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In this paper, we introduce an interior penalty tensor-product preconditioner for the
implicit time integration of discontinuous Galerkin discretizations of partial differential
equations with second-order spatial derivatives. This preconditioner can be efficiently
formed using a sum-factorized Lanczos algorithm for computing the Kronecker-product
singular value decomposition of the diagonal blocks of the Jacobian matrix, and can be
applied efficiently using a simultaneous triangularization procedure. In two spatial dimen-
sions, the computational complexity for the overall method is linear per degree of freedom,
which is the same as that of a sum-factorized explicit method. This preconditioner exactly
reproduces the block Jacobi preconditioner for certain special cases, and compares favor-
ably with the block Jacobi preconditioner for a range of test problems, including viscous
compressible flow over a circular cylinder. This preconditioner shows greatly improved per-
formance when compared with a Kronecker-product preconditioner that only incorporates
first-order terms.

I. Introduction

The discontinuous Galerkin (DG) method, first introduced by Reed and Hill,26 is a finite element method
whose basis functions are piecewise polynomials with discontinuities along element boundaries. The DG
method was subsequently extended to systems of hyperbolic conservation laws and elliptic problems.8,9 In
recent years, there has been considerable interest in the application of DG to computational fluid dynamics
problems, including direct numerical simulation (DNS) and large eddy simulation (LES).5,23,24 An important
advantage of the DG method is the ability to use arbitrary-degree polynomial functions, and thus obtain
arbitrarily high spatial order of accuracy. However, the use of high-degree polynomials results in a CFL
stability condition that can render explicit time stepping methods impractical, motivating the use of implicit
solvers. The linear systems resulting from the implicit time integration of DG discretizations have a natural
block-sparse structure, with dense elementwise blocks whose size scales as pd× pd, requiring O(p2d) storage,
where p is the degree of polynomial approximation, and d is the number of spatial dimensions. Furthermore,
the solution of such systems by means of standard iterative methods typically makes use of block precon-
ditioners such as block Jacobi, block Gauss-Seidel, or block ILU.7,10,25 These preconditioners require the
inversion of dense elementwise blocks (at least along the diagonal), incurring a cost of O(p3d), which quickly
becomes intractable for large p.

In our previous works,20,21 we introduced a new Kronecker-product based preconditioner that exploits
the tensor-product structure of nodal discontinuous Galerkin discretizations on quadrilateral or hexahedral
meshes. This preconditioner generates optimal tensor-product approximations to the diagonal blocks of the
Jacobian matrix, with the advantage that it greatly reduces the computational complexity associated with
forming and applying it when compared with the exact block Jacobi method. This reduction in computational
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complexity makes it feasible to use implicit time integration methods together with DG discretizations with
very high polynomial degree p. One limitation in the previous works is that the preconditioner uses only the
inviscid fluxes in forming its approximation. This restriction is due to a technical limitation related to the
lifting operators required by many DG discretizations of second-order terms, such as LDG, BR2, and CDG.3

In this paper, we extend the tensor-product preconditioner to incorporate second-order terms by making use
of the symmetric interior penalty method.2,14 This method has the advantage that the lifting operators are
not required in order to compute the primal form, and thus avoid the computational pitfalls of the other
methods.

In this paper, we describe efficient algorithms for forming and applying the tensor-product preconditioner,
fully incorporating the viscous fluxes. We analyze the effectiveness of the preconditioner by demonstrating
that it exactly reproduces the diagonal blocks for several simple model problems such as the Poisson problem
and convection-diffusion on Cartesian grids in 2D. Then we perform numerical experiments, applying this
preconditioner to two benchmark convection-diffusion test cases, and to the compressible Navier-Stokes. A
comparison with the traditional block Jacobi preconditioner allows us to evaluate the effectiveness of the
preconditioner.

II. Governing equations and spatial discretization

Let the spatial domain Ω ⊆ Rd be fixed, where d = 2, 3. We consider a second-order time-dependent
system of partial differential equations in conservative form given by

ut +∇ · F (u,∇u) = f , (1)

where u(x, t) is a vector of nc unknown functions, F is a given flux function, and f is a forcing term.
Appropriate boundary conditions are specified on ∂Ω. It is convenient to make use of the (non-unique)
splitting of the flux into inviscid and viscous parts,

ut +∇ · (Fi(u) + Fv(u,∇u)) = f (2)

For the moment, we consider the case when Fv = 0, and we obtain a system of hyperbolic conservation
laws. We discretize this system of equations by means of the discontinuous Galerkin method. Let T be
a tessellation of the domain Ω by non-overlapping mesh elements, which in this work we will take to be
mapped quadrilaterals in R2 or hexahedra in R3. For each mesh element K ∈ T , let Ppd (K) denote the space
of d-fold tensor product polynomials of degree at most p on K. Then, we define our discontinuous finite
element function space to be

Vh = {vh : vh|K∈ Ppd (K) for all K ∈ T }. (3)

We look for an approximate solution uh ∈ [Vh]nc to (2) by multiplying by a test function vh ∈ [Vh]nc , and
integrating by parts over each element to obtain the standard DG method∫

