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The simulation of the transonic buffet phenomenon caused by shock wave and boundary
layer interactions is a challenging problem for standard tools in computational fluid dynam-
ics. We present a numerical study of the OAT15A airfoil at Mach number 0.73, angle of
attack 3.5◦ and Reynolds number 3 × 106. In this work, we make use of a wall-resolved im-
plicit large eddy simulation (WRLES) technique using a high-order discontinuous Galerkin
discretization. Without making use of subgrid turbulence models or wall models, the WR-
LES simulation successfully predicts transonic buffet at an angle of attack of 3.5◦. This
method results in good agreement with computational results obtained using detached
eddy simulation (DES) method, and fair agreement with experimental results. We study
the effect of mesh refinement, polynomial degree, and artificial viscosity parameters on the
accuracy of the distribution of the pressure coefficient on the upper surface of the airfoil,
and compare both 2D and 3D simulations.

I. Introduction

Transonic flow over an airfoil can result in complex interactions between shock waves and the viscous
boundary layer. A particularly interesting and challenging phenomenon is that of transonic buffet, whereby
the flow separation induces instabilities, unsteady behavior and structural vibrations, termed buffeting.8,33

This strong phenomenon can cause dangerous vibrations leading to the destruction of a wing or a turboma-
chine blade.17 The origin and onset of transonic buffet has been studied experimentally,17,19 in the context
of global stability theory,11,12 and computationally, using a variety of discretizations and approaches.6,7, 15

The numerical simulation of transonic buffet on airfoils18 is highly challenging, due to its unsteady
nature, the turbulent flows, and the complex interaction between shocks and flow separation.13 Most of the
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standard tools in computational fluid dynamics for modeling turbulence are based on the unsteady Reynolds-
averaged Navier-Stokes (URANS) equations, which are widely believed to produce unreliable results for
massively separated unsteady flows.4,29 Alternative approaches such as large eddy simulation (LES) and
hybrid methods such as detached eddy simulation (DES)30 are typically better at modeling these flow
problems, however at several magnitudes higher computational cost.

During the last decade, higher order accurate discretizations such as the discontinuous Galerkin (DG)
method10 have been shown to be highly efficient for LES simulations.3,26,31 In particular, the so-called
implicit LES (ILES) method which uses the natural dissipation from the numerical scheme as a subgrid
closure model, has been used successfully for a range of model problems.32 These simulations are usually
performed on grids that resolve the boundary layer in the normal direction, but have significant stretching
in the streamwise and the spanwise directions to reduce the total number of elements. This regime is often
referred to as wall-resolved LES (WRLES), as opposed to wall-modeled LES (WMLES) methods which use
various techniques to model the flow in the boundary layer and somehow couple to the LES solver further
away from the flow.5,22

In this work, we apply a state-of-the-art high-order DG solver to the simulation of transonic buffet on the
ONERA OAT15A airfoil. This is a well-studied model problem with many experimental17 and numerical13,15

results to compare with. Our main focus is to evaluate our high-order methods for modeling this phenomenon,
in particular with respect to (a) the numerical stability of the solvers and the high-order approximations,
and (b) the accuracy of the resulting flow predictions. A fundamental difficulty with high-order methods is
the treatment and stabilization of shocks and other under-resolved features of the solution. Here, we use
the artificial visocisty approach developed in Refs. 27, 28, which achieves subgrid resolution using a highly
sensitive indicator based on orthogonal polynomials.

II. Governing equations and discretization

The governing equations are the compressible Navier-Stokes equations in d spatial dimensions, stabilized
by adding a Laplacian diffusion term to each equation. We solve these equations in terms of the conservative
variables u = (ρ, ρv, ρE), where ρ is the density, v ∈ Rd is the velocity, and E is the total energy per unit
mass. We write the system in conservation form:

∂u

∂t
+∇ ·

(
F I(u) + F V (u,∇u)− ε∇u

)
= 0, (1)

where the F I and FV are the inviscid and viscous flux functions, respectively. F I is given by the Euler
fluxes,

