
Size Functions and Mesh Generation for

High-Quality Adaptive Remeshing

Per-Olof Persson

Massachusetts Institute of Technology, Department of Mathematics, Cambridge,

MA 02139, USA

Abstract

We present a new method for remeshing of triangular and tetrahedral meshes. Relative

element sizes are computed from an error estimation. Then their gradient is limited in an

optimal way by solving a Hamilton-Jacobi equation numerically. The new mesh is generated

using smoothing-based iterations with connectivity updates (changes in topology of the mesh).

The boundary nodes are projected using an implicit geometry representation based on distance

functions. Our algorithm is simple and efficient, and it produces high-quality meshes.

Keywords: Adaptation, Mesh generation, Mesh size functions, Gradient limiting

1

1 Introduction

An adaptive finite element solver starts from an initial mesh, solves the physical problem,

and estimates the error in each mesh element. From this a new mesh size function can be

derived, for example by equidistributing the error across the domain. The challenge for the

mesh generator is to create a new high-quality mesh, conforming to the size function and other

geometrical constraints.

One approach is to refine the existing mesh, by splitting elements that are too large, and

possibly also coarsening small elements. These local refinement techniques are efficient, robust,

and provide simple solution transfer between the meshes. The refinement can be made in a

way that completely avoids bad elements, but the average qualities usually drop during the

process.

An alternative is to remesh the domain by generating a new mesh from scratch based on the

desired size function. This technique has been considered expensive, but it can produce meshes

of very high quality if the size function is well-behaved. However, the size functions arising

from adaptive solvers may have large gradients, and they have to be modified before being

used with a mesh generator that relies on good size functions. These include the Advancing

front method [1], the Paving method for quadrilateral meshing [2], and the smoothing-based

algorithm we presented in [3]. The Delaunay refinement method [4], [5] generates meshes from

any size function, but the element qualities are usually higher with good size functions.

In this work we describe a method that starts by limiting the gradient of the size function,

2

by solving a nonlinear partial differential equation. We then refine the existing mesh using a

simple density control, without worrying about the qualities, and apply an iterative procedure

to improve the mesh [3]. Assuming a piecewise linear force-displacement relationship in the

mesh edges, we find an equilibrium position for the nodes. Mesh points that leave the domain

during an update are projected back using an implicit geometry representation. Many mesh

generators use simple Laplacian smoothing as a postprocessing step, but our method can

start from arbitrarily bad elements and generate good meshes, since it also modifies the mesh

connectivity and the distribution of the boundary nodes. Also, limiting the gradient produces

high-quality meshes by inserting a minimum of new nodes.

2 Element Size Functions

The mesh size function h(x) is important for generation of high quality meshes. It should

satisfy the size constraints specified by the adaptive solver, as well as geometrical constraints

such as curvature and feature size. In addition, the element size should not differ too much

between neighboring elements, which corresponds to a limit on the gradient |∇h(x)|.

2.1 Numerical Adaptation

An adaptive solver provides an error estimate in each element of the mesh, from which a new

size function h(x) can be derived. This size function specifies smaller element sizes in some

regions and larger sizes in others. It typically does not take specific account of features of the

3

geometry. Its gradient may not be limited. if we were to generate a mesh according to this

function, it would likely produce elements of poor quality.

2.2 Geometric Adaptation

In addition to the numerical constraints, the size function should also be adapted to the

geometry of the computational domain. At boundaries with high curvature, small elements

are required. In thin regions, with small distance between boundaries, the elements have to be

small in order to have high quality. Our method accepts any geometric size function, and in

our examples we compute it directly from our implicit geometry representation. The curvature

is given by the Laplacian of the distance function, and we compute the feature size from the

medial axis, which we detect as shocks in the distance function. The curvature adaptation

specifies sizes only at the boundaries, and we want to extend h(x) to the interior.

2.3 Gradient Limiting

We can form a total size function h0(x) as the minimum of the numerical and geometrical

requirements, as well as any user-specified size constraints. As a final step, we now limit the

gradients |∇h(x)| ≤ g to bound the size ratio of neighboring elements in the new mesh.