Ω

∂tuh · vh dx−
∫

Ω

F (uh) : ∇vh dx+

∫
Γ

F̂ (u−h ,u
+
h ) : JvhK ds =

∫
Ω

f · vh dx, (4)

where Γ =
⋃
K∈T ∂K denotes the set of all interior and exterior edges of the tessellation T . Here we

introduce the numerical flux function F̂ , which is defined in terms of the traces u−h and u+
h of the solution

uh on the elements K− and K+ bordering the given edge. On an exterior edge, u+
h is determined by

the relevant boundary conditions. We also define the jump of a vector to be the scalar quantity given by
JqK = q− · n− + q+ · n+, and the jump of a scalar quantity is a vector defined by JφK = φ−n− + φ+n+.

II.A. Treatment of second-order terms

In order to describe the discretization of the second-order term in equation (2), we first consider the simpler
case of the model Poisson problem on the domain Ω,

−∇ · ∇u = f in Ω,

u = gD on ∂ΩD,

∂u/∂n = gN on ∂ΩN .

(5)
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We transform equation (5) into a system of first-order equations by introducing the auxiliary variable σ = ∇u
to obtain

−∇ · σ = f, (6)

σ = ∇u. (7)

Repeating the above Galerkin procedure, we obtain the discretized system of equations∫
Ω

σh · ∇vh dx−
∫

Γ

σ̂ · JvhK ds =

∫
Ω

fvh dx, (8)∫
Ω

σh · τh dx = −
∫

Ω

uh∇ · τh dx+

∫
Γ

ûJτhK ds, (9)

where û and σ̂ are yet-to-be-defined numerical flux functions. A comprehensive study of possible choices for
these fluxes was performed by Arnold et al.,3 and specific choices of stable and consistent fluxes include the
local DG method,8 the compact DG method,22 the second method of Bassi and Rebay,4 and the interior
penalty method.2 It is possible to generalize this technique to discretize equations of the form (2) with
Fv 6= 0.

Equations (8) and (9) are often referred to as the system flux formulation of the method. It is generally
useful to eliminate the auxiliary variable σh in order to obtain what is known as the primal formulation of
the method. To this end, we apply elementwise integration by parts to obtain the identity

−
∫

Ω

uh∇ · τh dx =

∫
Ω

∇(uh) · τh dx−
∫

Γ

JuhK · {τh} ds−
∫

Γ\∂Ω

{uh}JτhK ds. (10)

Then, we replace the first term on the right-hand side of (9) with the right-hand side of (10) resulting in
the equation ∫

Ω

σh · τh dx =

∫
Ω

∇(uh) · τh dx−
∫

Γ

JuhK · {τh} ds−
∫

Γ\∂Ω

{uh − û}JτhK ds. (11)

At this point we define the lifting operators r : [L2(Γ)]d → [Vh]d and ` : L2(Γ \ ∂Ω)→ [Vh]d by∫
Ω

r(q) · τ dx = −
∫

Γ

q · {τ} ds,
∫

Ω

`(v) · τ dx = −
∫

Γ\∂Ω

vJτ K ds. (12)

Given these definitions, we see that equation (11) implies that

σh = ∇(uh) + r(JuhK) + `({uh − û}). (13)

Thus, having expressed σh explicitly in terms of uh, we can rewrite the system of equations (8–9) as

B(uh, vh) =

∫
Ω

fvh dx, (14)

where the bilinear form B(·, ·), called the primal form, is given by

B(uh, vh) =

∫
Ω

∇(uh) · ∇vh dx−
∫

Γ

JuhK · {∇vh} ds−
∫

Γ\∂Ω

{uh − û}J∇vhK ds−
∫

Γ

σ̂ · JvhK ds. (15)

In the following section, we will discuss the impact of the choice of fluxes on the construction of approximate
tensor-product preconditioners.

Of particular interest in this work is the interior penalty method, which can be obtained by choosing the
numerical fluxes

û = {uh}, σ̂ = {∇uh} − ηeJuhK, (16)

for a given edge-specific penalty parameter ηe that scales as p2/h, and can be chosen optimally by means of
an explicit formula.27 The primal form of the interior penalty method is given by

B(uh, vh) =

∫
Ω

∇(uh) · ∇vh dx−
∫

Γ

JuhK · {∇vh} ds−
∫

Γ

{∇uh} · JvhK ds+

∫
Γ

ηeJuhK · JvhK ds. (17)

We point out that, in contrast to most of the methods presented in Reference 3, the primal form of the interior
penalty method does not require the computation of lifting operators, which will prove to be computationally
advantageous for the construction of tensor-product preconditioners.12,15
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II.A.1. Generalized formulation

It is possible to extend the interior penalty method to give discretizations for a wide range of equations,
including the compressible Navier-Stokes equations.14 We begin by assuming that the viscous flux Fv in (2)
is linear in the gradient of u, and hence can be written as