F I(u) =

 ρv

ρv ⊗ vT + pI

ρHv

 , (2)

and the viscous flux is defined by

F V =

 0

−τ
qj − viτij

 , (3)

where I is the d × d identity matrix, p is the pressure, H = E + p/ρ is the stagnation enthalpy, and the
viscous stress tensor τ and heat flux q are defined by

τij = µ

(
∂vi
∂xj

+
∂vj
∂xi
− 2

3

∂vk
∂xk

δij

)
, qj = − µ

Pr

∂

∂xj

(
E +

p

ρ
− 1

2
vkvk

)
. (4)

Here µ is the coefficient of viscosity defined in terms of the Reynolds number Re, and Pr is the Prandtl
number, which we take to be Pr = 0.72. The system is closed by the equation of state

p = (γ − 1)ρ
(
E − ‖v‖2/2

)
. (5)

The parameter ε controls the artificial viscosity required for shock capturing. The definition of ε is of great
importance in this work, and will be discussed in detail below.
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A. Discontinuous Galerkin discretization

For the spatial discretization we use a standard nodal discontinuous Galerkin method. The physical domain
Ω is discretized using a high-order mesh Th consisting of curved elements Ki mapped from the tensor-product
reference element [0, 1]d using an isoparametric mapping denoted Ti. Test and trial functions are drawn from
the finite element function space

Vh = {v : Ω→ R : v|Ki
∈ Vh(Ki) for each element Ki ∈ Th} . (6)

The local isoparametric function space is defined by

Vh(Ki) =
{
v : Ki → R : v(x) = q

(
T−1
i (x)

)
for some q ∈ Qp

(
[0, 1]d

)}
, (7)

where Qp is the space of all polynomials of degree at most p in each variable, defined by

Qp
(
[0, 1]d

)
=

q : [0, 1]d → R : q(x) =
∑
β

cβx
β, βj ≤ p

 , (8)

where β is a multi-index.
The viscous fluxes and Laplacian term are formulated using the CDG method.25 As in the local discon-

tinuous Galerkin (LDG) method,9 these fluxes include a parameter C11 that plays the role of a penalization
or stabilization term, similar to that of an interior penalty or Nitsche method.1,2, 20 The CDG method allows
for setting the C11 parameter to be identically zero. However, in this work we use the value defined on each
element by C11 = 20/hmin where hmin is the height of the element, in order to provide additional nonlinear
stabilization. At the domain boundary, we impose the boundary conditions weakly through an appropriate
choice of numerical fluxes.

B. Stabilization by artificial viscosity

A defining feature of the transonic flows that are the subject of this work is the shock wave that induces the
buffet phenomenon. However, shocks and discontinuities in the flow field can result in spurious oscillations
that degrade the quality of the solution and potentially result in negative density or pressure, thus halting
the simulation. In order to capture these sharp features while damping the oscillations, we make use of an
artificial viscosity field based on a resolution sensor.

The main idea behind the resolution sensor is to determine the decay rate of the expansion coefficients
of the solution in an orthogonal basis. For smooth solutions, the coefficients in the expansion are expected
to decay very quickly. But when the solution is under-resolved, the strength of the discontinuity will dictate
the rate of decay of the expansion coefficients. Our resolution sensor is based on the amount of the highest
order coefficients for one of the solution components, within each element.

We first expand the solution within each element in terms of a hierarchical family of orthogonal poly-
nomials. Therefore, we write a scalar solution component u in terms of the orthogonal basis functions ψi
as

u =

Np∑
i=1

uiψi, (9)

where Np is the dimension of the solution space. In all of our examples we choose the density ρ as the
scalar field, which in our experience results in a highly sensitive yet selective shock indicator. We express
the solution of order p within each element in terms of an orthogonal basis, consider a truncated expansion
of the same solution, and define a resolution indicator as:

u =

Np∑
i=1

uiψi, û =

Np−1∑
i=1

uiψi, Se = log10

(
(u− û, u− û)e

(u, u)e

)
Next we determine an element-wise viscosity εe over each element e by the following function,

εe =


0 if se < s0 − κ ,
ε0
2

(
1 + sin π(se−s0)

2κ

)
if s0 − κ ≤ se ≤ s0 + κ ,

ε0 if se > s0 + κ .

