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ABSTRACT

Mesh generation and mesh enhancement algorithms often require a mesh size function to specify the desired size of
the elements. We present algorithms for automatic generation of a size function, discretized on a background grid,
by using distance functions and numerical PDE solvers. The size function is adapted to the geometry, taking into
account the local feature size and the boundary curvature. It also obeys a grading constraint that limits the size
ratio of neighboring elements. We formulate the feature size in terms of the medial axis transform, and show how
to compute it accurately from a distance function. We propose a new Gradient Limiting Equation for the mesh
grading requirement, and we show how to solve it numerically with Hamilton-Jacobi solvers. We show examples of
the techniques using Cartesian and unstructured background grids in 2-D and 3-D, and applications with numerical
adaptation and mesh generation for images.
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1. INTRODUCTION

Unstructured mesh generators use varying element
sizes to resolve fine features of the geometry but have
a coarse grid where possible to reduce total mesh size.
The element sizes can be described by a mesh size
function h(x) which is determined by many factors.
At curved boundaries, h(x) should be small to resolve
the curvature. In region with small local feature size
(“narrow regions”), small elements have to be used to
get well-shaped elements. In an adaptive solver, con-
straints on the mesh size are derived from an error
estimator based on a numerical solution. In addition,
h(x) must satisfy any restrictions given by the user,
such as specified sizes close to a point, a boundary, or a
subdomain of the geometry. Finally, the ratio between
the sizes of neighboring elements has to be limited,
which corresponds to a constraint on the magnitude
of ∇h(x).

In many mesh generation algorithms it is advanta-
geous if an appropriate mesh size function h(x) is
known prior to computing the mesh. This includes
the advancing front method [1], the paving method for

quadrilateral meshes [2], and smoothing-based mesh
generators such as the one we proposed in [3],[4]. The
popular Delaunay refinement algorithm [5], [6] typi-
cally does not need an explicit size function since good
element sizing is implied from the quality bound, but
higher quality meshes can be obtained with good a-
priori size functions.

Many techniques have been proposed for automatic
generation of mesh size functions, see [7], [8], [9]. A
common solution is to represent the size function in a
discretized form on a background grid and obtain the
actual values of h(x) by interpolation, as described in
Section 2.1.

We present several new approaches for automatic gen-
eration of mesh size functions. We represent the geom-
etry by its signed distance function (distance to the
boundary). We compute the curvature and the me-
dial axis directly from the distance function, and we
propose a new skeletonization algorithm with subgrid
accuracy. The gradient limiting constraint is expressed
as the solution of our gradient limiting equation, a hy-
perbolic PDE which can be solved efficiently using fast



solvers.

2. DISCRETIZATION AND PROBLEM
STATEMENT

We represent the mesh size function h(x) approxi-
mately on a discretized grid. We store the function
values at a finite set of points xi (node points) and
use interpolation to approximate the function for ar-
bitrary x. These node points and their connectivities
are part of the background mesh and below we dis-
cuss different options. We also describe briefly how to
compute a discretized signed distance function for the
geometry, which we will use in the calculation of local
feature sizes in Section 4.

2.1 Background Meshes

The simplest background mesh is a Cartesian grid
(Figure 1, top). The node points are located on a
uniform grid, and the grid elements are rectangles in
two dimensions and blocks in three dimensions. In-
terpolation is fast for Cartesian grids. For each point
x we find the enclosing rectangle and the local coor-
dinates by a few scalar operations, and use bilinear
interpolation within the rectangle.

This scheme is very simple to implement and the
Cartesian grid is particularly good for implementing
level set schemes and fast marching methods (see Sec-
tion 2.2). However, if any part of the geometry needs
small cells to be accurately resolved, the entire grid
has to be refined. This combined with the fact that
the number of node points grows quadratically with
the resolution (cubically in three dimensions) makes
the Cartesian background grid memory consuming for
complex geometries.

An alternative is to use an adapted background grid,
such as an octree structure (Figure 1, center). The
cells are still rectangles or blocks like in the Carte-
sian grid, but their sizes vary across the region. Since
high resolution is only needed close to the boundary
(for the distance function), this gives an asymptotic
memory requirement proportional to the length of the
boundary curve (or the area of the boundary surface
in three dimensions). The grid can also be adapted
to the mesh size function to accurately resolve parts
of the domain where h(x) has large variations. The
adapted grid is conveniently stored in an octree data
structure, and the cell enclosing an arbitrary point x

is found in a time proportional to the logarithm of the
number of cells.

A third possibility is to discretize using an arbitrary
unstructured mesh (Figure 1, bottom). This pro-
vides the freedom of using varying resolution over
the domain, and the asymptotic storage requirements

Cartesian

Octree

Unstructured

Figure 1: Background grids for discretization of the dis-
tance function and the mesh size function.

are similar to the octree grid. An additional advan-
tage with unstructured meshes is that they can be
aligned with the domain boundaries, making the dis-
tance function accurate and the curvature adaptation
easier (see Section 3). An unstructured background
mesh can be used to remesh an existing triangula-
tion in order to refine, coarsen, or improve the element
qualities (mesh smoothing). The unstructured back-
ground grid is also appropriate for moving meshes and
numerical adaptation, where the mesh from the previ-



ous time step (or iteration) is used. Finding the trian-
gle (or tetrahedron) enclosing an arbitrary point x can
still be done in logarithmic time, but the algorithm is
slower and more complicated.

2.2 Initialization of the Distance Function

The signed distance function φ(x) for a geometry gives
the shortest distance from x to the boundary, with a
negative sign inside the domain. The geometry bound-
ary is given by φ(x) = 0, and the normal vector
n(x) = ∇φ(x). This representation is used in the
level set method [10], where the boundary can be prop-
agated in time by solving a Hamilton-Jacobi equation.

