is exactly the
error due to round-off in the ADINA output files, and the two solutions are
therefore essentially identical. This is very good indication that my solver
is implemented correctly.

Another verification of the result can be made by comparing the quan-
tities discussed in [3]. I compute two of these:

Pressure difference across cylinder. The difference Ap = p(0.15,0.15)—
p(0.25,0.15) can be computed by simply subtracting the nodal pres-
sure values at the corresponding points.

Length of recirculation region. There is a recirculation region behind
the cylinder, and the length of it can be calculated by finding the
position where v = 0 and subtracting 0.25.

In table 2, the convergence of these two quantities is shown, together with
an interval of expected values. For the two finest meshes, both results are
within these intervals.

I can now try to decrease the viscosity to see how large Reynold’s num-
bers my solver can handle for this problem. There are (at least) three reasons
that my solver is insufficient for high Reynold’s numbers:
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Element size h Ap Recirculation length L,
0.02 0.1158 0.0784
0.01 0.1142 0.0838
0.005 0.1177 0.0837
0.0025 0.1174 0.0845
0.00125 0.1175 0.0847
Expected range | 0.1172 — 0.1176 0.0842 — 0.0852

Table 2: The two verification quantities for different element sizes. The
expected range is the result from several different simulations presented
in [3].

e [ have not implemented any turbulence model, so if the mesh does not
resolve the smallest vortices, my solution will be incorrect.

e [ have not implemented any numerical stabilization, and if the problem
becomes highly convective I will get stability problems. This could be
resolved by, for example, implementing streamline-diffusion stabiliza-
tion, where the virtual variables are modified with a term depending
on the velocities.

e The full Newton’s method might not converge when the problem be-
comes highly nonlinear. However, I have used a trick where I use a
solution with a smaller Reynold’s number as initial guess. In general,
a solver with better global convergence properties has to be used.

In figure 5, the solution is shown for three different values of Reynold’s
number. For higher values, for example Re = 200, the Newton iterations do
not converge from zero initial condition.

4.2 Driven Cavity Flow

In this model, I simulate the flow inside a closed cavity, see figure 6. The
boundary conditions are such that the flow is driven by a unit horizontal
velocity at the top boundary. To get a unique solution, I also fix the pressure
at the bottom left node. The viscosity v is set to different values to get
different behaviors of the flow, and the Reynold’s number is computed as
1/v (based on a geometry of size 1 and a maximum velocity of 1).

I use a mesh according to figure 7. I have used a free form mesh generator
to be able to refine the mesh close to the top corners, where the solution

12



Re =20

|

Re =60

Re =100

s =

Figure 5: The solution to the flow around cylinder problem, for Re = 20
(top), Re = 60 (middle), and Re = 100 (bottom). The magnitude of the
velocity is shown.
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u=I, v=0

u=v=0

u=v=0

Figure 6: The geometry and the boundary conditions of the driven cavity
flow test problem.

has singularities. I have solved the problem for four different Reynold’s
numbers: 100, 500, 1000, and 2000. For the highest values, I had to use
the previous solutions in order to converge in the Newton iterations. The
results are shown in figure 8.

4.3 Performance

I have tried to optimize my code as much as possible, and the result is that
the time for creating the sparse matrix data structures and assemble the
stiffness matrix is completely negligible compared to the time for solving
the linear system of equations. For instance, a problem with 15794 nodes,
7754 elements, and 36692 degrees of freedom (a relatively large problem)
requires about 1 second in my routine on a Pentium 4 computer, while the
time spent in SuperLU is about 30 seconds. In total, it takes a few minutes
to obtain the solution in about 6 iterations.

