
High-order DNS and LES simulations using an implicit

tensor-product discontinuous Galerkin method

Will Pazner∗

Brown University, 182 George St., Providence, RI, 02912, U.S.A.

Per-Olof Persson†

University of California, Berkeley, Berkeley, CA 94720-3840, U.S.A.

This paper describes an efficient tensor-product based preconditioner for the large lin-
ear systems arising from the implicit time integration of discontinuous Galerkin (DG)
discretizations. A main advantage of the DG method is its potential for high-order ac-
curacy, but the number of degrees of freedom per element scales as pd, where p is the
polynomial degree and d is the spatial dimension. Standard preconditioners such as block
Jacobi and ILU factorizations rely on dense linear algebra, incurring a computational cost
of O(p3d), which quickly becomes intractable. Our new preconditioner exploits the natu-
ral tensor-product structure of general quadrilateral and hexahedral meshes to reduce the
computational complexity to O(p3) in two dimensions, and O(p5) in three dimensions. We
apply this preconditioner to two benchmark fluid flow problems: the direct numerical so-
lution of the compressible Taylor-Green vortex, and the large eddy simulation of flow over
a NACA airfoil. These test cases demonstrate the effectiveness of the new tensor-product
preconditioners on large-scale, high-order CFD problems.

I. Introduction

The discontinuous Galerkin (DG) method was introduced in 1973 by Reed and Hill for the neutron
transport equation,24 and in the 1990s was extended to nonlinear systems of conservation laws by Cockburn
and Shu.9 The DG method has successfully been applied a wide range of CFD problems,20 including direct
numerical simulation and large eddy simulation of turbulent flows, using both implicit and explicit time
integration methods.4,21 Although the DG method generalizes to arbitrary polynomial orders, there are
several challenges preventing the use of very high degree polynomial bases. For explicit methods, the CFL
stability condition requires that the time step satisfy approximately ∆t ≤ Ch/p2, where h is the element size,
and p is the degree of polynomial approximation.14 For implicit methods, the number of degrees of freedom
per element scales as pd in d dimensions. The resulting linear system can be considered as a sparse matrix
with dense (p + 1)d × (p + 1)d blocks for each element, requiring O(p3d) operations per linear solve using
dense linear algebra, rendering the problem intractable for very large p. If it is possible to well approximate
these (p + 1)d × (p + 1)d with certain sums of Kronecker products of smaller (p + 1) × (p + 1) matrices, it
would allow for asymptotically much more computationally efficient linear algebra.

In this paper, we describe an implicit DG method with a specific tensor-product structure whose com-
putational cost per degree of freedom scales linearly with the polynomial degree p in two dimensions, and as
O(p5) in three dimensions. This method requires a quadrilateral or hexahedral mesh, and a tensor-product
basis. The matrix corresponding to the linear system is never explicitly constructed, but rather fast matrix-
vector multiplications are performed as the kernel of the iterative GMRES algorithm. Such systems are
traditionally preconditioned using e.g. block Jacobi, Gauss-Seidel, or ILU preconditioners.17,22 In order to
avoid inverting the diagonal blocks of the matrix and thus incurring the above-mentioned cost of O(p3d)

∗Ph.D. Student, Division of Applied Mathematics, Brown University, Providence, RI, 02912. E-mail: will pazner@brown.edu.
AIAA Student Member.
†Associate Professor, Department of Mathematics, University of California, Berkeley, Berkeley CA 94720-3840. E-mail:

persson@berkeley.edu. AIAA Senior Member.

1 of 17

D
ow

nl
oa

de
d

by
 P

er
-O

lo
f

Pe
rs

so
n

on
 J

ul
y

13
, 2

01
7

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

7-
39

48

 23rd AIAA Computational Fluid Dynamics Conference

 5-9 June 2017, Denver, Colorado

 AIAA 2017-3948

 Copyright © 2017 by Will Pazner and Per-Olof Persson. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

 AIAA AVIATION Forum

http://crossmark.crossref.org/dialog/?doi=10.2514%2F6.2017-3948&domain=pdf&date_stamp=2017-06-02

operations, we make use the Kronecker product singular value decomposition to approximate this block by
a sum of lower-dimensional tensor products.30 In our previous work,19 we described efficient algorithms for
computing certain optimal approximations of these diagonal blocks, and implemented a matrix-free iterative
framework for solving the large linear systems. This preconditioner has been applied effectively to systems
of hyperbolic conservation laws, including the scalar advection equation and the Euler equations of gas
dynamics, in two and three spatial dimensions.

In this work, we extend the application of these preconditioners to the compressible Navier-Stokes equa-
tions. In particular, we apply these new techniques to DNS and LES fluid flow problems. First, we consider
the direct numerical simulation of the compressible Taylor-Green vortex at Re = 1600. This standard
benchmark problem33 is used to test the performance of high-order methods on transitional flows, and has
been previous studied as a verification case for a wide variety of numerical methods, including discontinuous
Galerkin methods.6,7, 11,12,27 Secondly, we consider the large eddy simulation of viscous flow over a NACA
0012 airfoil. This test problem is characterized by highly-refined elements around the boundary of the air-
foil, resulting in a very restrictive CFL stability condition, and thus motivating the use of implicit time
integration methods. The DG method has successfully been applied to similar test cases in several previous
works.3,28,29,32 The numerical results in the present work aim to demonstrate the feasibility of implicit time
integration for DNS and LES problems using the discontinuous Galerkin method with very high polynomial
degrees p.

II. Governing equations and discretization

The equations considered are the time-dependent, compressible Navier-Stokes equations,

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0 (1)

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) +

∂p

∂xi1
=
∂τij
∂xj

for i = 1, 2, 3, (2)

∂

∂t
(ρE) +

∂

∂xj
(uj(ρE + p)) = − ∂qj

∂xj
+

∂

∂xj
(ujτij), (3)

where ρ is the density, ui is the ith component of the velocity, and E is the total energy. The viscous stress
tensor and heat flux are given by

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
and qj = − µ

Pr

∂

∂xj

(
E +

p

ρ
− 1

2
ukuk

)
. (4)

Here µ is the coefficient of viscosity, and Pr is the Prandtl number, which we assume to be constant. For an
ideal gas, the pressure p has the form

p = (γ − 1)ρ

(
E − 1

2
ukuk

)
, (5)

where γ is the adiabatic gas constant.
We rewrite equations (1), (2), and (3) in the form