F iv(u,∇u) =

d∑
j=1

Gij(u)
∂u

∂xj
, (18)

where Gij(u) is a nc×nc matrix whose entries are given by arbitrary functions of u. We then transform (2)
into the system

ut +∇ · (Fi(u) + σ) = f , (19)

σ = Fv(u,∇u) =

d∑
j=1

Gij(u)
∂u

∂xj
. (20)

As in the case of the Poisson problem, we obtain the flux formulation by multiplying by test functions vh
and τh, and integrating by parts∫

Ω

∂tuh · vh dx−
∫

Ω

Fi(uh) : ∇vh dx+

∫
Γ

F̂i(u
+
h ,u

−
h ) : JvhK ds

−
∫

Ω

σh : ∇vh dx+

∫
Γ

σ̂JvhK ds =

∫
Ω

f · vh,
(21)

∫
Ω

σh : τh dx = −
∫

Ω

uh

d∑
j=1

∂

∂xi

d∑
i=1

GTij(uh)(τh)i dx+

∫
Γ

û

d∑
j=1

nj

d∑
i=1

GTij(uh)(τh)i ds, (22)

where the numerical flux functions remain to be defined. F̂i can be chosen as any standard numerical flux
for hyperbolic problems, and we define û and σ̂ as

û = {uh}, σ̂ = {Fv(uh,∇uh)}+ ηJuhK, (23)

where η is a penalty parameter as in the Poisson case. Boundary conditions are enforced by appropriate
modification of these numerical flux functions. By setting τh = ∇vh in equation (22) and inserting the
resulting expression into (21), and subsequently integrating by parts again, we can eliminate σh to obtain
the primal formulation

∫
Ω

∂tuh · vh dx−
∫

Ω

Fi(uh) : ∇vh dx+

∫
Γ

F̂i(u
+
h ,u

−
h ) : JvhK ds−

∫
Ω

d∑
j=1

Gij(uh)
∂uh
∂xj

: ∇vh dx

+

∫
Γ


d∑
j=1

Gij(uh)
∂uh
∂xj

 : JvhK ds+

∫
Γ

ηJuhK : JvhK ds+

∫
Γ

JuhK :

{
d∑
i=1

GTij(uh)
∂vh
∂xi

}
ds =

∫
Ω

f · vh.

(24)

This general formulation of the interior penalty method is amenable to sum factorization, and can be incor-
porated into the Kronecker-product preconditioner framework in a straightforward manner.

II.B. Time integration

We use a standard method of lines approach to integrate the semidiscrete system (24) in time. We define
the vector u whose entries consist of the degrees of freedom of the solution uh. Then, we write this equation
in the form

Mut = r(u), (25)

where M is the mass matrix, and the weighted residual r(u) is given by evaluating all but the first term in
(24), with vh chosen to be each of the basis functions of the space Vh.
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Figure 1: Spectral radius of DG spatial derivatives

The high-order DG discretization can result in a very restrictive CFL stability condition. It has been
shown that the spectral radius of the DG spatial derivative operator is bounded above by p2/h, and that it
is in certain cases well-approximated by p1.78/h, resulting in a highly restrictive stability condition when the
polynomial degree p is taken to be large.13,17,30 For second-order equations, this restriction is even more
severe. For example, the spectral radius of the interior penalty Laplacian operator scales as approximately
p4/h2, analogous to the case of spectral methods.16 This fast growth in spectral radius can render explicit
time integration methods impractical. The p-dependence of the spectral radius of one-dimensional DG spatial
derivative operators is illustrated in Figure 1.

In order to avoid this restrictive time step condition, we make use of implicit time integration schemes.
In this work, we consider the use of diagonally-implicit Runge-Kutta (DIRK) schemes.1 At each stage we
make use of Newton’s method to solve the resulting nonlinear system of equations, which in turn gives rise
to linear systems of the form

(M − α∆tJ)x = b, (26)

where J is the Jacobian matrix ∂r(u)/∂u. We solve this linear system by means of a preconditioned iterative
method such as GMRES. The development of effective preconditioners for such discretizations arising from
second-order equations is described in detail in the following sections.

II.C. Tensor-product structure and sum-factorization

An important advantage presented by using the tensor-product function space Vh defined by (3) is the
possibility to greatly increase the efficiency of the method using the sum-factorization approach.19 This
approach has been previously applied to the discontinuous Galerkin method,11,29 and the implementation
details are described in detail in Reference 20. This approach allows for the efficient computation of the
integrals present in equation (4), reducing the computational complexity from O(p2d) to O(pd+1).

In this section, we introduce some notation which will be useful in describing the tensor-product structure
of the DG method. We begin by defining, for each element K ∈ T , an isoparametric mapping function
T : R → K, where the unit cube R = [0, 1]d is the reference element. We define φi(x), 1 ≤ i ≤ p to be a

basis for Pp([0, 1]). Then, the tensor-product functions ΦI =
⊗d

i=1 φIi , for multi-index I = (Ii), 1 ≤ Ii ≤ p,
form a basis for the space Ppd (R). For a given element K, the basis functions for Ppd (K) are then given by

Φ̃I = ΦI ◦ T−1. It will be convenient to perform the integration of the quantities in (4) on the reference
element, using the Jacobian of the transformation function JT and its determinant. We consider a quadrature
rule on the unit interval [0, 1] given by abscissa xα and weights wα, 1 ≤ α ≤ µ. We use a tensor-product

quadrature rule on R, with abscissa xA = (xαi
) and weights wA =

∏d
i=1 wAi

, for multi-index A = (αi),
1 ≤ αi ≤ µ.