To initialize φ(x) on our background mesh, we com-
pute the distances to the geometry boundary for the
nodes in a narrow band around the boundary (typi-
cally a few node points wide). We then use the Fast
Marching Method (Sethian [11], see also Tsitsiklis [12])
to calculate the distances at all the remaining node
points. The computed values are considered “known
values”, and their neighbors can be updated and in-
serted into a priority queue. The node with smallest
unknown value is removed and its neighbors are up-
dated and inserted into the queue. This is repeated
until all node values are known, and the total compu-
tation requires O(n log n) operations for n nodes.

If the geometry is given in a triangulated form, we
have to compute signed distances to the triangles. For
each triangle, we find a band of background grid nodes
around the triangle (only a few nodes wide) and com-
pute the distances explicitly. The sign can be com-
puted using the normal vector, assuming the geometry
is well resolved. The remaining nodes are again ob-
tained with the fast marching method. We also men-
tion the closest point transform by Mauch [13], which
gives exact distance functions in the entire domain in
linear time.

A general implicit function φ can be reinitialized to
a distance function in several ways. Sussman et al
[14] proposed integrating the reinitialization equation
φt + sign(φ)(|∇φ| − 1) = 0 for a short period of time.
Another option is to explicitly compute the distances
to the zero level set for nodes close to the boundary
(e.g. using the approximate projections in [4]), and use
the fast marching method for the rest of the domain.

2.3 The Mesh Size Function

For a given geometry, we define our mesh size func-
tion h(x) by the following five properties. The scalar
parameters K, R, G may all be functions of space, and
in Section 7.3 we even allow G to be a function of the
mesh size h(x).

1. Curvature Adaptation On the boundaries, we
require h(x) ≤ 1/K|κ(x)|, where κ is the bound-
ary curvature. The resolution is controlled by the
parameter K which is the number of elements per
radian in 2-D (it is related to the maximum span-
ning angle θ by 1/K = 2 sin(θ/2)).

2. Local Feature Size Adaptation Everywhere
in the domain, h(x) ≤ lfs(x)/R. The local
feature size lfs(x) is, loosely speaking, half the
width of the geometry at x. The parameter R
gives half the number of elements across narrow
regions of the geometry.

3. Non-geometric Adaptation An additional ex-
ternal spacing function hext(x) might be given by
an adaptive numerical solver or as a user-specified
function (often at isolated points or boundaries).
We then require that h(x) ≤ hext(x).

4. Grading Limiting The grading requirement
means that the size of two neighboring elements
in a mesh should not differ by more than a factor
G, or hi ≤ Ghj for all neighboring elements
i, j. The continuous analogue of this is that the
magnitude of the gradient of the size function
is limited by |∇h(x)| ≤ g, where g depends on
the interpretation of the element sizes but is
approximately G− 1.

5. Optimality In addition to the above require-
ments (which are all upper bounds), we require
that h(x) is as large as possible at all points.

We now show how to create a size function h(x) ac-
cording to these requirements, starting from an im-
plicit boundary definition by its signed distance func-
tion φ(x), with a negative sign inside the geometry.

3. CURVATURE ADAPTATION

To resolve curved boundaries accurately, we want to
impose the curvature adaptation h(x) ≤ hcurv(x) on
the boundaries, with�

hcurv(x) = 1/K|κ(x)|, if φ(x) = 0,

∞, if φ(x) 6= 0,
(1)

where κ(x) is the curvature at x. In three dimensions
we use the maximum principal curvature in order to
resolve the smallest radius of curvature.

For an unstructured background grid, where the ele-
ments are aligned with the boundaries, we simply as-
sign values for h(x) on the boundary nodes and set
the remaining nodal values to infinity. Later on, the
gradient limiting will propagate these values into the
rest of the region. The boundary curvature might be



available as a closed form expression (e.g. by a CAD
representation), or it can be approximated from the
surface triangulation.

For an implicit boundary discretization on a Cartesian
background grid we can compute the curvature from
the distance function, for example in 2-D:

κ = ∇ ·
∇φ

|∇φ|
=

φxxφ2
y − 2φyφxφxy + φyyφ2

x

(φ2
x + φ2

y)3/2
. (2)

In 3-D similar expressions give the mean curvature κH

and the Gaussian curvature κK , from which the princi-
pal curvatures are obtained as κ1,2 = κH±�κ2

H − κK .
On a Cartesian grid, we use standard second-order dif-
ference approximations for the derivatives.

These difference approximations give us accurate cur-
vatures at the node points, and we could compute
mesh sizes directly according to (1) on the nodes close
to the boundary, and set the remaining interior and
exterior nodes to infinity. However, since in general
the nodes are not located on the boundary, we get
a poor approximation of the true, continuous, curva-
ture requirement (1). Below we show how to modify
the calculations to include a correction for node points
not aligned with the boundaries.

In two dimensions, suppose we calculate a curvature
κij at the grid point xij . This point is generally not
located on the boundary, but a distance |φij | away.
If we set hcurv(xij) = 1/(K|κij |) we introduce two
sources of errors:

• We use the curvature at xij instead of at the
boundary. We can compensate for this by adding
φij to the radius of curvature:

κbound =
1

1

κij
+ φij

=
κij

1 + κijφij
(3)

Note that we keep the signs on κ and φ. If, for
example, φ > 0 and κ > 0, we should increase
the radius of curvature. This expression is ex-
act for circles, including the limiting case of zero
curvature (a straight line).

• Even if we use the corrected curvature κbound, we
impose our hcurv at the grid point xij instead of
at the boundary. However, the grid point will be
affected indirectly by the gradient limiting, and
we can get a better estimate of the correct h by
adding g|φij |. Interpolation of the absolute func-
tion is inaccurate, and again we keep the sign of
φ and subtract gφij (that is, we add the distance
inside the region and subtract it outside).