In [6], we presented a new technique for gradient limiting. It is based on the steady-state

solution to a Hamilton-Jacobi equation. For convex domains we showed that we obtain an

optimal result:

4

Theorem 2.1. Let Ω ⊂ R
n be a bounded convex domain, and I = (0, T) a given time interval.

The steady-state solution h(x) = limT→∞ h(x, T) to

∂h
∂t

+ |∇h| = min(|∇h|, g) (x, t) ∈ Ω× I

h(x, t)|t=0
= h0(x) x ∈ Ω

(1)

is

h(x) = min
y

(h0(y) + g|x− y|). (2)

Proof. Use the Hopf-Lax theorem [7], see [6] for details.

Note how the solution in Eq (2) is a minimum of infinitely many point-source solutions

h0(y) + g|x − y|. Then h(x) is optimal in the sense of minimum deviation from the original

size function. We could in principle define an algorithm based on Eq (2) for computing h

from a given h0 (both discretized). Such an algorithm would be trivial to implement, but its

computational complexity would be proportional to the square of the number of node points.

Instead, we solve Eq (1) using efficient numerical Hamilton-Jacobi solvers [8], [9].

3 Mesh Generation

We now turn to the generation of an unstructured mesh for our size function h(x). As a

simple model example, we solve Poisson’s equation with a delta source and estimate the error

in the energy norm [10]. The initial mesh and the gradient limited size function are shown in

Figure 1, left.

5

Our meshing algorithm needs an initial guess for the new locations of the mesh points.

In [3] we used a random technique based on the rejection method to obtain a point density

according to h(x). However, for an adaptive solver we can obtain a good initial guess with

correct connectivity faster by density control, that is, splitting edges and merging neighboring

nodes (Figure 1, center). Note that this mesh does not have to be of high quality, or have good

connectivity, so any simple scheme can be used.

To improve this initial mesh, we assign forces in the mesh edges and solve for force equi-

librium at the nodes. The force in an edge depends on the length ` of the edge and on its

unstretched length `0 (which we set proportional to the desired mesh size h(x) evaluated at

the edge midpoint). We use a linear spring model to push nodes outward :

f(`, `0) =

k(`0 − `) if ` < `0,

0 if ` ≥ `0.

(3)

By summing the forces at all mesh positions p (for each coordinate direction) we obtain a

nonlinear system of equations F (p) = 0. We find the positions as a steady-state of

dp

dt
= F (p), t ≥ 0 (4)

using forward Euler. Note that this artificial time-dependence is unrelated to the (real) time

evolution of the geometry as given by φ(x). After each Euler step we apply normal boundary

forces, by projecting any external nodes back orthogonally to the boundary using the distance

6

function:

p← p− φ(p)∇φ(p). (5)

These normal forces may be seen as Lagrange multipliers which keep nodes exactly along

the boundary. This expression can be modified to allow general implicit functions instead of

distance functions, either by solving nonlinear equations (see [3]) or by approximate projections.

During the iterations, we always maintain a good connectivity by updating the triangula-

tion. In the simple code of [3] this was done by recomputing the Delaunay triangulation. Now

we have implemented more efficient and robust versions based on local topology updates (such

as edge flips). When the mesh quality is sufficiently high we terminate (Figure 1, right).

4 Results

We show three examples of numerical adaptation and remeshing using our methods.

4.1 Convection with Discontinuity

Our first example solves a simple convective model problem on a square geometry:

v · ∇u(x, y) = 0 with v = [1,−2πA cos 2πx], (x, y) ∈ (−1, 1)× (−1, 1), (6)

with a jump in the left boundary condition, v(0, y) = Heaviside(y). We discretize using

linear finite elements with streamline-diffusion stabilization. To obtain an accurate numerical

7

solution, the discontinuity along y = A sin 2πx has to be resolved. We do this using numerical

adaptation in the L2-norm, see [10]. The size function from the adaptive scheme is highly

irregular, with large variations in element sizes which would give low-quality triangles (Figure 2,

left plot). After gradient limiting the mesh size function is well-behaved (center plot) and a

high-quality mesh can be generated (right plot).

4.2 Compressible Flow over Bump

Our second example simulates compressible flow over a bump at Mach 0.95. A simple adaptive

scheme based on second-derivatives of the density [1] resolves the shock accurately but increases

the sizes sharply outside the shock. With gradient limiting a high quality mesh is generated

(Figure 3).