Many of the important DG operations will be built from Kronecker products of one-dimensional op-
erations. To this end, we define the one-dimensional Gauss point evaluation matrix of size µ × (p + 1)
by

Gα,i = φi(xα), (27)

5 of 15



and the one-dimensional differentiation matrix by

Dα,i = φ′i(xα). (28)

We also define the µ× µ diagonal weight matrix W by Wα,α = wα. These definitions allow us to write, for
example, the two-dimensional operators as

G2D
αβ,ij = φi(xα)φj(xβ) = G⊗G, D2D

x = G⊗D, D2D
y = D ⊗G. (29)

This process can, of course, be generalized to arbitrary spatial dimension d.

III. Tensor-product preconditioners

An important factor in achieving timely convergence of iterative linear solvers is the application of an
effective preconditioner. The preconditioning of DG methods has been much studied, and block-based
preconditioner such as block Jacobi, block Gauss-Seidel, and block ILU factorizations have found to be
effective.25 A challenge often encountered when using matrix-free methods such as the method described
above is the construction of a preconditioner without having access to the entries of the matrix. In our
previous works,20,21 we developed a strategy for approximating the diagonal blocks of the DG Jacobian
matrix without needing to explicitly form the matrix.

In two spatial dimensions, we construct a preconditioner that approximates a diagonal block A by the
sum of Kronecker products

A ≈ P := A1 ⊗B1 +A2 ⊗B2. (30)

In three spatial dimensions, the diagonal block is approximated by

A ≈ P := A1 ⊗B1 ⊗ C1 +A1 ⊗B2 ⊗ C2, (31)

where we emphasize that the same factor A1 appears in both terms on the right-hand side. Finding the
optimal such approximation is known as the “nearest Kronecker problem,” and its solution can be found
using a Kronecker-product singular value decomposition (KSVD). This KSVD can be computed efficiently
using a Lanczos algorithm using matrix-free shuffled products. For certain classes of problems (for example,
advection by a constant velocity field on a straight-sided mesh), the preconditioner matrix P is exactly equal
to the diagonal block A. The solution of systems of equations of the form

Px = b (32)

can be found efficiently using a simultaneous triangularization method. This preconditioner has been demon-
strated to be effective when applied to a variety of problems, including the scalar advection equation and
the compressible Euler equations.

III.A. Approximation of second-order terms

The preconditioner described above can be easily applied to DG discretizations of arbitrary hyperbolic
conservation laws. However, the extension to equations with second-order terms such as the Navier-Stokes
equations is not straightforward. Referring to the notation from Section II.A, we can choose to either make
use of the system flux formulation or the primal formulation of the discretization. A significant drawback of
implementing the system flux formulation directly is that it leads to a global system of equations with many
more degrees of freedom than necessary. In fact, one of the advantageous aspects of methods such as the local
DG method and the interior penalty method is that the gradient σ can be solved for element-by-element.
Furthermore, these large linear systems often have a saddle-point structure, resulting in poor performance
of iterative linear solvers.6 For example, the local DG discretization of the Poisson problem (5) gives rise to
a linear system of the form (

M −D
−DT E

)(
σ

u

)
=

(
bσ

bu

)
, (33)

where D is a matrix corresponding to the divergence of u, and DT is the discrete gradient operator. The
matrix E contains the stabilization terms corresponding to LDG coefficient C11 > 0.
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The primal formulation given by (15) avoids this issue by eliminating the gradient σ and writing the
bilinear form only in terms of the unknown function u. However, a difficulty arises in the sum factorization
of the primal form. For most of the methods enumerated in Reference 3, the primal form requires the
computation of the lifting operators of the form r(u) defined by (12). These lifting operators are computed
by inverting the mass matrices local to each element. However, on curved elements K = T (R), where T is
an isoparametric mapping, the inverse of the mass matrix cannot be expressed in tensor-product form. This
restriction makes the sum factorization of the lifting operators significantly more challenging, and prevents
the constructor of efficient shuffled matrix-vector products needed to compute the KSVD. To remedy these
issues, we make use of the interior penalty method, whose primal form is given by (17), which does not
require the computation of any lifting operators.