Putting this together, we get the following definition

of hcurv in terms of the grid spacing ∆x:

hcurv(xij) =

� ���1+κijφij

Kκij

���− gφij , |φij | ≤ 2∆x,

∞, |φij | > 2∆x.
(4)

This will limit the edge sizes in a narrow band around
the boundaries, but it will not have any effect in the
interior of the region. A similar expression can be used
in three dimensions, where the curvature is replaced
by maximum principal curvature as before, and the
correction makes the expression exact for spheres and
planes.

4. FEATURE SIZE ADAPTATION

For feature size adaptation, we want to impose the
condition h(x) ≤ hlfs(x) everywhere inside our do-
main, where�

hlfs(x) = lfs(x)/R, if φ(x) ≤ 0,

∞, if φ(x) > 0.
(5)

The local feature size lfs(x) is a measure of the distance
between nearby boundaries. It is defined by Ruppert
[5] as “the larger distance from x to the closest two
non-adjacent polytopes [of the boundary]”. For our
implicit boundary definitions, there is no clear notion
of adjacent polytopes, and we use instead the sim-
ilar definition (inspired by the definition for surface
meshes in [15]) that the local feature size at a bound-
ary point x is equal to the smallest distance between
x and the medial axis. The medial axis is the set of
interior points that have equal distance to two or more
points on the boundary.

For geometries with sharp corners that consist of sepa-
rate boundary sections, we exclude medial axis points
that have equal distance to two neighboring bound-
aries. The feature size should not be larger than an
edge or face connecting sharp corners. Our medial axis
based method will in some cases not detect this since
it is a result of having sharp corners and not because
of the actual boundary. However, this effect on the
feature size is local and it is easily incorporated by ex-
plicit constraints on h(x) along the edge or the face
(possibly with a correction −gφ like in the curvature
adaptation).

The definition of local feature size can be extended
to the entire domain in many ways. We simply add
the distance function for the domain boundary to the
distance functions for the medial axis, to obtain our
definition:

lfsMA(x) = |φ(x)|+ |φMA(x)|, (6)

where φ(x) is the distance function for the domain
and φMA(x) is the distance to its medial axis (MA).



The distances φMA(x) are always positive, but we take
its absolute value to emphasize that we always add
positive distances.

The expression (6) obviously reduces to the definition
in [15] at boundary points x, since then φ(x) = 0.
For a narrow region with parallel boundaries, lfs(x)
is exactly half the width of the region, and a value of
R = 1 would resolve the region with two elements.

To compute the local feature size according to (6), we
have to compute the medial axis transform φMA(x) in
addition to the given distance function φ(x). If we
know the location of the medial axis we can use the
techniques described in Section 2.2, for example ex-
plicit distance calculations near the medial axis and
the fast marching method for the remaining nodes.
The identification of the medial axis is often referred
to as skeletonization, and a large number of algorithms
have been proposed. Many of them, including the orig-
inal Grassfire algorithm by Blum [16], are based on
explicit representations of the geometry. Kimmel et
al [17] described an algorithm for finding the medial
axis from a distance function in two dimensions, by
segmenting the boundary curve with respect to cur-
vature extrema. Siddiqi et al [18] used a divergence
based formulation combined with a thinning process
to guarantee a correct topology. Telea and Wijk [19]
showed how to use the fast marching method for skele-
tonization and centerline extraction.

Although in principle we could use any existing al-
gorithm for skeletonization using distance functions,
we have developed a new method mainly because our
requirements are different than those in other appli-
cations. Maintaining the correct topology is not a
high priority for us, since we do not use the skele-
ton topology (and if we did, we could combine our
algorithm with thinning, as in [18]). This means that
small “holes” in the skeleton will only cause a minor
perturbation of the local feature size. However, an in-
correct detection of the skeleton close to the boundary
is worse, since our definition (6) would set the feature
size to a very small value close to that point.

We also need a higher accuracy of the computed me-
dial axis location. Applications in image processing
and computer graphics often work on a pixel level, and
having a higher level of detail is referred to as subgrid
accuracy. A final desired requirement is to have a min-
imum number of user parameters, since the algorithm
should work in an automated way. Other algorithms
typically use fixed parameters to eliminate incorrect
skeleton points close to curved regions. We use the
curvature to determine if candidate points should be
accepted based on only one parameter specifying the
smallest resolved curvature.

Our method uses a Cartesian grid, but should be easy
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Figure 2: Detection of shock in the distance function
φ(x, y) along the edge (i, j), (i + 1, j). The location of
the shock is given by the crossing of the two parabolas
p1(x) and p2(x).

to extend to other background meshes. For all edges
in the computational grid, we fit polynomials to the
distance function at each side of the edge, and de-
tect if they cross somewhere along the edge (Figure 2).
Such a crossing becomes a candidate for a new skeleton
point and we apply several tests, more or less heuristic,
to determine if the point should be accepted.

The complete algorithm is shown in Table 1. We scale
the domain to have unit spacing, and for each edge we
consider the interval s ∈ [−2, 3] where s ∈ [0, 1] corre-
sponds to the edge. Next we fit quadratic polynomials
p1 and p2 to the values of the distance function at
the two sides of the edge, and compute their cross-
ings. Our tests to determine if a crossing should be
considered a skeleton point are summarized below:

• There should be exactly one root s0 along the
edge s ∈ [0, 1].