It is interesting to investigate the sparsity pattern of the stiffness matrix.
In figure 9, it is shown for the mesh used in the cylinder flow example.
One can clearly see the different parts of the stiffness matrix, including the
constraints and the Lagrange multipliers. The number of nonzero entries is
125419, giving an average of about 26 elements per column.
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Figure 7: The mesh used in the driven cavity example. The mesh is refined
at the top corners and at the top boundary to resolve the singularities. The
mesh contains 3581 nodes and 1722 elements, and the problem has a total
of 8637 degrees of freedom.
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Re = 1000 Re = 2000

Figure 8: The solution to the driven cavity problem for four different
Reynold’s numbers. The contours of the magnitude of the velocity are
shown.
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Figure 9: The sparsity pattern for the cylinder flow problem. One can
clearly see the degrees of freedom corresponding to the u-velocities (first
1932 components), the v-velocities (next 1932 components), the pressure p
(next 511 components), and the constraints (last 427 components).
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5 Appendix A - The Code

#include "mex.h"
#include <cmath>
#include <cstring>
#include <algo.h>

[1117717777777777777771777777777777777777777777777/77/777/77777777777777/77/77/7777
// Global Functions

mxArray* sparse_create(int *t,double *e,int nt,int np,int np0,int ne,int ndof) ;

void assemble(double *p,int *t,double *u,int nt,int np,
double *Pr,int *Ir,int *Jc,double *L,double mu);

void assemble_constr(double *e,double *u,int np,int ne,int nO,
double *Pr,int *Ir,int *Jc,double *L);

[1717777777777717777777777777777777777/777777777777777/77/77/77/7777/77777/77/77/1//77/777
// MAIN mexFunction

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
{

// Get data from Matlab

double *p=mxGetPr(prhs[0]);

int np=mxGetN(prhs[0]);

int *t=(int*)mxGetPr (prhs([1]);

int nt=mxGetN(prhs[1]);

int npO=(int)mxGetScalar (prhs[2]);

double *e=(double*)mxGetPr (prhs[3]);

int ne=mxGetN(prhs[3]);

int ndof=2*np+npO+ne;

double *u=mxGetPr(prhs[4]);

double mu=mxGetScalar (prhs[5]);

// Create sparse matrix K
plhs[0]=sparse_create(t,e,nt,np,np0,ne,ndof);
double *Pr=mxGetPr(plhs([0]);

int *Ir=mxGetIr(plhs[0]);

int *Jc=mxGetJc(plhs[0]);

// Create residual vector L
plhs[1]=mxCreateDoubleMatrix(ndof,1,mxREAL) ;
double *L=mxGetPr(plhs[1]);

// Assemble PDE
assemble(p,t,u,nt,np,Pr,Ir,Jc,L,mu);

// Assemble constraints
assemble_constr(e,u,np,ne,2*np+np0,Pr,Ir,Jc,L);
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}

LITIITITI 777777 77777777777777777777777777777777777777777777777777777777777

// Gauss integration

// Number of Gauss points
const int ngp=7;

// GP data

const double w1=0.225000000000000;
const double w2=0.132394152788506;
const double w3=0.125939180544827;
const double al=0.333333333333333;
const double a2=0.059715871789770;
const double a3=0.797426985353087;
const double b2=(1-a2)/2;

const double b3=(1-a3)/2;

// Gauss points

static double gplngp] [3]={al,al,1-al-al,
a2,b2,1-a2-b2,
b2,a2,1-b2-a2,
b2,b2,1-b2-b2,
a3,b3,1-a3-b3,
b3,a3,1-b3-a3,
b3,b3,1-b3-b3};

// Gauss weights
static double w[ngpl={wl,w2,w2,w2,w3,w3,w3};

[111777777777717777777777777777777777/7777/77777777777/7777/7/7/7777777/77/77/7/777/77/
// Global data

static double shil[ngp]l[3]; // P1 Shape functions
static double shir[ngp][3]; // P1 Shape functions r-derivatives
static double shis[ngp][3]; // P1 Shape functions s-derivatives
static double sh2[ngp]l[6]; // P2 Shape functions
static double sh2r[ngp][6]; // P2 Shape functions r-derivatives
static double sh2s[ngp]l[6]; // P2 Shape functions s-derivatives