III.A.1. Exact representations

In the case of the scalar advection equation, it has been shown20 that the representation (30) is exact for
certain classes of problems. We would like repeat a similar analysis for the cases of the Poisson problem

−∆u = f (34)

and scalar convection diffusion equation

ut +∇ · (βu−∇u) = 0 (35)

in two spatial dimensions.
First we consider the Poisson problem. We consider the diagonal block A of the matrix associated with

the bilinear form B(·, ·) given by (17), corresponding to an element K. We restrict ourselves to the case of
a Cartesian grid, and so K is given by a translation of the unit square. Thus, the transformation Jacobian
is equal to the identity matrix, and it suffices to consider the simple case of K = R. The entries of A are
then given by B(Φk`,Φij). We can see that the terms corresponding to the volume integral can be written
in the form (∫

Ω

∇hΦk` · ∇hΦij dx

)
= GTWG⊗DTWD +DTWD ⊗GTWG, (36)

using the notation from Section II.C. In a similar fashion, the penalty boundary terms can be written as(∫
Γ

ηeJuhK · JvhK
)

= ηe
(
GTWG⊗GT0 G0 +GTWG⊗GT1 G1 +GT0 G0 ⊗GTWG+GT1 G1 ⊗GTWG

)
,

(37)
where (G0)i = φi(0) and (G1)i = φi(1) are 1 × (p + 1) end-point evaluation matrices. The end-point
differentiation matrices D0 and D1 are defined similarly. The remaining boundary terms can be treated
similarly, resulting in the following form for the diagonal blocks,

GTWG⊗
(
−DTWD − ηeGT0 G0 − ηeGT1 G1 −DT

0 G0 −GT0 D0 +DT
1 G1 +GT1 D1

)
+
(
−DTWD − ηeGT0 G0 − ηeGT1 G1 −DT

0 G0 −GT0 D0 +DT
1 G1 +GT1 D1

)
⊗GTWG, (38)

which, in particular, demonstrates that the diagonal blocks can be written as the sum of two Kronecker
products. Therefore, the tensor-product preconditioner is able to exactly reproduce the diagonal blocks of
the DG discretization in the case of the Poisson problem on a Cartesian grid.

It can also be shown that the fully discrete system (26) for the scalar advection equation on a Cartesian
grid with constant velocity field β = (βx, βy) gives rise to diagonal blocks of the form

GTWG⊗GTWG− α∆t(βxG
TWG⊗DTWG+ βyD

TWG⊗GTWG

− βxGTWG⊗GT1 G1 − βyGT1 G1 ⊗GTWG), (39)

where we assume for simplicity that βx, βy > 0, though this assumption is not necessary. Combining (38)
and (39), we see that the diagonal blocks corresponding to the DG discretization of the convection-diffusion
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Figure 2: Convection-diffusion test problem

equation (35) on a Cartesian grid with constant velocity field can be written as

GTWG⊗
(
GTWG− αβx∆t(DTWG−GT1 G1)−DTWD − ηeGT0 G0 − ηeGT1 G1

−DT
0 G0 −GT0 D0 +DT

1 G1 +GT1 D1

)
+
(
− αβy∆t(DTWG−GT1 G1)−DTWD

− ηeGT0 G0 − ηeGT1 G1 −DT
0 G0 −GT0 D0 +DT

1 G1 +GT1 D1

)
⊗GTWG, (40)

which shows that the approximate tensor-product preconditioner (30) exactly reproduces the block Jacobi
preconditioner in this case. In more general cases, we cannot expect the preconditioner to exactly reproduces
the diagonal blocks. However, the KSVD construction guarantees the optimal (in Frobenius norm) such
approximation, and the effectiveness of the preconditioner is demonstrated on a variety of test cases in the
following sections.

IV. Numerical results

IV.A. Convection-diffusion

We consider the time-dependent scalar convection-diffusion equation,

ut +∇ · (βu− ε∇u) = 0 in Ω,

u = gD on ∂ΩD,

∂u/∂n = gN on ∂ΩN ,

(41)

where β(x, y) is a given velocity field, and ε > 0 is a constant diffusion coefficient. Also of interest to us is
the steady version of this problem, where the first equation in (41) is replaced by

∇ · (βu− ε∇u) = 0. (42)

In this section, we consider two benchmark convection-diffusion test cases studied in detail by Mackenzie
and Morton.18 The domain for both test cases is the rectangle Ω = [−1, 1] × [0, 1]. A prescribed velocity
field (shown in Figure 2a) given by β(x, y) = (2y(1− x2),−2x(1− y2)) is used.

IV.A.1. Test case 1

In the first test case,28 we partition the boundary of the domain ∂Ω = Γ1 ∪ Γ2 ∪ Γ3. On Γ1 = {−1 ≤
x ≤ 0, y = 0}, we specify a Dirichlet condition with a steep gradient given by gD(x) = 1 + tanh(20x + 10).
On Γ2 = {0 ≤ x ≤ 1, y = 0}, we specific a homogeneous Neumann (outflow) condition. On the remaining
tangential boundaries, Γ3, we use a compatible Dirichlet condition gD = 1− tanh(10).
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Figure 3: Computed outflow profiles for test problem 1.