• The derivative of p2 should be strictly greater
than the derivative of p1 in s ∈ [−2, 3] (it is suffi-
cient to check the endpoints, since the derivatives
are linear)



Algorithm 1 - Skeletonization using
Distance Function

Description: Detect medial axis
Input: Grid xijk, dist. func. φijk, parameters γ,κtol

Output: Crossings pi and neighboring distances φMA

Normalize xijk and φijk to have unit grid spacing
Approximate ∇φijk with one-sided finite differences
Approximate max. principal curvature κijk from φijk

for all consecutive six nodes xi−2:i+3,j,k

Define φ1, . . . , φ6 = φi−2,j,k, . . . , φi+3,j,k

Fit parabolas p1(s) and p2(s) to the data points

(s, φ) = (−2, φ1), (−1, φ2), (0, φ3), and

(s, φ) = (1, φ4), (2, φ5), (3, φ6)

Find real roots of ∆p(s) = p2(s)− p1(s)
if one root s0 in [0, 1] and d∆p/ds > 0 in [−2, 3]

Let κ1 = κi−1,j,k and κ2 = κi+2,j,k

Compute dot product α between fronts

α = ∇φi,j,k · ∇φi+1,j,k

if α < 1− γ2 max(κ2
1, κ

2
2, κ

2
tol)/2:

Accept p = xijk + e1hs0 as a MA point
Compute medial axis normal:

n = (nx, ny, nz) =
∇φi,j,k −∇φi+1,j,k

‖∇φi,j,k −∇φi+1,j,k‖

Compute neighboring distances

φMA,1 = |nxhs|

φMA,2 = |nxh(1− s0)|

end if

end if

end for

In each interval keep only pi with largest d∆p/ds(s0)
Repeat for consecutive nodes in y- and z-direction

Table 1: The algorithm for detecting the medial axis in
a discretized distance function and computing the dis-
tances to neighboring nodes.

• The dot product α between the two propaga-
tion directions should be smaller than a tolerance,
which depends on the curvatures of the two fronts
(see below).

• We reject the point if another crossing is detected
within the interval [−2, 3] with a larger derivative
difference dp2/ds− dp1/ds at the crossing s0.

The dot product α is evaluated from one-sided differ-
ence approximations of ∇φ. This is compared to the
expected dot product between two front from a cir-

Figure 3: Examples of medial axis calculations for some
planar geometries.

cle of radius 1/|κ|, where κ is the largest curvature
at the two points. With one unit separation between
the points and an angle θ between the fronts, this dot
product is

cos θ = 1− 2 sin2(θ/2) = 1− 2(|κ|/2)2 = 1− κ2/2
(7)

We reject the point if the actual dot product α is larger
than this for any of the curvatures κ1, κ2 at the two
sides of the edge or the given tolerance κtol. We cal-
culate κ using difference approximations, and to avoid
the shock we evaluate it one grid point away from the
edge. To compensate for this we include a tolerance γ
in the computed curvatures.

If the point is accepted as a medial axis point, we
obtain the normal of the medial axis by subtracting
the two gradients. The distance from the medial axis
to the two neighboring points are then |nxhs0| and
|nxh(1− s0)|. These are used as boundary conditions
when solving for φMA(x) in the entire domain using
the fast marching method.

Some examples of medial axis detections are shown in
Figure 3. Note how the three parabolas (top right)
are handled correctly with the curvature dependent
tolerances.



5. GRADIENT LIMITING

An important requirement on the size function is that
the ratio of neighboring element sizes in the generated
mesh is less than a given value G. This corresponds to
a limit on the gradient |∇h(x)| ≤ g where g ≈ G− 1.
Note that we need a linear increase in the size func-
tion to obtain a geometric progression of the element
sizes. To see this, consider a a simple one-dimensional
problem with mesh size specified at a boundary point
h(x0) = h0. Generate a mesh in an advancing front-
like manner by the algorithm xi+1 = xi +h(xi). With
a linear size function of the form h(x) = h0 +g(x−x0)
we get a constant ratio between neighboring elements:

h(xi+1)

h(xi)
=

h(xi + h(xi))

h(xi)
=

h0 + g(xi + h(xi)− x0)

h(xi)

=
h(xi) + gh(xi)

h(xi)
= 1 + g.

In some simple cases, this linear increase can be built
into the size function explicitly. For example, a “point-
source” size constraint h(y) = h0 in a convex domain
can be extended as h(x) = h0 + g|x − y|, and simi-
larly for other shapes such as edges. For more complex
boundary curves, local feature sizes, user constraints,
etc, such an explicit formulation is difficult to create
and expensive to evaluate. It is also harder to extend
this method to non-convex domains (such as the ex-
ample in Figure 6), or to non-constant g (Figures 14
and 15).

One way to limit the gradients of a discretized size
function is to iterate over the edges of the background
mesh and update the size function locally for neigh-
boring nodes [20]. When the iterations converge, the
solution satisfies |∇h(x)| ≤ g only approximately, in a
way that depends on the mesh. Another method is to
build a balanced octree, and let the size function be
related to the size of the octree cells [21]. This data
structure is used in the quadtree meshing algorithm
[22], and the balancing guarantees a limited variation
in element sizes, by a maximum factor of two between
neighboring cells. However, when used as a size func-
tion for other meshing algorithms it provides an ap-
proximate discrete solution to the original problem,
and it is hard to generalize the method to arbitrary
gradients g or different background meshes.

We present a new technique to handle the gradient
limiting problem, by a continuous formulation of the
process as a Hamilton-Jacobi equation. Since the mesh
size function is defined as a continuous function of x,
it is natural to formulate the gradient limiting as a
PDE with solution h(x) independently of the actual
background mesh. We can see many benefits in doing
this:

• The analytical solution is exactly the optimal gra-

dient limited size function h(x) that we want,
as shown by Theorem 5.1. The only errors
come from the numerical discretization, which
can be controlled and reduced using known so-
lution techniques for hyperbolic PDEs.

• By relying on existing well-developed Hamilton-
Jacobi solvers we can generalize the algorithm in
a straightforward way to

– Cartesian grids, octree grids, or fully un-
structured meshes

– Higher order discretizations

– Space and solution dependent g

– Regions embedded in higher-dimensional
spaces, for example surface meshes in 3-D.

• We can compute the solution in O(n log n) time
using a modified fast marching method.