∂u

∂t
+∇ · Fi(u)−∇ · Fv(u,∇u) = 0, (6)

where u is a vector of the conserved variables, and Fi,Fv are the inviscid and viscous flux functions, respec-
tively. Equation (6) is discretized by means of the discontinuous Galerkin method, where the viscous terms
are treated using the local DG (LDG) scheme.8

III. The discontinuous Galerkin method

We briefly summarize the tensor-product discontinuous Galerkin method for the conservation law

ut +∇ · F (u) = 0. (7)

2 of 17

D
ow

nl
oa

de
d

by
 P

er
-O

lo
f

Pe
rs

so
n

on
 J

ul
y

13
, 2

01
7

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

7-
39

48

First, we discretize the spatial domain Ω using a quadrilateral or hexahedral mesh,

Th =

{
Kj :

⋃

k

Kj = Ω

}
. (8)

Here, each element Kj is the image of the reference element (the unit cube [0, 1]d in d dimensions), under a
transformation map Tj . Then, we define our finite element function space,

Vh =
{
vh : vh|Kj

∈ V (Kj) for all Kj ∈ Th
}
, (9)

where the local function space V (Kj) is defined on each element by means of a tensor-product basis. No
continuity is enforced across element interfaces.

We now describe the construction of the space V (Kj), where, for simplicity, we take d = 2. We fix a
polynomial degree p, and consider p+ 1 nodes xi in the unit interval [0, 1]. For each node xi, we define the
basis function φi to be the unique polynomial of degree at most p satisfying φi(xj) = δij . We then define
(p + 1)2 functions Φij(x, y) = φi(x)φj(y). It is clear that these functions satisfy Φij(xk, x`) = δikδj`, and
thus give us a nodal basis on [0, 1]× [0, 1] with nodes (xi, xj). For a given element K, we have K = T ([0, 1]2),
allowing us to write for each (x, y) ∈ K, (x, y) = T (ξ, η), for some (ξ, η) ∈ [0, 1]2. Thus, we define the basis
functions Φ̃ij on the element K by Φ̃ij(x, y) = Φij(ξ, η). In other words, Φ̃ij = Φij ◦ T−1. The local space

V (K) is defined as the span of the basis functions Φ̃ij .
In order to obtain the DG formulation for (7), we look for an approximate solution uh ∈ Vh, multiply by

a test function vh ∈ Vh, and integrate by parts on each element K ∈ Th to obtain

∫

K

∂t(uh)vh dx =

∫

K

F (uh) · ∇vh dx−
∫

∂K

F̂ (u−h , u
+
h ,n)vh ds, (10)

where F̂ is a numerical flux function, and u−h and u+
h are the traces of uh on ∂K on the inside and outside

of the element K, respectively. The integrals are approximated using a numerical quadrature rule, and the
time derivative ∂t(uh) is integrated using a method of lines approach. The second-order system in equation
(6) is transformed into a system of first-order equations, with appropriate numerical fluxes chosen according
to the LDG methodology.8

III.A. Sum-factorization approach

A main advantage of using tensor-product elements is the potential to greatly reduce the computational
complexity of the method by means of the sum-factorization approach.18 As an illustration of this approach,
we consider the volume integral appearing on the right-hand side of (10). We approximate this integral by
means of a tensor-product quadrature rule. We first consider the one-dimensional quadrature rule on [0, 1]
with weights wα and abscissa xα, where 1 ≤ α ≤ µ, and the number of quadrature points µ is taken to
be a constant multiple of the polynomial degree p. These points give rise to the tensor-product quadrature

η

ξ

y

x

T (ξ,η)−−−→

Figure 1: Example of a mapped quadrilateral element with p = 10 DG nodes.

3 of 17

D
ow

nl
oa

de
d

by
 P

er
-O

lo
f

Pe
rs

so
n

on
 J

ul
y

13
, 2

01
7

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

7-
39

48

rule on [0, 1]2, given by wαβ = wαwβ , and xαβ = (xα, xβ). Then, for a fixed test function vh = Φk`, we
approximate the given volume integral as

∑

α,β

wα,βF

∑

ij

uijΦij(xα, xβ)

 · ∇Φk`(xα, xβ), (11)

where the approximate solution uh is expanded in terms of the basis functions as

uh(x, y) =
∑

ij

uijΦij(x, y). (12)

Computing the above sum first requires the evaluation of the solution function uh at each of the quadrature
nodes xαβ . The naive computation requires µ2(p+1)2 operations. However, this evaluation can be performed
by factoring the sum as

∑

ij

uijΦij(xα, xβ) =
∑

i

∑

j

uijφi(xα)φj(xβ) (13)

=
∑

i

φi(xα)
∑

j

uijφj(xβ). (14)

Each of the above summations has two free indices, and so the number of operations required to compute
this sum can be reduced to O(µ2(p+ 1) + (p+ 1)2µ).

We can also describe this factorization operation using the convenient language of Kronecker products.
If we define the µ× (p+ 1) Vandermonde-type matrix G by

Gα,i = φi(xα), (15)

then the double-summation in (13) can be written as

(G⊗G)u, (16)

where u is the vector of length (p+ 1)2 whose entries are given by uij . The factorized version given by (14)
can be written as the equivalent operation

GUGT , (17)

where U is the (p+ 1)× (p+ 1) matrix, whose columns concatenated give the vector u. It will also be useful
to define the one-dimensional differentiation matrix D, which is a µ× (p+ 1) matrix whose entries are given
by

Dα,i = φ′i(xα), (18)

and the µ × µ diagonal weight matrix W , whose entries are given by the appropriate quadrature weights.
Additionally, we take JT to be the µd×µd diagonal matrix whose entries are given by the absolute Jacobian
determinant of the transformation map T at each of the quadrature points. Using these matrices, it is possible
to write many of main operations needed to implement a DG method in terms of Kronecker products, in a
fashion similar to that described above. A short summary of these operations is shown in Table 1.