II111777777777777777777777777777777777777777777777777777777777777777777777777777
// init_shape

void init_shape()
{
for (int i=0; i<ngp; i++) {
// P1 Shape functions
sh1[i] [0]=gp[i] [2];
sh1[i][1]1=gp[i] [0];
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sh1[i] [2]=gp[i] [1];

// P1 Shape functions r-derivatives
shir[i] [0]=-1;

shir[i] [1]=1;

shir[i] [2]=0;

// P1 Shape functions s-derivatives
shis[i] [0]=-1;

shis[i] [1]=0;

shis[i] [2]=1;

// P2 Shape functions
sh2[i] [0]=1-3*gp[i] [0]-3*gp[i] [1]+2*gp[i] [0]*gp[i] [0]+
4xgp[i] [0]*gp[i] [1]1+2*gp[i] [1]1*gp[i] [1];
sh2[i] [1]=-gp[i]l [0]1+2*gp[i] [01*gp[i] [0];
sh2[i] [2]=-gp[i] [1]1+2*gp[i]l [11*gp[il [1];
sh2[i] [3]=4*gp[i] [0]*gp[i] [1];
sh2[i] [4]=4*gp[i] [1]-4xgp[i] [01*gp[i] [1]-4*gp[i] [1]1*gp[il[1];
sh2[i] [6]=4*gp[i] [0]-4xgp[i] [0]*gp[i] [1]-4*gp[i] [0]*gp[i] [0];
// P2 Shape functions r-derivatives
sh2r[i] [0]1=-3+4x*gp[i] [0]+4x*gp[i] [1];
sh2r[i] [1]1=-1+4*gp[i] [0];
sh2r[i] [2]=0;
sh2r[i] [3]=4*gp[i] [1];
sh2r([i] [4]1=-4*gp[il [1];
sh2r[i] [6]1=4-8+gp[i] [0]-4*gp[il[1];
// P2 Shape functions s-derivatives
sh2s[i] [0]=-3+4x*gp[i] [0]+4x*gp[i] [1];
sh2s[i] [1]1=0;
sh2s[i] [2]=-1+4*gp[i] [1];
sh2s[i] [3]1=4+*gp[i] [0];
sh2s[i] [4]1=4-8+gp[i] [1]-4*gp[i] [0];
sh2s[i] [6]=-4*gp[i] [0];
}
}

[17177777777771777777777777777777777777777777777777777/77/77/777777777/77/77/1/77/7/777
// localKL

void localKL(double *p,int *tt,double *uO,int np,double 1K[15] [15],double 1L[15],double mu)
{
memset (1K, 0,15*15*sizeof (double)) ;
memset (1L,0,15*sizeof (double));
for (int igp=0; igp<ngp; igp++) {
// Jacobian
double xr,xs,yr,ys;
xr=xs=yr=ys=0.0;
for (int i=0; i<6; i++) {
xr+=sh2r [igp] [i]*p[(tt [1]-1)*2+0];
xs+=sh2s[igp] [i]*p[(tt[1]-1)*2+0];
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yr+=sh2r[igp] [i]1*p[(tt[i]-1)*2+1];
ys+=sh2s[igp] [i]*p[(tt[1]-1)*2+1];
}
double Jdet=xr*ys-xs*yr;
double Jinv[2] [2]={ys/Jdet,-xs/Jdet,-yr/Jdet,xr/Jdet};

// x,y derivatives of shape functions

double shix[3],sh1y[3],sh2x[6],sh2y[6];

for (int i=0; i<3; i++) {
shix[i]=shir[igp] [i]1*Jinv[0] [0]+shils[igp] [i]*Jinv[1] [0];
shiy[il=shir[igp] [i]1*Jinv[0] [1]1+shls[igp] [i]1*Jinv[1] [1];

}

for (int i=0; i<6; i++) {
sh2x [i]=sh2r [igp] [i]1*Jinv[0] [0]+sh2s[igp] [i]*Jinv[1] [0];
sh2y[i]=sh2r [igp] [i]*Jinv [0] [1]+sh2s [igp] [i]*Jinv[1] [1];