5.1 The Gradient Limiting Equation

We now consider how to limit the magnitude of the
gradients of a function h0(x), to obtain a new gradi-
ent limited function h(x) satisfying |∇h(x)| ≤ g every-
where. We require that h(x) ≤ h0(x), and at every
x we want h to be as large as possible. We claim
that h(x) is the steady-state solution to the following
Gradient Limiting Equation:

∂h

∂t
+ |∇h| = min(|∇h|, g), (8)

with initial condition

h(x, t = 0) = h0(x). (9)

When |∇h| ≤ g, (8) gives that ∂h/∂t = 0, and h will
not change with time. When |∇h| > g, the equation
will enforce |∇h| = g (locally), and the positive sign
multiplying |∇h| ensures that information propagates
in the direction of increasing values. At steady-state
we have that |∇h| = min(|∇h|, g), which is the same
as |∇h| ≤ g.

For the special case of a convex domain in R
n and con-

stant g, we can derive an analytical expression for the
solution to (8), showing that it is indeed the optimal
solution:

Theorem 5.1. Let Ω ⊂ R
n be a bounded convex

domain, and I = (0, T ) a given time interval. The
steady-state solution h(x) = limT→∞ h(x, T ) to�

∂h
∂t

+ |∇h| = min(|∇h|, g) (x, t) ∈ Ω× I

h(x, t)|t=0
= h0(x) x ∈ Ω

(10)

is

h(x) = min
y

(h0(y) + g|x− y|). (11)



Proof. The Hopf-Lax theorem [23] states that the so-
lution to the Hamilton-Jacobi equation du

dt
+F (∇u) =

0 with initial condition u(x, 0) = u0(x) and convex
F (w) is given by

u(x, t) = min
y

[u0(y) + tF ∗ ((x− y)/t)] , (12)

where F ∗(u) = maxw(wu − F (w)) is the conjugate
function of F .

For our equation (10), rewrite as ∂h
∂t

+F (∇h) = 0, with
F (w) = |w| −min(|w|, g). The conjugate function is

F ∗(u) = max
w

(wu− F (w))

= max
w

(wu− |w|+ min(|w|, g))

=

�
g|u|, if |u| < 1,

+∞ if |u| ≥ 1.
(13)

Using (12), we get

h(x, t) = min
y

[h0(y) + tF ∗ ((x− y)/t)]

= min
y

|x−y|≤t

(h0(y) + g|x− y|). (14)

Let t→∞ to get the steady-state solution to (10):

h(x) = min
y

(h0(y) + g|x− y|). (15)

Note that the solution (11) is composed of infinitely
many point-source solutions as described before. We
could in principle define an algorithm based on (11)
for computing h from a given h0 (both discretized).
Such an algorithm would be trivial to implement, but
its computational complexity would be proportional
to the square of the number of node points. Instead,
we solve (10) using efficient Hamilton-Jacobi solvers.

The gradient limiting is illustrated by a one dimen-
sional example in Figure 4, where (10) is solved using
different values of g and a simple scalar function as
initial condition. Note how the large gradients are re-
duced exactly the amount needed, without affecting
regions far away from them. This is very different
from traditional smoothing, which affects all data and
gives excessive perturbation of the original function
h0(x). Our solution is not necessarily smooth, but it
is continuous and |∇h| ≤ g everywhere.

5.2 Implementation

One advantage with the continuous formulation of the
problem is that a large variety of solvers can be used
almost as black-boxes. This includes solvers for struc-
tured and unstructured grids, higher-order methods,
and specialized fast solvers.

Max Gradient g = 4 Max Gradient g = 2

Max Gradient g = 1 Max Gradient g = 0.5

Figure 4: Illustration of gradient limiting by ∂h/∂t +
|∇h| = min(|∇h|, g). The dashed lines are the initial
conditions h0 and the solid lines are the gradient limited
steady-state solutions h for different parameter values g.

On a Cartesian background grid, the equation (8) can
be solved with just a few lines of code using the fol-
lowing iteration:

hn+1

ijk = hn
ijk + ∆t �min(∇+

ijk, g)−∇+

ijk� (16)

where

∇+

ijk = �max(D−xhn
ijk, 0)2 + min(D+xhn

ijk, 0)2+

max(D−yhn
ijk, 0)2 + min(D+yhn

ijk, 0)2+

max(D−zhn
ijk, 0)2 + min(D+zhn

ijk, 0)2�1/2

(17)

Here, D−x is the backward difference operator in the
x-direction, D+x the forward difference operator, etc.
The iterations are initialized by h0 = h0, and we iter-
ate until the updates ∆h(x) are smaller than a given
tolerance. The ∆t parameter is chosen to satisfy the
CFL-condition, we use ∆t = ∆x/2. The boundaries
of the grid do not need any special treatment since all
characteristics point outward.

The iteration (16) converges relatively fast, although
the number of iterations grows with the problem size
so the total computational complexity is superlinear.
Nevertheless, the simplicity makes this a good choice
in many situations. If a good initial guess is avail-
able, this time-stepping technique might even be su-
perior to other methods. This is the case for prob-
lems with moving boundaries, where the size function
from the last mesh is likely to be close to the new size
function, or in numerical adaptivity, when the original
size function already has relatively small gradients be-
cause of numerical properties of the underlying PDE.



The scheme (16) is first-order accurate in space, and
higher accuracy can be achieved by using a second-
order solver. See [10] and [24] for details.

For faster solution of (8) we use a modified version
of the fast marching method (see Section 2.2). The
main idea for solving our PDE (8) is based on the
fact that the characteristics point in the direction of
the gradient, and therefore smaller values are never
affected by larger values. This means we can start by
fixing the smallest value of the solution, since it will
never be modified. We then update the neighbors of
this node by a discretization of our PDE, and repeat
the procedure. To find the smallest value efficiently
we use a min-heap data structure.

During the update, we have to solve for a new hijk

in ∇+

ijk = g, with ∇+

ijk from (17). This expression is
simplified by the fact that hijk should be larger than
all previously fixed values of h, and we can solve a
quadratic equation for each octant and set hijk to the
minimum of these solutions.