(10)
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Here, se = log10 Se and the parameters ε0 ∼ h/p, s0 ∼ 1/p4, and κ are chosen empirically sufficiently large
so as to obtain a sharp but smooth shock profile.27,28 ε0 determines the strength of the viscosity, and s0
controls the selectivity the viscosity indicator function. These element-wise viscosities are used to define a
piecewise-constant field ε(x) = εK(x), where K(x) identifies the element to which x belongs.

To reduce the amount of numerical artifacts due to the piecewise nature of this indicator, we form a new
continuous viscosity field ε0(x) ∈ C0(Ω). This viscosity field is formed by assigning to each mesh vertex the
maximum viscosity value among all neighboring elements K. These values are then interpolated linearly
within each element.

Since the viscosity fields depend on the solution in a non-local way, the Jacobian matrix has a wider stencil
than the original DG scheme and it is difficult to compute. However, for time-accurate solutions we have
found that it is sufficient to weakly couple the sensor to the Navier-Stokes equations. More specifically, for
our implicit Runge-Kutta time integrator we simply compute a viscosity field at each initial time and make
use of this time-lagged viscosity for the entire timestep. This simplifies the nonlinear solvers significantly,
since the solution-dependency of the sensor does not have to be considered in the Jacobian matrices.

C. Semi-discrete equations and temporal integration

The spatial discretization leads to a semi-discrete form:

M
dU

dt
= R(U), (11)

for solution vector U , mass matrix M , and residual function R(U). We integrate this system of ordinary dif-
ferential equations in time using an efficient, stage-parallel, fully implicit, Radau IIA Runge-Kutta method24

with analytical Jacobian matrices and a block-ILU(0) preconditioned GMRES solver. The use of a fully
implicit Runge-Kutta method for the temporal integration allows for the solution of the temporal stages in
parallel, thereby reducing the number of mesh partitions, and improving the strong scaling of the solver.

D. Problem configuration

The spatial domain is taken to be the rectangle [−50, 100]× [−50, 50] with the leading edge of the OAT15A
airfoil placed at the origin. The chord length is normalized to be 1. Thus, all domain boundaries are at least
50 chord lengths from the airfoil, and the wake region has a length of 100 chord lengths. Far-field conditions
are enforced at domain boundaries, and a no-slip wall condition is enforced at the surface of the airfoil. The
freestream velocity is chosen in accordance with the angle of attack α = 3.5◦. The Mach number is M = 0.73
and the Reynolds number based on the chord length is Re = 3× 106. For the three-dimensional simulations,
the domain is extruded 0.2 chord-lengths in the spanwise direction, and periodic boundary conditions are
enforced at the plane of symmetry.

We consider a sequence of four two-dimensional meshes, each increasing in resolution. All of the meshes
used are unstructured quadrilateral meshes with areas of refinement located in the boundary layer, the trailing
edge of the airfoil, and the shock location on the upper surface of the airfoil. The boundary layer elements
are generated through a sequence of 8 to 10 structured refinements in the transverse direction, resulting in
highly anisotropic elements, with aspect ratios of up to approximately 1000:1. In order to perform the wall-
resolved large eddy simulation, we require that y+ < 1 for the entire length of the boundary layer. We note
that for this problem, y+ = 1 corresponds to a distance of about 8.45 × 10−6 units from the surface of the
airfoil. The coarsest mesh we use has a boundary layer element thickness of approximately 2.32×10−6 units
and the finest mesh has a boundary layer element thickness of about 7.25 × 10−7 units. Moreover, the use
of high-degree polynomials results in a smaller effective y+. These small and highly stretched elements give
rise to an extremely restrictive CFL stability condition that necessitates the use of implicit time integration.
The four meshes (denoted I, II, III, and IV) are shown in Figure 1. We used Mesh II and Mesh III as a basis
for the 3D simulations. The 2D meshes were extruded in the spanwise direction, such that each quadrilateral
element results in 20 hexahedral elements, giving rise to a total of 163,720 hexahedra for Mesh II and 286,600
hexahedra for Mesh III. For both 3D simulations, we use quadratic p = 2 polynomials, resulting in 4,420,440
nodes, or 22,102,200 total degrees of freedom for Mesh II, and 7,738,200 nodes, corresponding to a total of
38,691,000 degrees of freedom for Mesh III.
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Figure 1: Sequence of two-dimensional meshes used in this study (showing zoom-in around the airfoil).
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III. Results and analysis