We consider a wide range of diffusion coefficients ε = 10−6, 2× 10−3, 10−2, and 10−1. The Péclet number
ranges from 20 to 2 × 106. An important quantity of interest to study for this problem is the steady-state
outflow profile u(x, 0) for 0 ≤ x ≤ 1. In order to motivate the use of high-order methods, we compare the
computed outflow profiles for a variety of grids and polynomial degrees. The mesh is taken to be a regular
grid of size 2n× n. The number of degrees of freedom is fixed at 800, and we consider three configurations:
(n = 10, p = 1), (n = 4, p = 4), and (n = 2, p = 9). The outflow profiles for all choices of diffusion coefficient
ε are shown in Figure 3. We note that for the convection-dominated case of ε = 10−6, the lower-order
methods severely underperform the higher-order methods. For ε = 10−2 this effect is much less dramatic,
however for the most diffusive case of ε = 10−1, the second-order method does not accurately capture the
steep gradient observed near the origin. This suggests that there is a benefit to using moderate to high
polynomial degrees rather than low degree polynomials on h-refined meshes.

Now we turn our attention to solver and preconditioner performance. To study the effectiveness of
the preconditioner, we compute the number of GMRES iterations required per linear solve. As before, we
consider four choices of diffusion coefficient ε. We also consider the choice of time step ∆t for the unsteady
version of this problem. As a baseline for our comparisons, we use the exact block Jacobi preconditioner.
We then compare both the approximate Kronecker-product preconditioner which incorporates second-order
terms through the sum-factorized interior penalty method (which we denote KSVD-IP) and the Kronecker-
product preconditioner used in previous works21 that did not incorporate the diffusion terms (which we
denote KSVD). The iteration counts are presented in Table 1. We observe that the block Jacobi and
Kronecker-product preconditioners exhibit extremely similar convergence properties. However, for large
diffusion coefficient, and in particular for high degree p, we see that Kronecker-product preconditioner that
does not include the diffusion term does not result in fast convergence. In particular, for ε = 10−1 and
p = 4, p = 9, GMRES did not converge to the steady-state solution in fewer than 2000 iterations. These
results indicate a significant advantage to incorporating the diffusion terms using the interior penalty method.
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Table 1: Number of GMRES iterations for Jacobi/KSVD-IP/KSVD preconditioner for convection-diffusion
test case 1. A dash indicates no convergence in less than 2000 iterations.

ε = 10−6

∆t p = 1 p = 4 p = 9

1 × 10−2 7/7/7 6/6/6 6/8/8

2 × 10−2 7/7/7 6/8/8 6/9/9

4 × 10−2 8/8/8 6/8/8 5/10/10

8 × 10−2 10/10/10 6/8/8 5/12/12

1.6 × 10−1 15/15/15 7/9/9 6/14/14

Steady 25/25/25 12/12/12 9/9/9

ε = 2 × 10−3

∆t p = 1 p = 4 p = 9

1 × 10−2 7/7/7 9/10/10 12/14/14

2 × 10−2 9/9/9 11/12/12 15/17/19

4 × 10−2 10/10/10 15/15/15 19/23/25

8 × 10−2 14/14/14 19/20/21 23/30/33

1.6 × 10−1 21/21/21 25/26/27 28/35/41

Steady 59/59/59 53/55/64 49/57/82

ε = 10−2

∆t p = 1 p = 4 p = 9

1 × 10−2 10/9/10 14/14/15 18/23/24

2 × 10−2 12/12/12 18/18/18 22/26/29

4 × 10−2 16/16/16 22/22/24 26/30/39

8 × 10−2 22/22/22 28/28/34 31/36/58

1.6 × 10−1 33/33/33 36/36/52 39/46/94

Steady 96/98/97 64/69/171 67/84/382

ε = 10−1

∆t p = 1 p = 4 p = 9

1 × 10−2 19/19/18 24/24/34 29/30/61

2 × 10−2 24/24/24 29/29/48 34/34/86

4 × 10−2 33/33/33 36/36/77 42/43/148

8 × 10−2 48/48/48 46/46/138 51/52/296

1.6 × 10−1 67/67/67 59/59/288 61/63/656

Steady 156/160/158 121/122/- 98/103/-

IV.A.2. Test case 2

The second test case is a slight modification of the above problem. We decompose the boundary ∂Ω =
Γ1 ∪ Γ2 ∪ Γ3. On the right boundary Γ1 = {x = 1, 0 ≤ y ≤ 1} we enforce a Dirichlet condition of gD = 100.
On the outflow boundary, Γ2 = {0 ≤ x ≤ 1, y = 0}, we enforce a homogeneous Neumann condition. On
the remaining boundaries, Γ3, we enforce a homogeneous Dirichlet condition. The most important feature
of this test case is the boundary layer that forms on the right boundary. In order to properly resolve this
feature, we use an anisotropic mesh that is refined in the vicinity of the right boundary, see Figure 4b. We
consider three mesh configurations, each with 3200 degrees of freedom, using degree 1, 4, and 9 polynomials.
The anisotropy of the mesh, combined with the CFL condition resulting from the diffusion term, results in
a severe time step restriction for explicit methods. In Table 2 we show the maximum stable time step for
each configuration using the standard fourth-order explicit Runge-Kutta method. This motivates the use of
implicit time integration methods.