Our fast algorithm is summarized as pseudo-code in
Table 2. Compared to the original fast marching
method, we begin by marking all nodes as TRIAL
points, and we do not have any FAR points. The ac-
tual update involves a nonlinear right-hand side, but
it always returns increasing values so the update pro-
cedure is valid. The heap is large since all elements
are inserted initially, but the access time is still only
O(log n) for each of the n nodes in the background
grid. In total, this gives a solver with computational
complexity O(n log n). For higher-order accuracy, the
technique described in [11] can be applied.

An unstructured background grid gives a more efficient
representation of the size function and higher flexibil-
ity in terms of node placement. A common choice is
to use an initial Delaunay mesh, possibly with a few
additional refinements. Several methods have been
developed to solve Hamilton-Jacobi equations on un-
structured grids, and we have implemented the posi-
tive coefficient scheme by Barth and Sethian [25]. The
solver is slightly more complicated than the Cartesian
variants, but the numerical schemes can essentially be
used as black-boxes. A triangulated version of the fast
marching method was given in [26], and in [27] the al-
gorithm was generalized to arbitrary node locations.

One particular unstructured background grid is the
octree representation, and the Cartesian methods ex-
tend naturally to this case (both the iteration and the
fast solver). The values are interpolated on the bound-
aries between cells of different sizes. We mentioned in
the introduction that octrees are commonly used to
represent size functions, because of the possibility to
balance the tree and thereby get a limited variation
of cell sizes. Here, we propose to use the octree as

Algorithm 2 -
Fast Gradient Limiting

Description: Solve (8) on a Cartesian grid
Input: Initial discretized h0, grid spacing ∆x
Output: Discretized solution h

Set h = h0

Insert all hijk in a min-heap with back pointers
while heap not empty

Remove smallest element IJK from heap
for neighbors ijk of IJK still in heap:

compute upwind |∇hijk|
if |∇hijk| > g

Solve for hnew
ijk in ∇+

ijk = g from (17)
Set hijk ← min(hijk, hnew

ijk )
end if

end for

end while

Table 2: The fast gradient limiting algorithm for Carte-
sian grids. The computational complexity is O(n log n),
where n is the number of nodes in the background grid.

a convenient and efficient representation, but the ac-
tual values of the size function are computed using
our PDE. This gives higher flexibility, for example the
possibility to use different values of g.

6. RESULTS

We are now ready to put all the pieces together and
define the complete algorithm for generation of a mesh
size function. The size functions from curvature and
feature size are computed as described in the previous
sections. The external size function hext(x) is provided
as input. Our final size function must be smaller than
these at each point in space:

h0(x) = min(hcurv(x), hlfs(x), hext(x)) (18)

Finally, we apply the gradient limiting algorithm from
Section 5 on h0 to get the mesh size function h, by
solving:

∂h

∂t
+ |∇h| = min(|∇h|, g) (19)

with initial condition h(x, t = 0) = h0(x).

We now show a number of examples, with different
geometries, background grids, and feature size defini-
tions. All triangular and tetrahedral meshes are gen-
erated with the smoothing-based mesh generator for
distance functions in [3], [4]. For some of the 2-D
examples we have also generated meshes using an ad-
vancing front generator with similar results.



Figure 5: Example of gradient limiting with an unstruc-
tured background grid. The size function is given at the
curved boundaries and computed by (8) at the remaining
nodes.

6.1 Mesh Size Functions in 2-D and 3-D

We begin with a simple example of gradient limiting in
two dimensions on a triangular mesh. For the geome-
try in Figure 5, we set h0(x) proportional to the radius
of curvature on the boundaries, and to ∞ in the in-
terior. We solve our gradient limiting equation using
the positive coefficient scheme to get the mesh size
function in the middle plot. A sample mesh using this
result is shown in the right plot.

This example shows that we can apply size constraints
in an arbitrary manner, for example only on some of
the boundary nodes. The PDE will propagate the val-
ues in an optimal way to the remaining nodes, and
possibly also change the given values if they violate
the grading condition. For this very simple geometry,
we can indeed write the size function explicitly as

h(x) = min
i

(hi + gφi(x)). (20)

Here, φi and hi are the distance functions and the
boundary mesh size for each of the three curved
boundaries. But consider, for example, a curved
boundary with a non-constant curvature. The analyt-
ical expression for the size function of this boundary
is non-trivial (it involves the curvature and distance
function of the curve). One solution would be to put
point-sources at each node of the background mesh,
but the complexity of evaluating (20) grows quickly
with the number of nodes. By solving our gradient
limiting equation, we arrive at the same solution in an
efficient and simple way.

Mesh Size Function h(x)

Mesh Based on h(x)

Figure 6: Another example of gradient limiting, showing
that non-convex regions are handled correctly. The small
sizes at the curved boundary do not affect the region
at the right, since there are no connections across the
narrow slit.

In Figure 6 we show a size function for a geometry
with a narrow slit, again generated using the unstruc-
tured gradient limiting solver. The initial size function
h0(x) is based on the local feature size and the curved
boundary at the top. Note that although the regions
on the two sides of the slit are close to each other,
the small mesh size at the curved boundary does not
influence the other region. This solution is harder to
express using source expressions such as (20), where
more expensive geometric search routines would have
to be used.

A more complicated example is shown in Figure 7.
Here, we have computed the local feature size every-
where in the interior of the geometry. We compute
this using the medial axis based definition from Sec-
tion 4. The result is stored on a Cartesian grid. In
some regions the gradient of the local feature size is
greater than g, and we use the fast gradient limiting
solver in Algorithm 2 to get a well-behaved size func-
tion. We also use curvature adaptation as before. Note
that this mesh size function would be very expensive



Medial Axis and Feature Size

Mesh Size Function h(x)

Mesh Based on h(x)

Figure 7: A mesh size function taking into account both
feature size, curvature, and gradient limiting. The fea-
ture size is computed as the sum of the distance function
and the distance to the medial axis.

to compute explicitly, since the feature size is defined
everywhere in the domain, not just on the boundaries.