III.B. Implicit time integration

In order to avoid the restrictive explicit CFL condition, we use an implicit time integration method, such
as backward differentiation formulas (BDF) or diagonally-implicit Runge-Kutta (DIRK) methods.1 The
main advantage of such methods is that they remain stable for larger time steps, even in the presence of
highly anisotropic elements. Additionally, these methods avoid the restrictive p-dependent explicit stability
condition mentioned above. Such implicit methods require the solution of systems of the form

Muh −∆tf(uh) = r, (19)

where f is a nonlinear function corresponding to the right-hand side of equation (10). This system of
equations, when solved by means of Newton’s method, give rise to linear systems of the form

(M −∆tJ)u = b, (20)

4 of 17

D
ow

nl
oa

de
d

by
 P

er
-O

lo
f

Pe
rs

so
n

on
 J

ul
y

13
, 2

01
7

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

7-
39

48

Table 1: Kronecker-product form of DG operations

Operation 2D 3D

Evaluate solution at quadrature points (G⊗G)u (G⊗G⊗G)u

Integrate function f (known at
quadrature points) against test functions

(
GTW ⊗GTW

)
JT f

(
GTW ⊗GTW ⊗GTW

)
JT f

Integrate function f = (f1, . . . , fd)
against gradient of test functions

(
GTW ⊗DTW

)
JT f1(

DTW ⊗GTW
)
JT f2

(
GTW ⊗GTW ⊗DTW

)
JT f1(

GTW ⊗DTW ⊗GTW
)
JT f2(

DTW ⊗GTW ⊗GTW
)
JT f3

where the matrix J is the Jacobian of the function f with respect to the degrees of freedom of the solution
variable uh.

The most immediate challenge towards efficiently implementing an implicit method for high polynomial
degree on tensor-product elements is forming the Jacobian matrix. In general, all the degrees of freedom
within one element are coupled, and thus the diagonal blocks of the Jacobian matrix corresponding to a
single element are dense (p + 1)d × (p + 1)d matrices. Therefore, it is impossible to explicitly form this
matrix in less than O(p2d) time. To circumvent this, we use a a tensor-product based matrix-free approach
combined with an iterative linear solver such as GMRES.23 Each iteration requires performing a matrix-
vector multiplication by the mass matrix and the Jacobian matrix. The matrix-free approach allows us to
avoid explicitly forming these matrices, and instead we use sum-factorization techniques to compute the
matrix-vector products.

For example, the mass matrix can be written in block-diagonal form. In the two-dimensional case, the
entries of the block corresponding with the element K are given by

Mij,k` =

∫

K

Φij(x, y)Φk`(x, y) dx. (21)

Using the notation from the preceding section, it is possible to see that this block can be written in the form

(
GTW ⊗GTW

)
JT (G⊗G) , (22)

Taking advantage of the Kronecker-product structure of these blocks, it is therefore possible to multiply a
vector by the mass matrix in O(p3) time, rather than O(p4) as dense linear algebra would suggest.

The case of the Jacobian matrix J is somewhat more complicated. J also has a natural block structure,
with diagonal blocks corresponding to the coupling of the degrees of freedom within each element, and off-
diagonal blocks corresponding to the coupling between neighboring elements. The entries of the diagonal
block of J corresponding to element K are given by

Jij,k` =
∂fij
∂uk`

, (23)

where fij is given by

fij =

∫

K

F (u) · ∇Φij dx−
∫

∂K

F̂ (u−, u+, n)Φij dA (24)

Instead of evaluating each of the derivatives ∂fij/∂uk`, we instead consider the matrix-vector product

(
∂fij
∂uk`

)
vk`, (25)

for an arbitrary vector vk`. Evaluating the integrals in (24) using a standard quadrature rule, and applying

5 of 17

D
ow

nl
oa

de
d

by
 P

er
-O

lo
f

Pe
rs

so
n

on
 J

ul
y

13
, 2

01
7

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

7-
39

48

the same sum-factorization technique as above, we obtain

(
∂fij
∂uk`

)
vk` =

p+1∑

k=1

p+1∑

`=1

µ∑

α=1

µ∑

β=1

wαwβφk(xα)φ`(xβ)
∂F

∂u
(xα, xβ) · ∇ (φi(xα)φj(xβ)) vk`

−
p+1∑

k=1

p+1∑

`=1

∑

e∈∂K

µ∑

α=1

wαφk(xeα)φ`(y
e
α)

∂F̂

∂u−
(xeα, y

e
α)φi(x

e
α)φj(y

e
α)vk`

(26)

=

µ∑

α=1

wαφ
′
i(xα)

µ∑

β=1

wβ
∂F1

∂u
(xα, xβ)φj(xβ)

p+1∑

`=1

φ`(xβ)

p+1∑

k=1

φk(xα)vk`

+

µ∑

α=1

wαφi(xα)

µ∑

β=1

wβ
∂F2

∂u
(xα, xβ)φ′j(xβ)

p+1∑

`=1

φ`(xβ)

p+1∑

k=1

φk(xα)vk`

+
∑

e∈∂K

µ∑

α=1

wα
∂F̂

∂u−
(xeα, y

e
α)φi(x

e
α)φj(y

e
α)

p+1∑

`=1

φ`(y
e
α)

p+1∑

k=1

φk(xeα)vk`,

(27)

where e ∈ ∂K represents an edge of the element K, and the points (xeα, y
e
α) are the quadrature nodes lying

on the edge e. We note that each of the summations in the factored form of the expression in (27) has at
most two free indices, and therefore it is possible to evaluate the factored form of this expression in O(p3)
time. A similar technique allows us to evaluated matrix-vector products of the form (M −∆tJ)v in three
spatial dimensions in O(p4) time. Therefore, each matrix-free evaluation can be performed in linear time
per degree of freedom.

IV. Kronecker-product preconditioner

An effective preconditioner is an important component in obtaining an efficient iterative solver.25 Typical
preconditioners used with discontinuous Galerkin methods include block Jacobi, block Gauss-Seidel, and
block ILU preconditioners.17,22,23 These block-based preconditioners require the explicit computation of the
entries of the matrix, together with the inversion of certain blocks. Performing these operations using dense
linear algebra would incur a cost of O(p3d) operations, becoming prohibitively expensive as p is taken to be
large. To address this issue, we make use of an approximate tensor-product preconditioner, introduced in
Reference 19 for hyperbolic conservation laws, and apply it to the compressible Navier-Stokes equations.