We measure the number of GMRES iterations required per linear solve for both the time-dependent
case (as a function of ∆t), and for the steady case. The results are shown in Table 3. The number of
iterations required with interior penalty Kronecker-product preconditioner is almost identical to the number
of iterations required with the exact block Jacobi preconditioner for all cases considered. When comparing
against the previous Kronecker-product preconditioner that did not include the diffusion term, the results
are quite similar for either small diffusion coefficient (ε = 10−6), or for low polynomial degree (p = 1).
However, for the more diffusive cases, and for higher degree polynomials, we see a dramatic difference in the
number of iterations required. For ε = 10−2 or ε = 10−1 and p = 4 or p = 9, the solver did not converge in
under 2000 iterations for most of the test cases.

These results demonstrate a marked improvement in preconditioner performance by including the diffusive
terms in the Kronecker-product approximation.
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Figure 4: Convection-diffusion test problem 2

Table 2: Largest allowable time step for RK4

ε p = 1 p = 4 p = 9

1× 10−6 1× 10−2 1× 10−2 4× 10−3

2× 10−3 2× 10−4 8× 10−5 2× 10−5

1× 10−2 6× 10−5 1× 10−5 4× 10−6

1× 10−1 6× 10−6 1× 10−6 4× 10−7

Table 3: Number of GMRES iterations for Jacobi/KSVD-IP/KSVD preconditioner for convection-diffusion
test case 2. A dash indicates no convergence in less than 2000 iterations.

ε = 10−6

∆t p = 1 p = 4 p = 9

10−2 6/6/6 6/6/6 8/8/7

2 × 10−2 9/9/9 8/8/8 10/10/9

4 × 10−2 15/15/15 11/11/10 12/12/12

8 × 10−2 23/23/23 14/14/14 14/14/14

1.6 × 10−1 31/31/31 18/18/18 15/15/16

Steady 45/44/45 24/24/24 18/19/19

ε = 2 × 10−3

∆t p = 1 p = 4 p = 9

10−2 28/28/28 45/45/106 52/53/280

2 × 10−2 36/36/36 61/61/163 74/74/673

4 × 10−2 49/49/49 84/84/281 102/103/-

8 × 10−2 70/70/71 110/110/503 136/137/-

1.6 × 10−1 103/103/103 136/136/755 178/180/-

Steady 178/178/179 202/202/- 279/283/-

ε = 10−2

∆t p = 1 p = 4 p = 9

10−2 42/42/42 61/61/258 78/78/-

2 × 10−2 54/54/54 75/76/533 100/100/-

4 × 10−2 72/72/73 91/91/- 151/160/-

8 × 10−2 105/105/105 111/111/- 178/179/-

1.6 × 10−1 141/141/142 134/134/- 204/206/-

Steady 230/230/231 197/197/- 312/305/-

ε = 10−1

∆t p = 1 p = 4 p = 9

10−2 83/83/85 89/89/- 120/120/-

2 × 10−2 106/106/108 104/104/- 137/138/-

4 × 10−2 137/137/139 126/126/- 167/168/-

8 × 10−2 160/160/163 151/151/- 178/180/-

1.6 × 10−1 193/193/196 176/176/- 194/194/-

Steady 310/310/313 259/258/- 290/299/-
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IV.B. Navier-Stokes equations

In this section, we consider the compressible Navier-Stokes equations in two dimensions,

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0 (43)

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) +

∂p

∂xi1
=
∂τij
∂xj

for i = 1, 2, (44)

∂

∂t
(ρE) +

∂

∂xj
(uj(ρE + p)) = − ∂qj

∂xj
+

∂

∂xj
(ujτij), (45)

where ρ is the density, ui is the ith component of the velocity, and E is the total energy. The viscous stress
tensor and heat flux are given by

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
and qj = − µ

Pr

∂

∂xj

(
E +

p

ρ
− 1

2
ukuk

)
. (46)

Here µ is the coefficient of viscosity, and Pr is the Prandtl number. The equation of state of an ideal gas is
given by

p = (γ − 1)ρ

(
E − 1

2
ukuk

)
, (47)

where γ is the adiabatic gas constant.
We rewrite equations (43–45) in conservative form by defining the viscous and inviscid fluxes by

F 1
i (u) =


ρu1

ρu2
1 + p

ρu1u2

ρ(E + p/ρ)u1

 , F 2
i (u) =


ρu2

ρu1u2

ρu2
2 + p

ρ(E + p/rho)u2

 , (48)

F 1
v (u) =


0

τ11

τ21

q1 − ujτ1j

 , F 2
v (u) =


0

τ12

τ22

q2 − ujτj2

 . (49)

In order to formulate the interior penalty method for the Navier-Stokes equations, we must write the viscous
flux Fv in the form (18). Following the derivation of Hartmann,14 we define the matrices

G11 =
µ

ρ


0 0 0 0

− 4
3u1

4
3 0 0

−u2 0 1 0

−
(

4
3u

2
1 + u2

2 + γ
Pr (E − u2)