4.3 Linear Elasticity

A final example shows a three dimensional mechanical component, with forces applied on the

circular holes. We use adaptation in the energy norm as well as a geometric mesh size function.

The gradient limiting equation extends naturally to three dimensions, and we create tetrahedral

meshes with the methods descibed in [3] and [12]. Bad elements are removed by face-swapping

and edge-flipping [11], and the resulting mesh has high elements qualities (Figure 4).

8

5 Conclusions

Our new technique remeshes geometries starting with a size function from a previous mesh.

This size function is gradient limited by numerical solution of Eq (1), and a new mesh is gen-

erated by solving for a force equilibrium in the mesh edges. The iterations are well-suited for

adaptive meshing and moving meshes [12] since the old mesh provides a good initial configu-

ration.

References

[1] J. Peraire, M. Vahdati, K. Morgan, and O. C. Zienkiewicz. Adaptive remeshing for

compressible flow computations. J. Comput. Phys., 72(2):449–466, 1987.

[2] T. D. Blacker and M. B. Stephenson. Paving: A new approach to automated quadrilateral

mesh generation. Internat. J. Numer. Methods Engrg., 32:811–847, 1991.

[3] P.-O. Persson and G. Strang. A simple mesh generator in matlab. SIAM Review,

46(2):329–345, June 2004.

[4] J. Ruppert. A Delaunay refinement algorithm for quality 2-dimensional mesh generation.

J. Algorithms, 18(3):548–585, 1995.

[5] J. R. Shewchuk. Delaunay refinement algorithms for triangular mesh generation. Comput.

Geom., 22(1-3):21–74, 2002.

9

[6] P.-O. Persson. PDE-based gradient limiting for mesh size functions. In Proceedings of the

13th International Meshing Roundtable. Sandia Nat. Lab., September 2004.

[7] E. Hopf. Generalized solutions of non-linear equations of first order. Journal of Mathe-

matics and Mechanics, 14:951–973, 1965.

[8] T. J. Barth and J. A. Sethian. Numerical schemes for the Hamilton-Jacobi and level set

equations on triangulated domains. J. Comput. Phys., 145(1):1–40, 1998.

[9] R. Kimmel and J. A. Sethian. Fast marching methods on triangulated domains. In

Proceedings of the National Academy of Sciences, volume 95, pages 8341–8435, 1998.

[10] K. Eriksson, D. Estep, P. Hansbo, and C. Johnson. Computational differential equations.

Cambridge University Press, Cambridge, 1996.

[11] L. Freitag and C. Ollivier-Gooch. Tetrahedral mesh improvement using swapping and

smoothing. Internat. J. Numer. Methods Engrg., 40(21):3979–4002, 1997.

[12] P.-O. Persson. Mesh Generation for Implicit Geometries. PhD thesis, Massachusetts

Institute of Technology, 2005.

10

Old Mesh and h(x) Density Control Force Equilibrium

Figure 1: The steps of the remeshing algorithm. First, a gradient limited size function h(x) is

generated by solving Eq (1) on the old mesh. Next, the node density is controlled by edge splitting

and merging. Finally, we solve for a force equilibrium in the edges using forward Euler iterations.

Size Function h0(x) Gradient Limited h(x) New Mesh and Solution

Figure 2: An example of numerical adaptation for solution of Eq (6). Note the large gradients in

the original size function h0(x) and how the gradient limiting improves it.

11

Without Gradient Limiting

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

700

800

Quality = 2 ⋅ Inradius / Outradius

E
le

m
en

ts

With Gradient Limiting

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

700

800

Quality = 2 ⋅ Inradius / Outradius

E

le
m

en
ts

Figure 3: Numerical adaptation for compressible flow over a bump at Mach 0.95. The second-

derivative based error estimator resolves the shock accurately, but gradient limiting is required to

generate a new mesh of high quality.

12

Mesh Size Function h(x) Mesh Based on h(x)

Figure 4: Adaptation in the energy norm for a linear elasticity problem in 3-D. The size function is

created using the error estimator and the geometrical features.

13