As a final example of 2-D mesh generation, we show
an object with smooth boundaries in Figure 8. We use
a Cartesian grid for the background grid and solve the
gradient limiting equation using the fast solver. The
feature size is again computed using the medial axis
and the distance function, and the curvature is given
by the expression with grid correction (4) since the
grid is not aligned with the boundaries.

The PDE-based formulation generalizes to arbitrary
dimensions, and in Figure 9 we show a 3-D example.

Medial Axis and Feature Size

Mesh Size Function h(x)

Mesh Based on h(x)

Figure 8: Generation of a mesh size function for a geom-
etry with smooth boundaries.

Here, the feature size is computed explicitly from the
geometry description, the curvature adaptation is ap-
plied on the boundary nodes, and the size function is
computed by gradient limiting with g = 0.2. This re-
sults in a well-shaped tetrahedral mesh, in the bottom
plot.



Mesh Size Function h(x)

Mesh Based on h(x)

Figure 9: Cross-sections of a 3-D mesh size function and
a sample tetrahedral mesh.

A more complex model is shown in Figure 10.1 We
apply gradient limiting with g = 0.3 on a size func-
tion which is computed automatically, taking into ac-
count curvature adaptation and feature size adapta-
tion (from the medial axis, as described before). The
plots show the final mesh size function and an example
mesh.

1This model was obtained from the The Stanford 3D
Scanning Repository.

Mesh Size Function h(x)

Mesh Based on h(x)

Split view

Figure 10: A 3-D mesh size function and a sample tetra-
hedral mesh. Note the small elements in the narrow re-
gions, given by the local feature size, and the smooth
increase in element sizes.



# Nodes Edge Iter. H-J Iter. H-J Fast

10,000 0.009s 0.060s 0.006s
40,000 0.068s 0.470s 0.030s

160,000 0.844s 3.625s 0.181s
640,000 6.609s 28.422s 1.453s

Table 3: Performance of the edge-based iterative solver,
the Hamilton-Jacobi iterative solver, and the Hamilton-
Jacobi fast gradient limiting solver.

6.2 Performance and Accuracy

To study the performance and the accuracy of our
algorithms, we consider a simple model problem in
Ω = (−50, 50) × (−50, 50) with two point-sources,
h(−10, 0) = 1 and h(10, 0) = 5, and g = 0.3. The
true solution is given by (11), and we solve the prob-
lem on a Cartesian grid of varying resolution.

In Table 3 we compare the execution times for three
different solvers – edge-based iterations, Hamilton-
Jacobi iterations, and the Hamilton-Jacobi fast gra-
dient limiting solver. The edge-based iterative solver
loops until convergence over all neighboring nodes
i, j and updates the size function locally by hj ←
min(hj , hi + g|xj − xi|) (assuming hj > hi). The
iterative Hamilton-Jacobi solver is based on the iter-
ation (16) with a tolerance of about two digits. All
algorithms are implemented in C++ using the same
optimizations, and the tests were done on a PC with
an Athlon XP 2800+ processor.

The table shows that the iterative Hamilton-Jacobi
solver is about five times slower than the simple edge-
based iterations. This is because the update for-
mula for the edge-based iterations is simpler (all edge
lengths are the same) and since the Hamilton-Jacobi
solver requires more iterations for high accuracy (al-
though their asymptotic behavior should be the same).
The fast solver is better than the iterative solvers, and
the difference gets bigger with increasing problem size
(since it is asymptotically faster). Note that these
background meshes are relatively large and that all
solvers probably are sufficiently fast in many practical
situations.

We also mention that simple algorithms based on the
explicit expression (11) for convex domains or geomet-
ric searches for non-convex domains might be faster
for a small number of point-sources. However, these
methods are not practical for larger problems because
of the O(n2) complexity.

Next we compare the accuracy of the edge-based solver
and Hamilton-Jacobi discretizations of first and second
order accuracy. The true solution is given by (11), and
an algorithm based on this expression would of course
be exact to full precision. Figure 11 shows solutions

True Solution Edge-Based

H-J, First Order H-J, Second Order

Figure 11: Comparison of the accuracy of the discrete
edge-based solver and the continuous Hamilton-Jacobi
solver on a Cartesian background mesh. The edge-based
solver does not capture the continuous nature of the
propagating fronts.

for a 100 × 100 grid, and it is clear that the edge-
based solver is highly inaccurate since it does not take
into account the continuous nature of the problem. It
has a maximum error of 7.79, compared to 0.38 and
0.10 for the Hamilton-Jacobi solvers. This is similar to
the error in solving the Eikonal equation using Dijk-
stra’s shortest path algorithm instead of the contin-
uous fast marching method [11]. The error with the
edge-based solver might be even larger for unstruc-
tured background meshes which often have low ele-
ment qualities.

7. OTHER APPLICATIONS

In this section we show some special applications of
mesh size functions and the gradient limiting equation
– numerical adaptation, mesh generation for images,
and non-constant g values.

7.1 Numerical Adaptation

Numerical adaptation is a technique for solving PDEs
using mesh size functions that are automatically gener-
ated to reduce the discretization error. From an error
estimator in each element, a new mesh size function
is computed. The mesh can then be updated, either
by local refinements or remeshing. The procedure is
repeated until the desired accuracy is achieved.



One problem when regenerating the mesh is that the
size function h(x) from the adaptive solver might be
highly irregular. The error estimation often varies be-
tween neighboring elements, giving high gradients also
in the size function. A simple solution is to smooth the
size function, e.g. using Laplacian smoothing. How-
ever, this introduces large deviations from the original
size function, even where the gradient is small. A bet-
ter method is to use gradient limiting and solve (8) on
the same unstructured mesh that the size function is
defined on, see [28] for further details.