This Kronecker-product preconditioner attempts to mimic the tensor-product structure often seen in finite
difference and spectral method discretizations of partial differential equations. For example, the Laplacian
operator on a cartesian grid can be written as

L1D = Tn, L2D = I ⊗ Tn + Tn ⊗ I, L3D = I ⊗ I ⊗ Tn + I ⊗ Tn ⊗ I + Tn ⊗ I ⊗ I, (28)

in one, two, and three spatial dimensions, respectively. DG methods for arbitrary equations will not, in
general, give rise to such simple algebraic structures. However, many of the main operations required for
a DG method do possess a similar tensor-product structure, as detailed in the previous section in Table
1. This observation motivates approximating the element-wise matrix blocks arising from the implicit time
integration of DG discretizations by certain simple sums of Kronecker products. In order to precondition
linear systems of the form,

(M −∆tJ)u = b, (29)

we seek to approximate the block Jacobi preconditioner by finding tensor-product approximations to the
diagonal blocks of the matrix M −∆tJ . In two spatial dimensions, we are interested in approximating the
diagonal block A with a matrix P of the form

A ≈ P =

r∑

j=1

Aj ⊗Bj , (30)

for a fixed number of terms r, where each of the matrices Aj and Bj are of size (p+ 1)× (p+ 1). Similarly,

6 of 17

D
ow

nl
oa

de
d

by
 P

er
-O

lo
f

Pe
rs

so
n

on
 J

ul
y

13
, 2

01
7

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

7-
39

48

in three dimensions, we look for P of the form

A ≈ P =

r∑

j=1

Aj ⊗Bj ⊗ Cj . (31)

The main tool used to find such approximations is the Kronecker-product singular value decomposition
(KSVD),30 which we describe in the following section.

IV.A. Kronecker-product singular value decomposition

The Nearest Kronecker Problem (NKP)15,30 is defined as follows: given a matrix A ∈ Rm×n (with m = m1m2

and n = n1n2), and given a fixed number r, find matrices Aj ∈ Rm1×n1 , Bj ∈ Rm2×n2 that minimize the
Frobenius norm ∥∥∥∥∥∥

A−
r∑

j=1

Aj ⊗Bj

∥∥∥∥∥∥
F

. (32)

Van Loan gives the solution to the NKP by means of the singular value decomposition of a shuffled matrix
Ã. Given the blocking of A,

A =

A11 A12 · · · A1,n1

A21 A22 · · · A2,n1

...
...

. . .
...

Am1,1 Am1,2 · · · Am1,n1

, (33)

where each block Aij is a m2 × n2 matrix, we then define Ã to be the m1n1 ×m2n2 matrix given by

Ã =

Ã1

Ã2

...

Ãn1

, where Ãj is a block of rows given by Ãj =

vec(A1j)
T

vec(A2j)
T

...

vec(Am1,j)
T

, (34)

where the vec operator is defined so that vec(Aij) is the column vector of length m2n2 obtained by stacking
the columns of Aij . It can be shown that this shuffled matrix has the useful property that, for matrices Aj
and Bj , ∥∥∥∥∥∥

A−
r∑

j=1

Aj ⊗Bj

∥∥∥∥∥∥
F

=

∥∥∥∥∥∥
Ã−

r∑

j=1

vec(Aj) vec(Bj)
T

∥∥∥∥∥∥
F

. (35)

This property establishes the equivalence between the r-term NKP and finding the best rank-r approximation
to Ã, which is immediately given by the SVD,

Ã = UΣV T . (36)

The matrices Aj and Bj from equation (32) are then given by reshaping the left and right singular vectors

of Ã, so that we have
vec(Aj) =

√
σjUj , vec(Bj) =

√
σjVj . (37)

Although the computation of the SVD is, in general, an expensive operation, it is possible to obtain
accurate approximations of the first r singular values and vectors by means of a Lanczos algorithm.13 This
iterative procedure, combined with matrix-free evaluations of products by the shuffles matrices Ã and ÃT

allow for the efficient computation of optimal (in Frobenius norm) approximations of the form (30).

IV.B. Two- and three-dimensional preconditioners

Using the KSVD as described above, we can find Kronecker-product approximations to the diagonal blocks
of the matrix M −∆tJ . In two dimensions, we look for two-term approximations of the form

P = A1 ⊗B1 +A2 ⊗B2. (38)

7 of 17

D
ow

nl
oa

de
d

by
 P

er
-O

lo
f

Pe
rs

so
n

on
 J

ul
y

13
, 2

01
7

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

7-
39

48

This particular case (i.e. when r = 2) has the advantage that linear systems of the form Px = b can be
efficiently solved by adapting a matrix diagonalization technique.16,26 Such a system can be transformed by
left-multiplication by A−1

2 ⊗B−1
1 to obtain

(A−1
2 A1 ⊗ I + I ⊗B−1

1 B2)x = (A−1
2 ⊗B−1

1)b. (39)

Then, we employ the Schur factorizations,

A−1
2 A1 = Q1T1Q

T
1 , (40)

B−1
1 B2 = Q2T2Q

T
2 , (41)

where the matrices Q1 and Q2 are orthogonal, and T1 and T2 are quasi-triangular, to reformulate the above
system as

(Q1 ⊗Q2)(T1 ⊗ I + I ⊗ T2)(QT1 ⊗QT2)x = (A−1
2 ⊗B−1

1)b, (42)

which can be solved efficiently by standard means.
In three spatial dimensions, we look for a preconditioner that has the form

A ≈ P = A1 ⊗B1 ⊗ C1 +A1 ⊗B2 ⊗ C2, (43)

where it is important to note that the same matrix A1 is present in both terms on the right-hand side.
Left-multiplying the linear system Px = b by A−1

1 ⊗B−1
2 ⊗ C−1

1 gives

(I ⊗B−1
2 B1 ⊗ I + I ⊗ I ⊗ C−1

1 C2)x = (A−1
1 ⊗B−1

2 ⊗ C−1
1)b. (44)

The same Schur factorization technique as in the two-dimensional case can then be applied, resulting in the
system

(I ⊗Q1 ⊗Q2)(I ⊗ T1 ⊗ I + I ⊗ I ⊗ T2)(I ⊗QT1 ⊗QT2)x = (A−1
1 ⊗B−1

2 ⊗ C−1
1)b. (45)

As in the previous case, is also possible to efficiently solve such systems by standard means.

IV.C. Application to Navier-Stokes

In this paper, we are interested in the application of the above techniques to the specific case of the com-
pressible Navier-Stokes equations. We first note that in this case, the solution consists of d+ 2 components,
(ρ, ρu, ρE), where u ∈ Rd is the velocity vector. We let nc indicate the number of solution components.
Then, we can consider the Jacobian matrix to be composed of blocks of size nc(p+ 1)d × nc(p+ 1)d. In the
two dimensional case, these blocks are approximated by the sum A1⊗B1 +A2⊗B2, where A1 and A2 are of
size nc(p+ 1)×nc(p+ 1), and the matrices B1 and B2 are of size (p+ 1)× (p+ 1). In the three-dimensional
case, we recall that the preconditioner takes the form A1 ⊗ B1 ⊗ C1 + A1 ⊗ B2 ⊗ C2. Here, A1 is of size
nc(p+ 1)× nc(p+ 1), and the remaining matrices are all (p+ 1)× (p+ 1). Additionally, the Navier-Stokes
equations differs from previous applications of these preconditioners because of the second-order terms corre-
sponding to the viscous fluxes. In this paper, we discretize these second-order terms using the LDG method,
whose primal form involves volume integrals of certain lifting operators.2 The computation of these integrals
is not immediately amenable to sum-factorization, and therefore, in this work, we choose to include only
the inviscid flux in the preconditioner. This choice results in a preconditioner that captures less of the
dynamics of the equations, in particular at low Reynolds numbers, but we have found that for moderate to
high Reynolds cases, it remains effective. The question of how to effectively capture second-order terms in
the tensor-product preconditioner remains an open area of research.