A. 2D results

We begin by performing a sequence of simulations on the 2D meshes shown in Figure 1. We additionally
vary discretization parameters such as polynomial degree p and viscosity threshold s0. We summarize the
simulation configurations in Table 1. The viscosity threshold s0 is chosen experimentally in order to minimize
the effect of the viscosity while still maintaining stability. For all but the coarsest mesh used, we observe the
buffet phenomenon and shock oscillation.

Table 1: 2D simulation configurations and comparison with literature

Study Parameters Shock oscillation

Mesh I p = 2, s0 = −5.0 7

Mesh II

p = 2, s0 = −4.3 3

p = 3, s0 = −4.5 3

p = 4, s0 = −5.5 3

Mesh III p = 2, s0 = −4.3 3

Mesh IV p = 2, s0 = −3.8 3

URANS6 α = 3.5◦ 7

α = 4.0◦ 3

IDDES15 10.2× 106 DOFs/comp. 3

1. Mesh I

This mesh is the coarsest mesh used in this study, consisting of only 3,914 quadrilateral elements. Unstruc-
tured mesh refinement was performed in a narrow band above the surface of the airfoil in order to sharply
resolve the initial shock location. In this simulation, we did not observe the buffet or shock oscillation, likely
due to under-resolution of the shock region immediately above the airfoil. Additionally, the observed shock
location was too far downstream when comparing with experimental and computational reference data. The
shock location was observed to be steady at around 0.5 chord lengths. These results are generally consistent
with those of Ref. 6, where no shock oscillation was observed using a URANS method. Our conclusion for
this test case is that Mesh I is too coarse in order to adequately resolve the small-scale features required for
an accurate LES simulation. In Figure 2 we show a snapshot of the pressure and artificial viscosity obtained
using this mesh, and compare with the results obtained on Mesh III.

2. Mesh II

In order to address the under-resolution observed in the previous test case, we created Mesh II by further
refining the mesh around the surface of the airfoil and in the wake. We also expanded the region of refinement
around the shock location above the airfoil. This refined mesh consists of slightly more than twice as many
quadrilateral elements as Mesh I. This mesh was used for a sequence of three 2D simulations, using p = 2,
p = 3, and p = 4, in order to study the effect of polynomial degree on the accuracy of the results. In
all simulations, we observe the buffet phenomenon and shock oscillation. In Figure 3 we display several
snapshots of the pressure field computed on this mesh, illustrating the buffet phenomenon. We also compute
the coefficient of pressure on the surface of the airfoil, as well as mean pressure fluctuations. The coefficient of
pressure is displayed in Figure 4. Using p = 2, we observe good agreement with the previous computational
results of Huang and colleagues,15 which made use of an improved delayed detached eddy simulation (IDDES)
method. The resolution sensor is chosen using the parameter s0 = −4.3. The shock location is predicted
to be slightly further upstream than what is observed in experiments, and the pressure coefficient appears
to plateau after the initial shock location (an effect not present in experimental data). Using p = 3 and
p = 4 polynomials, we obtain a more accurate prediction of the initial shock location, and better agreement
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Snapshot of pressure on Mesh I. We note the shock
location is stationary, and too far downstream when
compared with experimental data, likely due to mesh
under-resolution.
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Artificial viscosity field on Mesh I. Grey background
indicates regions in which no viscosity is added. The
sensor is mostly active in the vicinity of the shock,
but also in the boundary layer and wake regions.
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Snapshot of pressure on Mesh III. The shock loca-
tion is further upstream in comparison to the results
obtained on Mesh I.
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Artificial viscosity field on Mesh III. When compar-
ing with the results obtained on Mesh I, we see that
the viscosity coefficient is significantly smaller, and
the sensor is less active in the boundary layer and
towards the leading edge of the airfoil.