}

// Solution and derivatives

double u,ux,uy,v,vx,Vy;

u=ux=uy=v=vx=vy=0.0;

for (int i=0; i<6; i++) {
ut+=sh2[igp] [i]*u0[tt[1]-1];
ux+=sh2x [i]1*u0[tt [i]-1];
uy+=sh2y [i]*u0[tt[i]-1];
v+=sh2[igp] [i]*uO [np+tt[i]-1];
vx+=sh2x [i]*u0 [np+tt [1]-1];
vy+=sh2y [i]*u0 [np+tt [i]-1];

}
double px,py;
px=py=0.0;

for (int i=0; i<3; i++) {
px+=shix [i]*u0 [2*np+tt[i]-1];
py+=shly[i]*u0 [2#np+tt[i]-1];
}

// Local K and L
double mul=w[igp]l*Jdet/2.0;
for (int i=0; i<6; i++) {
1L [i]+=(urux+v*uy+px) *sh2 [igp] [i] *mul;
1L [6+i]+=(uxvx+v*vy+py) *sh2[igp] [i]*mul;
1L [i] +=mu* (ux*sh2x [i] +uy*sh2y [i] ) *mul;
1L [6+i] +=mu* (vx*sh2x [i]+vy*sh2y[i]) *mul;
for (int j=0; j<6; j++) {
1K[i] [j]+=mu* (sh2x [i]*sh2x[j]+sh2y[i]*sh2y[j]) *mul;
1K[6+1i] [6+j]+=mu* (sh2x [i] *sh2x [j]+sh2y [i]*sh2y[j])*mul;
1K[i] [j]1+=(uxsh2[igp] [i]*sh2x[j]l+v*sh2[igp] [i]*sh2y[j])*mul;
1K[6+1] [6+j]+=(uxsh2[igp] [i] *sh2x [j]+v*sh2[igp] [1]*sh2y[j])*mul;
1K[i] [j]+=(ux*sh2[igp] [i]*sh2[igp] [j]) *mul;
1K[i] [6+]j]+=(uy*sh2[igp] [i]1*sh2[igp] [j1) *mul;
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1K[6+i] [j]1+=(vx*sh2[igp] [i]*sh2[igp] [j])*mul;
1K[6+i] [6+]j]1+=(vy*sh2[igp] [i]*sh2[igp] [j]1)*mul;
}
for (int j=0; j<3; j++) {
1K[i] [12+j]1+=(sh2[igp] [i]*sh1x[j])*mul;
1K[6+i] [12+j]1+=(sh2[igp] [i]*sh1ly[j])*mul;
}
}

for (int i=0; i<3; i++) {
1L[12+i]+=(ux+vy)*shl[igp] [i]*mul;
for (int j=0; j<6; j++) {
1K[12+i] [j1+=(sh1[igp] [i]*sh2x [j])*mul;
1K[12+i] [6+j]1+=(sh1[igp] [i]*sh2y[j]1)*mul;
}
}
¥
}
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// sparse_create

mxArray* sparse_create(int *t,double *e,int nt,int np,int npO,int ne,int ndof)
{

int *idxi,*idxj;

int nidx=nt*15*%15+2*ne; // Upper limit on # entries
idxi=(int*)mxCalloc(nidx,sizeof (int)); // Row indices
idxj=(int*)mxCalloc(nidx,sizeof (int)); // Column indices

int *col=(int*)mxCalloc(ndof,sizeof (int)); // # entries in each column

int *colstart=(int*)mxCalloc(ndof,sizeof(int)); // start index of each column
int ie;
double *n;

// Count elements in each columns (including duplicates)
for (int it=0,*n=t; it<nt; it++,n+=6) {
for (int j=0; j<6; j++) {
col[n[jl-1]+=15;
col[n[j]-1+npl+=15;

}
for (int j=0; j<3; j++) {
col[n[jl-1+2*np]+=15;
}
}
// Constraints
for (ie=0,n=e; ie<ne; ie++,n+=3) {
col[2*np+npO+ie] ++;
col[(int)n[1]*np+(int)n[0]-1]++;
}
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// Form cumulative sum (start of each column)
for (int i=0; i<ndof-1; i++)
colstart[i+1]=colstart[i]+col[i];