V. Results

In order to demonstrate the application of the approximate Kronecker-product preconditioner to the
compressible Navier-Stokes equations, we use two benchmark test cases. The first test case is the direct
numerical simulation of the compressible Taylor-Green vortex at Reynolds number 1600, a widely used
example with available reference data and diagnostics.33 This test case features a cartesian hexahedral grid,
and periodic boundary conditions. The second test case is the large eddy simulation of viscous flow over a
NACA 0012 airfoil, demonstrating the applicability of the method to unstructured meshes with anisotropic
elements, complex geometries, boundary-layer phenomena, and strong viscous effects.

8 of 17

D
ow

nl
oa

de
d

by
 P

er
-O

lo
f

Pe
rs

so
n

on
 J

ul
y

13
, 2

01
7

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

7-
39

48

V.A. Direct numerical simulation of Taylor-Green vortex

The direct numerical simulation of the compressible Taylor-Green vortex at Re = 1600 was selected as a
difficult benchmark test problem for the first International Workshop on High-Order CFD Methods.33 This
problem has been much studied,5,6, 10,31 and fully-resolved reference data are available, making this test case
particularly useful.

V.A.1. Geometry and initial conditions

The spatial domain is taken to be the periodic cube −π ≤ x, y, z ≤ π. The initial conditions are given by

u(x, y, z) = u0 sin(x) cos(y) cos(z) (46)

v(x, y, z) = −u0 cos(x) sin(y) cos(z) (47)

w(x, y, z) = 0 (48)

p(x, y, z) = p0 +
ρ0u

2
0

16
(cos(2x) + cos(2y)) (cos(2z) + 2) , (49)

where we take the parameters to be γ = 1.4, Pr = 0.71, u0 = 1, ρ0 = 1, with Mach number M0 = u0/c0 =
0.10, where c0 is the speed of sound computed in accordance with the pressure p0. The initial density
distribution is then given by ρ = pρ0/p0. The characteristic convective time is given by tc = 1, and the final
time is tf = 20tc. We discretize the geometry using a sequence of regular hexahedral grids, and consider
polynomial degrees varying from p = 3 to p = 15. The number of numerical degrees of freedom per solution
component ranges from 643 to 2403. A table of configurations, including grid size (number of elements per
dimension), polynomial degree, and total number of numerical degrees of freedom per solution component
is listed in Table 2.

Table 2: Grid configurations for Taylor-Green problem

Grid size nx p Numerical DOFs

8 7 643

8 15 1283

16 3 643

16 7 1283

32 3 1283

48 4 2403

V.A.2. Diagnostics

We compare our computed solution at several resolutions with a known reference solution computed using
a pseudo-spectral method with 5123 degrees of freedom per solution component. In order to compare the
results, we consider several quantities integrated over the domain. First, we consider the mean kinetic energy,

Ek(t) =
1

ρ0|Ω|

∫

Ω

ρ
u · u

2
dx, (50)

where |Ω| = (2π)3 is the volume of the domain. From the time-evolution of this quantity, we can also
compute the kinetic energy dissipation rate (KEDR), given by

ε(t) = −dEk
dt

(t). (51)

Additionally, we consider the mean enstrophy over the domain,

E(t) =
1

ρ0|Ω|

∫

Ω

ρ
ω · ω

2
dx. (52)

9 of 17

D
ow

nl
oa

de
d

by
 P

er
-O

lo
f

Pe
rs

so
n

on
 J

ul
y

13
, 2

01
7

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

7-
39

48

0 2 4 6 8 10 12 14 16 18 20

0.05

0.10

t

E
k

Reference
(
5123

)

p = 3, nx = 16
p = 3, nx = 32
p = 4, nx = 48
p = 7, nx = 8
p = 7, nx = 16
p = 15, nx = 8

0 2 4 6 8 10 12 14 16 18 20
0.00

0.01

0.01

t

ε
=
−
d
E

k
/
d
t

0 2 4 6 8 10 12 14 16 18 20
0.00

5.00

10.00

t

E

(a) Time evolution of diagnostics for t ∈ [0, 20tc].

7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12

0.06

0.08

0.10

t

E
k

Reference
(
5123

)

p = 3, nx = 16
p = 3, nx = 32
p = 4, nx = 48
p = 7, nx = 8
p = 7, nx = 16
p = 15, nx = 8

7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12

0.01

0.01

0.01

t

ε
=
−
d
E

k
/d
t

7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12

4.00

6.00

8.00

10.00

t

E

(b) Zoom-in around point of peak dissipation.

Figure 2: Time evolution of kinetic energy Ek, kinetic energy dissipation rate (KEDR) ε, and enstrophy E ,
for Taylor-Green test case. Comparison of various DG configurations with reference pseudo-spectral solution.

10 of 17

D
ow

nl
oa

de
d

by
 P

er
-O

lo
f

Pe
rs

so
n

on
 J

ul
y

13
, 2

01
7

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

7-
39

48

10−4 2 × 10−4 4 × 10−4 8 × 10−4 1.6 × 10−3

5

10

20

40

80

∆t

G
M

R
E

S
it

er
at

io
n
s

p = 3, nx = 16, KSVD
p = 3, nx = 32, KSVD
p = 4, nx = 48, KSVD
p = 7, nx = 8, KSVD
p = 7, nx = 16, KSVD
p = 15, nx = 8, KSVD
p = 3, nx = 16, Jacobi
p = 3, nx = 32, Jacobi
p = 4, nx = 48, Jacobi
p = 7, nx = 8, Jacobi
p = 7, nx = 16, Jacobi

Figure 3: Number of GMRES iterations required for approximate Kronecker-product preconditioner and
exact block Jacobi preconditioner vs. timestep, Taylor-Green test case. Kronecker-product results shown
with solid lines, block Jacobi with dashed lines.