Figure 2: Comparison of pressure (left) and artificial viscosity fields (right) obtained using Mesh I (top) and
Mesh III (bottom). Mesh I is under-resolved, resulting in a downstream shock location and strong artificial
viscosity field required for stabilization. In comparison, the shock location obtained using Mesh III is more
accurate, and the artificial viscosity is smaller and more selective.
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Figure 3: Snapshots of pressure computed using Mesh II with p = 2, showing oscillation of the shock location.

with experimental data towards the trailing edge. Because the use of higher degree polynomials can result
in larger oscillations near discontinuities, for the p = 4 case we choose less selective shock sensors with
s0 = −5.5 for this case. However, our results also include a secondary, weaker shock downstream of the first
shock. We believe this downstream shock is likely a numerical artifact, either due to the oscillatory nature
of the high-degree polynomials or our treatment of artificial viscosity. In Figure 4 we also present the mean
pressure fluctuations on the surface of the airfoil. The results for p = 3 and p = 4 were very similar, and
so we present only the p = 4 case below. Our results are largely consistent with experiment and numerical
results; however, we do observe larger fluctuations towards the trailing edge of the airfoil. We hypothesize
that this is partly because of the secondary shock, and partly because we average over a relatively small
number of flow cycles.

3. Mesh III and Mesh IV

Mesh III is obtained by further expanding the area of refinement above the surface of the airfoil, such that
the region or refinement spans almost the entire length of the airfoil. Mesh IV is a variant of Mesh III, where
the mesh size field is chosen to be smaller within the regions of refinement. We run the simulation on both of
these meshes using p = 2. The artificial viscosity threshold is set to s0 = −4.3 for Mesh III and s0 = −3.8 for
Mesh IV, as this was experimentally determined to result in a stable simulation with minimal degradation
of solution quality. The coefficient of pressure obtained using Mesh III closely matches the experimental
data, and the RMS pressure fluctuations agree well with experimental data in the vicinity of the shock, but
deviate further downstream. One explanation for this deviation from experimental data is the presence of a
weaker secondary shock downstream from the first shock, which is likely caused by numerical effects. The
coefficient of pressure and pressure fluctuations obtained using Mesh IV closely matches that obtained using
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Mesh II with p = 4. The initial shock location is well predicted by the simulations using Mesh II with p = 4,
Mesh III, and Mesh IV, suggesting that these configurations are sufficiently resolved.

B. 3D results

We generate two 3D hexahedral meshes by extruding Mesh II and Mesh III by 0.2 chord lengths in the
y-direction, obtaining meshes with 163,360 and 286,600 isoparametric hexahedral elements, respectively.
We run both simulations with p = 2, resulting in a total of 22,102,200 and 38,691,000 degrees of freedom.
The meshes are partitioned into 1680 partitions and run in parallel on 60 Broadwell nodes of NASA’s
Pleaides supercomputer. In Figure 5, we show several snapshots of the solution, visualized using isosurfaces
of the Q-criterion,14,16 Q = − 1

2vi,jvj,i, colored by velocity magnitude. The shock location is shown as a
M = 1 isosurface, and the oscillatory shock motion is illustrated over approximately one half-period. We
compute the time- and spanwise-averaged coefficient of pressure at the surface of the airfoil and present the
results in Figure 4. Although some differences are expected to be observed between the 2D and 3D buffet
phenomenon,21 the main flow features remain largely similar between the 2D and 3D simulations. This
observation is consistent with other results from the literature.17

The 3D simulations do not exhibit the secondary, spurious shock that is present in some of our 2D
simulations, indicating that perhaps this feature is an artifact of the 2D discretization. As a result, the
downstream results for both the coefficient of pressure and mean pressure fluctuations much more closely
match the experimental data. The 3D mesh based on Mesh II results in a shock location that is too far
upstream, and more limited shock oscillation. However, when we use the extruded version of Mesh III, which
is further refined around the shock location and in the boundary layer, we recover a more accurate shock
location and larger shock motion, giving results that more closely match the reference data.