) (
4
3 −

γ
Pr

)
u1

(
1− γ

Pr

)
u2

γ
Pr

 ,

G12 =
µ

ρ


0 0 0 0

2
3u2 0 − 2

3 0

−u1 1 0 0

− 1
3u1u2 u2 − 2

3u1 0

 , G21 =
µ

ρ


0 0 0 0

−u2 0 1 0
2
3u1 − 2

3 0 0

− 1
3u1u2 − 2

3u2 u1 0

 ,

G22 =
µ

ρ


0 0 0 0

−u1 1 0 0

− 4
3u2 0 4

3 0

−
(
u2

1 + 4
3u

2
2 + γ

Pr (E − u2)
) (

1− γ
Pr

)
u1

(
4
3 −

γ
Pr

)
u2

γ
Pr


such that

F iv(u,∇u) =

2∑
j=1

Gij(u)
∂u

∂xj
, (50)

allowing us to use the interior penalty formulation given by (24).
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Figure 5: Mesh and computed solution for viscous compressible flow over a circular cylinder.

IV.B.1. Flow over a circular cylinder

We consider viscous compressible flow over a circular cylinder. The domain is given by, Ω = A(1, 10), the
annulus with inner radius 1 and outer radius 10. As in the previous examples, we consider three mesh
configurations, corresponding to polynomial degrees p = 1, p = 4, p = 9. Each mesh has 6400 degrees of
freedom per solution component. The coarsest mesh is shown in Figure 5a. A no-slip boundary condition
is enforced at the inner boundary, and far-field conditions are enforced at the outer boundary. The Mach
number is chosen to be M = 0.2, and we consider a range of Reynolds numbers: Re = 10,Re = 200, and
Re = 1000. We start from freestream conditions and integrate in time until t = 1 in order to obtain a
representative solution.

At this point, we measure the number of GMRES iterations required per linear solve. We consider the
time steps ∆t = 10−2, 2 × 10−2, 4 × 10−2, and 8 × 10−2. As before, we compare the effectiveness of three
preconditioners: exact block Jacobi, the interior penalty approximate Kronecker-product preconditioner
(KSVD-IP), and the Kronecker-product preconditioner that does not include viscous terms (KSVD). Each of
these preconditioners is applied component-wise to the Jacobian matrix (i.e. with block size (p+1)d×(p+1)d,
with nc diagonal blocks per element). A comprehensive comparison of iteration counts in shown in Table 5.

We observe that the interior penalty Kronecker-product preconditioner is able to match the performance
of the exact block Jacobi preconditioner for all polynomial degrees considered, and at all choices of Reynolds
number. In contrast, the Kronecker-product preconditioner that did not include viscous terms results in
highly decreased performance at both low Reynolds numbers and high polynomial degrees. For the low-
degree case of p = 1, the effect was extremely modest for all Reynolds numbers. This suggests that the
proper incorporation of second-order terms is important for good preconditioner performance at high degrees.
For the convection-dominated case of Re = 1000, the effect was modest except for at the largest time step
∆t = 8 × 10−2. However, for the viscous-dominated case of Re = 10, the increase in iterations was sizable
for all time steps for degree p ≥ 4.

V. Conclusion

In this work, we introduced an improved Kronecker-product preconditioner that uses the particular
form of the interior penalty method to properly incorporate second-order derivative terms that arise from
diffusive or viscous terms. This avoids the difficulty of computing the lifting operators required for other
discretizations of such second-order terms. This preconditioner exactly reproduces the diagonal blocks of the
discretized matrix in certain special cases, through an entirely algebraic and automatic approach. In cases
where it is not exact, it is chosen to be optimal in the Frobenius norm. Numerical examples demonstrate
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Table 5: Number of GMRES iterations for Jacobi/KSVD-IP/KSVD preconditioner for flow over a circular
cylinder. A dash indicates no convergence in less than 2000 iterations.

Re = 10

∆t p = 1 p = 4 p = 9

1× 10−2 16/16/14 28/28/47 46/46/125

2× 10−2 20/20/22 45/44/83 81/81/229

4× 10−2 35/35/40 73/74/160 146/145/652

8× 10−2 61/61/72 118/118/388 247/250/-

Re = 200

∆t p = 1 p = 4 p = 9

1× 10−2 17/17/13 21/21/18 27/30/35

2× 10−2 21/21/21 32/33/37 56/60/78

4× 10−2 35/35/36 70/71/95 128/134/257

8× 10−2 65/65/67 176/179/383 371/379/1610

Re = 1000

∆t p = 1 p = 4 p = 9

1× 10−2 17/17/14 22/22/19 29/31/31

2× 10−2 22/22/22 37/37/39 61/66/73

4× 10−2 36/36/36 90/91/100 213/218/384

8× 10−2 66/66/66 293/297/509 1344/1554/-

the effectiveness of this preconditioner when compared with block Jacobi on a range of problems, including
convection diffusion and compressible Navier-Stokes. Comparisons with the previous Kronecker-product
preconditioner, which did not incorporate diffusive terms, demonstrates a marked performance increase on
a range of problems. Future work involves the development of Kronecker-product preconditioners that are
suitable for use within a p-multigrid framework for the solution of elliptic steady-state problems.
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