For incompressible flow, the relationship ε = 2µE/ρ0 holds, and for low-Mach compressible flow, this
relationship holds approximately. Indeed, we notice that the profiles of E and ε are close to indistinguishable,
indicating that compressible effects do not play a large role in this test problem. For each of the configurations
listed above, we compare the results with the pseudo-spectral reference solution in Figure 2a. In Figure 2b,
we present plots of the same quantities, zoomed in around the point of peak dissipation at about t = 9tc.
Additionally, the isosurfaces of the vorticity norm |ω| at times t = 0, 2, 4, 6, 8, 10 tc are shown in Figure 4,
illustrating the transition to turbulence, and subsequent decay.

The simulation with 2403 degrees of freedom per component (p = 4, nx = 48) reproduces almost exactly
all three of the profiles. We note that even for the severely under-resolved cases with 643 degrees of freedom,
the kinetic energy profiles closely match the reference data. However, the low-order p = 3 discretizations
tend to under-predict the enstrophy and KEDR. With an equal number of degrees of freedom, the p =
7, nx = 8 discretization more closely matches the reference profiles than the p = 3, nx = 16 configuration,
providing accuracy comparable to the p = 3, nx = 32 case, with one eighth the number of degrees of freedom.
Similarly, despite the exceedingly coarse mesh, the p = 15, nx = 8 configuration captured the diagnostics
more accurately than all other configurations considered with equal number of degrees of freedom. This
p = 15 discretization successfully captured the peak enstrophy and energy dissipation rate, as shown in
Figure 2b, and, in fact, matches the reference data comparably to the finest discretization with nx = 48.
The improved accuracy per degree of freedom for higher polynomial degree p motivates the use of very high
order methods.

V.A.3. Preconditioner efficiency

In this section we examine the efficiency of the approximate tensor-product preconditioner for the Taylor-
Green test case, for each of the configurations listed in Table 2. For each configuration, we choose a range of
timesteps, the smallest timestep corresponding to ∆t = 10−4. We then increase the timestep four times in
multiples of two, until we obtain a largest timestep of ∆t = 1.6×10−3. We measure the number of iterations
required to perform one backward Euler step (i.e. Newton solve) to find the average number of iterations per
linear solve. We also compute the average number of iterations per linear solve using the exact block Jacobi
preconditioner, for all configurations except for p = 15, nx = 8, for which the test did not complete because
of its excessive memory and runtime requirements. The iteration counts are displayed in Figure 3. Using
this methodology, we can compare the effectiveness of the approximate Kronecker-product preconditioner
with the exact block Jacobi preconditioner.

As expected, for both the Jacobi and Kronecker preconditioners, we observe that the number of iterations
per linear solve increases with ∆t. We also observe that in both cases, this dependence is sublinear, with
the exception of the case p = 15, nx = 8,∆t = 1.6 × 10−3. For a majority of cases, the Kronecker-product
preconditioner resulted in very similar (or sometimes identical) iteration counts. We conclude that the

11 of 17

D
ow

nl
oa

de
d

by
 P

er
-O

lo
f

Pe
rs

so
n

on
 J

ul
y

13
, 2

01
7

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

7-
39

48

Kronecker-product preconditioners are able to achieve iteration counts very similar to the exact block Jacobi
preconditioner, but with large savings in terms of computational complexity and memory requirements. For
the block Jacobi preconditioner, storing the diagonal block requires (nc(p + 1)3)2 memory per block, and
computing the LU factorization requires O(p9) operations. On the other hand, the memory requirements
for the Kronecker-product preconditioner grows linearly in p with the number of degrees of freedom, while
the computational complexity scales as O(p5), indicating that a large savings in computational complexity
can be achieved at the cost of a modest increase in iteration count.

Table 3: Average number of GMRES iterations per Newton solve for Taylor-Green test case

(a) p = 3, nx = 16

∆t Jacobi KSVD

1× 10−4 4 4

2× 10−4 5 7

4× 10−4 6 7

8× 10−4 8 9

1.6× 10−3 11 12

(b) p = 3, nx = 32

∆t Jacobi KSVD

1× 10−4 5 5

2× 10−4 6 6

4× 10−4 7 8

8× 10−4 10 12

1.6× 10−3 16 18

(c) p = 4, nx = 48

∆t Jacobi KSVD

1× 10−4 7 7

2× 10−4 9 10

4× 10−4 12 16

8× 10−4 19 27

1.6× 10−3 30 40

(d) p = 7, nx = 8

∆t Jacobi KSVD

1× 10−4 5 6

2× 10−4 6 6

4× 10−4 8 8

8× 10−4 10 11

1.6× 10−3 15 16

(e) p = 7, nx = 16

∆t Jacobi KSVD

1× 10−4 6 6

2× 10−4 7 9

4× 10−4 10 13

8× 10−4 15 17

1.6× 10−3 25 29

(f) p = 15, nx = 8

∆t Jacobi KSVD

1× 10−4 – 8

2× 10−4 – 11

4× 10−4 – 15

8× 10−4 – 26

1.6× 10−3 – 88

12 of 17

D
ow

nl
oa

de
d

by
 P

er
-O

lo
f

Pe
rs

so
n

on
 J

ul
y

13
, 2

01
7

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

7-
39

48

(a) t = 0tc (b) t = 2tc

(c) t = 4tc (d) t = 6tc

(c) t = 8tc (d) t = 10tc

Figure 4: Compressible Taylor-Green vortex at Re = 1600, isosurfaces of vorticity norm |ω|, colored by
helicity H = ω · u.

13 of 17

D
ow

nl
oa

de
d

by
 P

er
-O

lo
f

Pe
rs

so
n

on
 J

ul
y

13
, 2

01
7

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

7-
39

48

−10 −5 0 5 10
−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

−0.5 0.0 0.5 1.0 1.5
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Figure 5: Unstructured NACA mesh (zoom-in around airfoil shown with p = 10 DG nodes).

V.B. Large eddy simulation of viscous flow over NACA 0012 airfoil

In this section, we consider the viscous, compressible, two-dimensional flow over a NACA 0012 airfoil at
Re = 1600, with angle of attack 30◦. The domain is taken to be a disk of radius 10 centered at (0, 0), and
the leading edge of the airfoil is placed at the origin. A no-slip condition is enforced on the surface of the
airfoil, and far-field conditions are enforced on the exterior domain boundary. The Mach number is set to
be M0 = 0.2, and the far-field velocity is set to unity in the freestream direction. The domain is discretized
using an unstructured quadrilateral mesh, which is refined around the edges of the airfoil and in its wake.
Isoparametric mappings are used to curve the elements on the domain boundaries. The mesh is shown in
Figure 5.