Figure 12 shows an example of adaptive meshing for
a compressible flow simulation over a bump at Mach
0.95. We solve the Euler equations with a finite vol-
ume solver, and use a simple adaptive scheme based
on second-derivatives of the density to determine new
size functions [1]. These resolve the shock accurately
but the sizes increase sharply away from the shock,
giving low-quality triangles (top figure). After gra-
dient limiting the mesh size function is well-behaved
and a high-quality mesh can be generated (bottom fig-
ure). We have also generated meshes for this problem
using the advancing front method. With the original
size function we were unable to create a mesh because
of the large gradients, but after gradient limiting we
obtained a well-shaped mesh.

7.2 Meshing Images

Images are special cases of implicit geometry defini-
tions, since the boundaries of objects in the image are
not available in an explicit form. These object bound-
aries can be detected by edge detection methods [29],
but these typically work on a pixel level and do not
produce smooth boundaries. A more natural approach
is to keep the image-based representation, and form
an implicit function with a level set representing the
boundary.

Before doing this, we have to identify the objects that
should be part of the domain, in other words to seg-
ment the image. Many methods have been developed
for this, and we use the standard tools available in im-
age manipulation programs. This will result in a new,
binary image, which represents our domain. We also
mention that image segmentation based on the level
set method, for example Chan and Vese’s active con-
tours without edges [30], might be a good alternative,
since they produce distance functions directly from the
segmentation.

Given a binary image A with values 0 for pixels out-
side the domain and 1 for those inside, we smooth
the image with a low-pass filter and create the signed
distance function for the domain using approximate
projections and the fast marching method (see [4] for
more details).

Without Gradient Limiting

With Gradient Limiting

Figure 12: Numerical adaptation for compressible flow
over a bump at Mach 0.95. The second-derivative based
error estimator resolves the shock accurately, but gradi-
ent limiting is required to generate a new mesh of high
quality.

Figure 13 shows an example with a picture of a few
objects taken with a standard digital camera. We
isolate the objects using the segmentation feature of
an image manipulation program, and create a binary
mask. Next we create the distance function as de-
scribed above, and a good mesh size function based on
curvature, feature size from the medial axis (shown in
Figure 3), and gradient limiting. For the skeletoniza-
tion we increase κtol to compensate for the slightly
noisy distance function close to the boundary.

All techniques used for meshing the two dimensional
images extend directly to higher dimensions. The im-
age is then a three-dimensional array of pixels, and
the binary mask selects a subvolume. Examples of this
are the sampled density values produced by computed
tomography (CT) scans in medical imaging, which we
created mesh size functions and tetrahedral meshes for
in [4].

7.3 Space and Solution Dependent g

The solution of the gradient limiting equation remains
well-defined if we make g(x) a function of space. The
numerical schemes in Section 5.2 are still valid, and we
replace for example g in (16) with gijk. An application



Original Image

Size Function

Triangular Mesh

Figure 13: Meshing objects in an image. The segmen-
tation is done with an image manipulation program, the
distance function is computed by smoothing and approx-
imate projections, and the size function uses the curva-
ture, the feature size, and gradient limiting.

Maximum Gradient g(x)

g = 0.4 g = 0.2

Mesh Size Function h(x)

Mesh Based on h(x)

Figure 14: Gradient limiting with space-dependent g(x).

of this is when some regions of the geometry require
higher element qualities, and therefore also a smaller
maximum gradient in the size function.

Figure 14 shows a simple example. The initial mesh
size h0 is based on curvatures and feature sizes. The
left and the right parts of the region have different
values of g, and the gradient limiting generates a new
size function h satisfying |∇h| ≤ g(x) everywhere.

Another possible extension is to let g be a function of
the solution h(x) (although it is then not clear if the
gradient limiting equation has one unique solution).
This can be used, for example, to get a fast increase
for small element sizes but smaller variations for large
elements. In a numerical solver this might be com-
pensated by the smaller truncation error for the small
elements. A simple example is shown in Figure 15,
where g(h) varies smoothly between 0.6 (for small el-
ements) and 0.2 (for large elements).
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Figure 15: Gradient limiting with solution-dependent
g(h). The distances between the level sets of h(x) are
smaller for small h, giving a faster increase in mesh size.

In the iterative solver, we replace g with g(hijk), and if
the iterations converge we have obtained a solution. In
the fast solver, we solve a (scalar) non-linear equation
∇+

ijk = g(hijk) at every update.

8. CONCLUSIONS

We have presented new techniques for automatic gen-
eration of mesh size functions. The distance function
is used to compute the medial axis transform, from
which the local feature size is derived. We introduced
a new, continuous formulation of the gradient limiting
procedure, which is an important part in the genera-
tion of good mesh size functions. We showed several
examples of high-quality meshes generated with our
mesh size functions, and we gave an example of gradi-
ent limiting for an adaptive finite element solver and
mesh generation for regions in images.

We give several suggestions for future development:

• Other feature size algorithms. We have exper-
imented with a PDE-based algorithm that con-
vect the distance function along its characteris-
tics, and a simpler direct algorithm that finds the
largest spheres without first extracting the medial
axis.

• Other background meshes for the feature size.
We have worked exclusively with Cartesian and
octree grids for the medial axis based feature
size calculations, and a version for unstructured
meshes would be useful.

• Implementing a fast marching based solver for
triangular/tetrahedral background meshes. The
methods described in [26] and [27] should be ap-
plicable in a straightforward way.

• Extending the gradient limiting to anisotropic
mesh size functions. There might be a PDE simi-
lar to the gradient limiting equation (or a system
of PDEs) based on general metrics [20].

• Adaptive generation of background meshes. Zhu
et al [8] discussed an intuitive, iterative approach
for refinement of background meshes. With our
PDE-based formulation, we can achieve this in a
strict and systematic way by applying error esti-
mators for numerical adaptive solvers [31] on the
discretized solution h(x).
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