C. Robustness and solver performance

This work has allowed us to study the robustness of high-order DG methods when applied to a challenging
test case with many complex features. The approach of using wall-resolved LES for a problem with Reynolds
number 3×106 results in extremely small, anisotropic boundary layer elements, which can prove challenging
for discretizations and solvers. Additionally, the main focus of this study is the ability of these methods
to accurately capture the transonic buffet phenomenon, which arises as the result of a complex interaction
between transonic shocks, viscous boundary layer effects, and upstream moving waves from the trailing
edge. Thus, it is of great importance to stabilize the shocks while ensuring that sufficiently little artificial
dissipation is added, allowing the method to properly resolve these small-scale features.

The extremely small boundary layer elements necessitate the use of implicit time integration schemes,
and correspondingly, robust linear and nonlinear solvers to efficiently solve the resulting systems. In this
work, we made use of fully implicit Radau IIA Runge-Kutta methods, using stage-uncoupled block ILU(0)
preconditioners.24 These methods have successfully been applied to lower Mach number LES problems in
2D and 3D,23 but this study further demonstrates their utility when applied to transonic flow problems. For
all of the simulations performed in this study, we were able to use a time-accurate time step of ∆t = 10−3,
which is several magnitudes larger than the largest allowable explicit time step, especially on the refined
meshes.

In this study, we have found that the parameters that have the greatest influence on the stability and
robustness of the method are those concerning the artificial viscosity. If the viscosity is chosen to be too
selective by taking s0 to be too large, then the solution can develop oscillations in the vicinity of the
shock, leading to negative density or pressure. Empirical evidence suggests that the stability is relatively
insensitive to the parameter κ in (10), which we have taken to be 1 in all of the runs performed in this work.
Although scaling arguments can be used to determine roughly how s0 and ε0 should scale in terms of h and
p, these arguments do not result in explicit expressions for these values, and experience suggests that the
proper values are highly mesh- and problem-dependent. We have also found that the spatial order p of the
numerical method has little effect on the shock capturing and stability of the solution.

IV. Conclusions

In this work we have performed a series of 2D and 3D simulations of transonic buffet on the ONERA
OAT15A airfoil at Re = 3 × 106 and α = 3.5◦ using a wall-resolved LES methodology. Using a very
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Figure 4: Left: coefficient of pressure for the OAT15A airfoil using simulation configurations listed in Table
1. Right: RMS pressure fluctuations on the suction side of the airfoil for the same configurations.
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Figure 5: Snapshots of 3D solution, showing isosurfaces of Q-criterion, colored by velocity magnitude. The
location of the shock is visualized in green using a Mach 1 isosurface.

coarse and under-resolved mesh, we obtain results similar to URANS,6,7 where no shock oscillation was
observed. By refining the mesh in the vicinity of the shock, we are able to predict the shock oscillation,
obtaining results largely consistent with previous DES computational studies.15 Further mesh refinements
and increasing the polynomial degree result in better agreement with experimental data for the initial shock
location. Our two-dimensional results differ from experimental data for the coefficient of pressure and RMS
pressure fluctuations downstream from the shock. This difference is largely due to a spurious secondary
shock, which we hypothesize is an artifact of the 2D discretization. Our three-dimensional results do not
exhibit this behavior, and thus give much more accurate results in the downstream region. This work has
also allowed us to study the robustness of fully implicit Runge-Kutta methods applied to transonic problems
using an artificial viscosity approach for shock capturing. Overall we observed that the implicit solvers
perform well, and the artificial viscosity approach results in a stable discretization while also resolving
the shock location. The solution remained stable when solving the problem with a wide range of mesh
and discretization parameters. The iterative solvers converged rapidly even when applied to the large-
scale problems. However, the choice of parameters for the shock capturing resolution sensor seems to have a
significant effect on the solution quality, and so the development of a methodology for the automatic selection
of these parameters would be an interesting topic for future development.
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