−4 −2 0 2 4

−4

−2

0

2

4

ρ

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

1.02

−0.5 0.0 0.5 1.0 1.5
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

ρ

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

1.02

Figure 6: Solution (density) to NACA test problem at t = 7.5 s, with p = 7 polynomial degree.

In order to obtain a representative solution, we integrate the equations for 7.5 s, at which point vortices
have begun to form in the wake of the wing. The solution at this time (computed using polynomial degree
of p = 7) is displayed in Figure 6. Then, in order to compare solver performance, we linearize about
this solution. We compare the number of iterations required to perform one backward Euler step with
p = 3, 4, 7, 10, for a range of timesteps. For each p, the smallest timestep is determined by the explicit

14 of 17

D
ow

nl
oa

de
d

by
 P

er
-O

lo
f

Pe
rs

so
n

on
 J

ul
y

13
, 2

01
7

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

7-
39

48

1 2 4 8 16

5

10

20

40

∆t/∆texp

G
M

R
E

S
it

er
at

io
n
s

p = 3, KSVD
p = 4, KSVD
p = 7, KSVD
p = 10, KSVD
p = 3, Jacobi
p = 4, Jacobi
p = 7, Jacobi
p = 10, Jacobi

Figure 7: Number of GMRES iterations required for approximate Kronecker-product preconditioner and
exact block Jacobi preconditioner vs. timestep ratio ∆t/∆texp, NACA test case, for p = 3, 4, 7, 10.

stability condition, denoted by ∆texp. Then, we increase ∆t four times, each by a factor of two, to obtain a
final timestep of 16∆texp. The average number of iterations required per Newton solve are shown in Table
4 and Figure 7. In this case, we notice that for the smallest timestep, ∆texp, the number of iterations for
both preconditioners is quite similar. For both the block Jacobi and Kronecker-product preconditioners,
the iteration count increases with ∆t, although the rate of increase for the KSVD-based preconditioner is
greater than that of the Jacobi preconditioner. For ∆t = 4∆texp, about two times as many iterations are
required, and for ∆t = 16∆texp, about three to four times as many iterations are required. Of course, for
large polynomial degrees p, the increased cost due to the larger number of iterations will be offset by the
decrease in computational complexity associated with forming and applying the preconditioner.

Table 4: Average number of GMRES iterations per Newton solve for 2D NACA test case

(a) p = 3

∆t Jacobi KSVD

0.0005 7 12

0.0010 8 18

0.0020 10 24

0.0040 13 34

0.0080 16 47

(b) p = 4

∆t Jacobi KSVD

0.00025 7 11

0.00050 8 17

0.00100 10 22

0.00200 11 39

0.00400 14 57

(c) p = 7

∆t Jacobi KSVD

0.00005 6 8

0.00010 7 12

0.00020 9 21

0.00040 10 26

0.00080 12 56

(d) p = 10

∆t Jacobi KSVD

0.00001 4 6

0.00002 6 8

0.00004 7 11

0.00008 9 20

0.00016 11 31

15 of 17

D
ow

nl
oa

de
d

by
 P

er
-O

lo
f

Pe
rs

so
n

on
 J

ul
y

13
, 2

01
7

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

7-
39

48

VI. Conclusion and Future Work

In this paper, we have applied approximate Kronecker-product preconditioners to two DNS and LES
benchmark test cases, in two and three spatial dimensions. These preconditioners improve upon the p-
dependence of the computational complexity associated with traditional block-based preconditioners such as
block Jacobi or block Gauss-Seidel by exploiting the tensor-product structure of DG methods with quadrilat-
eral or hexahedral elements. We have found that for moderate timesteps, these approximate preconditioners
result in comparable iteration counts when compared with exact block Jacobi, even for high polynomial de-
grees p. These results demonstrate a promising approach for the implicit time integration of very high-order
DG methods for CFD problems.

For larger timesteps ∆t and high polynomial degree p, we see a degradation in the performance of
the approximate preconditioner. Improving the iteration counts in these cases is a topic of future research.
Possible methods for such improvements include systematic treatment of the viscous fluxes, incorporating the
approximate preconditioner as a smoother for p-multigrid methods, and application of ILU-based approaches.

Acknowledgments

This research used resources of the National Energy Research Scientific Computing Center, a DOE Office
of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231. The first author was supported in part by the Department of Defense through
the National Defense Science & Engineering Graduate Fellowship Program and by the Natural Sciences
and Engineering Research Council of Canada. The second author was supported in part by the AFOSR
Computational Mathematics program under grant number FA9550-15-1-0010.

References

1Roger Alexander. Diagonally implicit Runge-Kutta methods for stiff O.D.E.’s. SIAM Journal on Numerical Analysis,
14(6):1006–1021, 1977.

2Douglas N. Arnold, Franco Brezzi, Bernardo Cockburn, and L. Donatella Marini. Unified analysis of discontinuous
Galerkin methods for elliptic problems. SIAM Journal on Numerical Analysis, 39(5):1749–1779, 2002.

3F. Bassi, L. Botti, A. Colombo, A. Crivellini, A. Ghidoni, and F. Massa. On the development of an implicit high-order
discontinuous Galerkin method for DNS and implicit LES of turbulent flows. European Journal of Mechanics. B. Fluids, 55(part
2):367–379, 2016.

4A. Beck, T. Bolemann, T. Hitz, V. Mayer, and C.-D. Munz. Explicit high-order discontinuous Galerkin spectral element
methods for LES and DNS. In Recent Trends in Computational Engineering-CE2014, pages 281–296. Springer, 2015.

5Marc E. Brachet, Daniel I. Meiron, Steven A. Orszag, B. G. Nickel, Rudolf H. Morf, and Uriel Frisch. Small-scale
structure of the Taylor-Green vortex. Journal of Fluid Mechanics, 130:411–452, 1983.

6C. Carton de Wiart, K. Hillewaert, M. Duponcheel, and G. Winckelmans. Assessment of a discontinuous Galerkin
method for the simulation of vortical flows at high Reynolds number. International Journal for Numerical Methods in Fluids,
74(7):469–493, 2014.

7Jean-Baptiste Chapelier, Marta De La Llave Plata, and Florent Renac. Inviscid and viscous simulations of the Taylor-
Green vortex flow using a modal discontinuous Galerkin approach. In 42nd AIAA Fluid Dynamics Conference and Exhibit.
American Institute of Aeronautics and Astronautics, June 2012.

8Bernardo Cockburn and Chi-Wang Shu. The local discontinuous Galerkin method for time-dependent convection-diffusion
systems. SIAM Journal on Numerical Analysis, 35(6):2440–2463, 1998.