// Insert row/column indices, sorted columns
for (int it=0,*n=t; it<nt; it++,n+=6) {
for (int i=0; i<15; i++) {
int ri=n[i%6]+np*(i/6)-1;
for (int j=0; j<15; j++) {
int rj=n[j%6]+np*(j/6)-1;
idxi[colstart[rjl]l=ri;
idxj[colstart[rjll=rj;
colstart[rjl++;
}
}
}
// Constraints
for (ie=0,n=e; ie<ne; ie++,n+=3) {
int ri,rj;

ri=(int)n[1]*np+(int)n[0]-1;
rj=2*np+npO+ie;
idxi[colstart([rjl]l=ri;
idxj[colstart[rjll=rj;
colstart [rj]++;

ri=2*np+npO+ie;
rj=(int)n[1]*np+(int)n[0]-1;
idxi[colstart([rjl]l=ri;
idxj[colstart[rjll=rj;
colstart[rjl++;

}

mxFree(colstart) ;

// Sort row indices in each column
int *p=idxi;
for (int i=0; i<ndof; i++) {
sort(p,p+coll[il);
pt=coll[il;
}

// Count unique entries
memset (col,0,ndof*sizeof (int));
int nnz=1; col[idxj[0]]++;
for (int ii=1; ii<nidx; ii++) {
if (idxil[ii]!=idxil[ii-1] ||
idxj[ii] '=idxj[ii-11) {
nnz++;
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coll[idxj[ii]]++;
}
}

// Create sparse matrix

mxArray *K=mxCreateSparse(ndof,ndof,nnz,mxREAL);
int *Ir=mxGetIr(X);

int *Jc=mxGetJc(K);

// Form Jc vector

Jc[0]1=0;

for (int i=1; i<=ndof; i++)
Jcl[il=Jc[i-1]+col[i-1];

mxFree(col);

// Form Ir vector
*(Ir++)=idxi[0];
for (int ii=1; ii<nidx; ii++)
if (idxil[ii]'=idxil[ii-1] ||
idxj[ii] '=idxj[ii-11)
*(Ir++)=idxi[ii];

mxFree (idxj);
mxFree(idxi) ;

return K;

}
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// sparse_set

void sparse_set(double *Pr,int *Ir,int *Jc,int ri,int rj,double val)
{
// Binary search within column
int k,k1,k2,cr=ri;
k1=Jc[rjl;
k2=Jc[rj+1]-1;
do {
k=(k1+k2)>>1;
if (cr<Ir[k])
k2=k-1;
else
k1=k+1;
if (cr==Ir[k])
break;
} while (k2>=k1);
Pr[k]+=val;
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// assemble

void assemble(double *p,int *t,double *u,int nt,int np,
double *Pr,int *Ir,int *Jc,double *L,double mu)
{
init_shape(Q);
double 1K[15][15];
double 1L[15];
for (int it=0,*n=t; it<nt; it++,n+=6) {
localKL(p,n,u,np,1K,1L, ,mu);
for (int i=0; i<15; i++) {
int ri=n[i’%6]+np*(i/6)-1;
Llri]+=1L[i];
for (int j=0; j<15; j++) {
int rj=nl[j%6]+np*(j/6)-1;
sparse_set (Pr,Ir,Jc,ri,rj,1K[1]1[j]1);
}
}
¥
}
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// assemble_constr

void assemble_constr(double *e,double *u,int np,int ne,int nO,
double *Pr,int *Ir,int *Jc,double *L)
{
int ie;
double *n;
for (ie=0,n=e; ie<ne; ie++,n+=3) {
int ri=nO+ie;
int rj=(int)n[1]*np+(int)n[0]-1;
sparse_set (Pr,Ir,Jc,ri,rj,1.0);
sparse_set (Pr,Ir,Jc,rj,ri,1.0);
Llrjl+=ulril;
Llril=ulrjl-n[2];
¥
}
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// END
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