9Bernardo Cockburn and Chi-Wang Shu. The Runge-Kutta discontinuous Galerkin method for conservation laws V:
multidimensional systems. Journal of Computational Physics, 141(2):199–224, 1998.

10James DeBonis. Solutions of the Taylor-Green vortex problem using high-resolution explicit finite difference methods.
In 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. American Institute
of Aeronautics and Astronautics, January 2013.

11Laslo T. Diosady and Scott M. Murman. Design of a variational multiscale method for high Reynolds number compressible
flows. In 21st AIAA Computational Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics, June
2013.

12Gregor J. Gassner and Andrea D. Beck. On the accuracy of high-order discretizations for underresolved turbulence
simulations. Theoretical and Computational Fluid Dynamics, 27(3):221–237, 2013.

13Gene H. Golub, Franklin T. Luk, and Michael L. Overton. A block Lanczos method for computing the singular values
and corresponding singular vectors of a matrix. ACM Transactions on Mathematical Software (TOMS), 7(2):149–169, 1981.

14Lilia Krivodonova and Ruibin Qin. An analysis of the spectrum of the discontinuous Galerkin method. Applied Numerical
Mathematics, 64:1–18, 2013.

15Charles F. Van Loan. The ubiquitous Kronecker product. Journal of Computational and Applied Mathematics, 123(12):85
– 100, 2000. Numerical Analysis 2000. Vol. III: Linear Algebra.

16 of 17

D
ow

nl
oa

de
d

by
 P

er
-O

lo
f

Pe
rs

so
n

on
 J

ul
y

13
, 2

01
7

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

7-
39

48

16Robert E. Lynch, John R. Rice, and Donald H. Thomas. Direct solution of partial difference equations by tensor product
methods. Numerische Mathematik, 6(1):185–199, 1964.

17K.-A. Mardal, T. K. Nilssen, and G. A. Staff. Order-optimal preconditioners for implicit Runge-Kutta schemes applied
to parabolic PDEs. SIAM Journal on Scientific Computing, 29(1):361–375, 2007.

18Steven A. Orszag. Spectral methods for problems in complex geometries. Journal of Computational Physics, 37(1):70 –
92, 1980.

19Will Pazner and Per-Olof Persson. Approximate tensor-product preconditioners for very high order discontinuous Galerkin
methods. Submitted to Journal of Computational Physics (Under Review), abs/1704.04549, 2017.

20Jaime Peraire and Per-Olof Persson. High-order discontinuous Galerkin methods for CFD. In Z. J. Wang, editor, Adaptive
High-Order Methods in Fluid Dynamics, chapter 5, pages 119–152. World Scientific, 2011.

21Per-Olof Persson. High-order LES simulations using implicit-explicit Runge-Kutta schemes. In Proceedings of the 49th
AIAA Aerospace Sciences Meeting and Exhibit, AIAA, volume 684, 2011.

22Per-Olof Persson and Jaime Peraire. An efficient low memory implicit DG algorithm for time dependent problems. In
44th AIAA Aerospace Sciences Meeting and Exhibit, page 113, 2006.

23Per-Olof Persson and Jaime Peraire. Newton-GMRES preconditioning for discontinuous Galerkin discretizations of the
Navier-Stokes equations. SIAM Journal on Scientific Computing, 30(6):2709–2733, 2008.

24W. H. Reed and T. R. Hill. Triangular mesh methods for the neutron transport equation. Los Alamos Report LA-UR-
73-479, 1973.

25Yousef Saad. Iterative Methods for Sparse Linear Systems. SIAM, 2003.
26Jie Shen, Tao Tang, and Li-Lian Wang. Separable Multi-Dimensional Domains, pages 299–366. Springer Berlin Heidel-

berg, Berlin, Heidelberg, 2011.
27Chi-Wang Shu, Wai-Sun Don, David Gottlieb, Oleg Schilling, and Leland Jameson. Numerical convergence study of

nearly incompressible, inviscid Taylor-Green vortex flow. Journal of Scientific Computing, 24(1):1–27, 2005.
28A. Uranga, P.-O. Persson, M. Drela, and J. Peraire. Implicit large eddy simulation of transition to turbulence at low

Reynolds numbers using a discontinuous Galerkin method. International Journal for Numerical Methods in Engineering,
87(1-5):232–261, 2011.

29Alejandra Uranga, Per-Olof Persson, Mark Drela, and Jaime Peraire. Implicit large eddy simulation of transitional flows
over airfoils and wings. In 19th AIAA Computational Fluid Dynamics. American Institute of Aeronautics and Astronautics,
June 2009.

30Charles F. Van Loan and Nikos Pitsianis. Approximation with Kronecker products. In Linear Algebra for Large Scale
and Real-Time Applications, pages 293–314. Springer, 1993.

31Wim M. Van Rees, Anthony Leonard, D. I. Pullin, and Petros Koumoutsakos. A comparison of vortex and pseudo-
spectral methods for the simulation of periodic vortical flows at high Reynolds numbers. Journal of Computational Physics,
230(8):2794–2805, 2011.

32Brian C. Vermeire, Siva Nadarajah, and Paul G. Tucker. Implicit large eddy simulation using the high-order correction
procedure via reconstruction scheme. International Journal for Numerical Methods in Fluids, 82(5):231–260, 2016.

33Z.J. Wang, Krzysztof Fidkowski, Rémi Abgrall, Francesco Bassi, Doru Caraeni, Andrew Cary, Herman Deconinck, Ralf
Hartmann, Koen Hillewaert, H.T. Huynh, Norbert Kroll, Georg May, Per-Olof Persson, Bram van Leer, and Miguel Visbal.
High-order CFD methods: current status and perspective. International Journal for Numerical Methods in Fluids, 72(8):811–
845, 2013.

17 of 17

D
ow

nl
oa

de
d

by
 P

er
-O

lo
f

Pe
rs

so
n

on
 J

ul
y

13
, 2

01
7

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

7-
39

48

	Introduction
	Governing equations and discretization
	The discontinuous Galerkin method
	Sum-factorization approach
	Implicit time integration

	Kronecker-product preconditioner
	Kronecker-product singular value decomposition
	Two- and three-dimensional preconditioners
	Application to Navier-Stokes

	Results
	Direct numerical simulation of Taylor-Green vortex
	Geometry and initial conditions
	Diagnostics
	Preconditioner efficiency

	Large eddy simulation of viscous flow over NACA 0012 airfoil

	Conclusion and Future Work

