
An Efficient Low Memory Implicit DG Algorithm

for Time Dependent Problems

Per-Olof Persson∗ and Jaime Peraire†

Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.

We present an efficient implicit time stepping method for Discontinuous Galerkin dis-
cretizations of the compressible Navier-Stokes equations on unstructured meshes. The
Local Discontinuous Galerkin method is used for the discretization of the viscous terms.
For unstructured meshes, the Local Discontinuous Galerkin method is known to produce
non-compact discretizations. In order to circumvent the difficulties accociated with this
non-compactness, we represent the irregular matrices arising from the discretization algo-
rithm as a product of matrices with a more structured pattern. Time integration is carried
out using backward difference formulas. This leads to a non-linear system of equations
to be solved at each timestep. In this paper, we study various iterative solvers for the
linear systems of equations that arise in the Newton algorithm. We show that a two-level
preconditioner with incomplete LU as a pre-smoother is highly efficient yet inexpensive to
compute and to store. It performs particularly well for low Mach number flows, where it
is more than a magnitude more efficient than pure two-level or ILU preconditioning. Our
methods are demonstrated using three typical test problems with various parameters and
timesteps.

I. Introduction

Discontinuous Galerkin (DG) methods have become an attractive alternative to the solution of linear
first order hyperbolic equations.1 The ability to obtain very accurate spatial discretizations on arbitrary
unstructured meshes combined with inexpensive explicit time stepping algorithms makes them particularly
suited for wave propagation problems in which low dispersion errors are a necessary condition for accuracy.
The main drawback of these algorithms however, lies in the small timesteps which are required to fulfill
the explicit stability requirement. For polynomial approximations of, say, p ≤ 6, one can use nodal basis
functions with equally spaced nodes and in this case, the maximum timestep size allowed for stability scales
like h/p, where h is the characteristic element size. For p > 6 on the other hand, alternative basis functions
must be used in order to obtain a properly conditioned system and in such cases, the maximum timestep
scales typically like h/p2. This limitation is often too severe for practical applications. We consider below
three situations in which explicit time stepping may not be practical for time-dependent calculations:

• for highly adapted meshes having a large disparity in element sizes. This may often be necessary
due to geometrical constraints, but also because the solution may contain singularities that need to be
appropriately resolved. In such cases, the explicit timestep is determined by the smallest elements. The
situation is even worse when dealing with complex geometries. Here, one usually resorts to automatic
grid generation techniques. Very often, the quality of the 3D tetrahedral meshes produced is not good
due to the presence of small elements or ‘slivers’.

• for the solution of viscous problems such as the Navier-Stokes equations using either Local Discontin-
uous Galerkin (LDG) methods2 or any of the alternative approaches.3 Here, the stable timestep size
scales like h2/p2, if low degree polynomials and equally spaced nodes are used, otherwise a much more
restrictive criterion, requiring timesteps proportional to h2/p4, must be employed.

∗Instructor, Department of Mathematics, MIT, 77 Massachusetts Avenue 2-363A, Cambridge, MA 02139. E-mail: pers-
son@mit.edu. AIAA Member.

†Professor, Department of Aeronautics and Astronautics, MIT, 77 Massachusetts Avenue 37-451, Cambridge, MA 02139.
E-mail: peraire@mit.edu. AIAA Associate Fellow.

1 of 11

American Institute of Aeronautics and Astronautics

• for low Mach number problems that are essentially incompressible but solved using a compressible
formulation. The DG method produces numerically stable discretizations, but solving them is hard
because of the large ratio between the speed of sound and the fluid velocity. Even though the timescale
for the physically interesting phenomena is based on the velocity, the timestep for an explicit method
will be restricted by the sound waves.

Therefore, in order to develop robust and reliable applications for time dependent problems using DG
methods, an implicit discretization appears to be a requirement. On the other hand, the problems of interest
are usually very large and therefore, one must attempt to retain the low cost of explicit methods.

Here, we describe an implicit procedure, based on a backward difference approximation of the time
derivative. Some implicit/explicit strategies4,5 have been proposed in which, only the elements that place
the more severe timestep restriction are advanced in an implicit manner. Even though our procedure can
be combined with an explicit method in a straightforward manner, for simplicity we shall assume that it is
applied in the whole domain.

An efficient storage format is important in order to obtain low memory usage and high computational
performance. Because the matrices arising from the LDG method have an irregular sparsity pattern, we
store them indirectly as a product of several matrices with structured patterns having a dense block format.
The matrix-vector products can then be applied using high-performance dense matrix library routines.

For large problems, in particular in 3D, it is too expensive to use direct solution techniques and therefore,
iterative methods must be employed. An essential ingredient for these iterative methods is the preconditioner.
In this paper we compare the performance of different preconditioners: incomplete factorizations (ILU),
coarse scale approximations, and a combination of ILU and a coarse scale method, which appears to be
highly effective for our problems.

II. Problem Formulation

A. Equations and Discretization

We consider the time-dependent compressible Navier-Stokes equations,

∂u

∂t
+∇ · Fi(u)−∇ · Fv(u,∇u) = 0 , (1)

in a domain Ω, with conservative state variables u and inviscid and viscous flux functions Fi,Fv. We
discretize u in space by introducing a triangulation of Ω and approximating u by multivariate polynomials
of degree p within each element. These polynomials are represented by expansions in a nodal basis, and the
coefficients for all the solution components and all the elements are collected into a global solution vector U .

Discretizing Eq. (1) in space using the DG method leads to a system of ordinary differential equations
(ODEs) of the form6

MU̇ = Fv(U)− Fi(U) ≡ R(U) . (2)

Here, M is the block-diagonal mass-matrix (no dependencies between elements or solution components) and
the residual vector R is a nonlinear function of U . The viscous terms are handled using the LDG method.2

The system of ODEs (2) is integrated in time by choosing an initial vector U(0) = U0 and a timestep ∆t.
Time stepping using an appropriate scheme produces approximations U(n∆t) ≈ Un. An explicit technique
such as the popular fourth-order Runga-Kutta scheme (RK4) would have a timestep restriction determined
by the eigenvalues of the matrix M−1dR/dU . For many applications this restriction is severe, and therefore
implicit techniques are prefered.

The backward differentiation formula7 of order k (BDF-k) approximates the time derivative at timestep
n by a combination of the current solution and k previous solutions: U̇ ≈ 1

∆t

∑k
i=0 αiUn−i, and it requires

the residual R to be evaluated using the current solution Un. The system of equations (2) then becomes:

RBDF(Un) ≡ M
k∑

i=0

αiUn−i −∆tR(Un) = 0 . (3)

We use a damped Newton’s method to solve these equations. An initial guess U
(0)
n is formed using the

k previous solutions, and iterates U
(j)
n are evaluated by computing corrections according to the linearized

2 of 11

American Institute of Aeronautics and Astronautics

equation:

J(U (j)
n)∆U (j)

n = RBDF(U (j)
n) . (4)

The new iterates are obtained as U
(j+1)
n = U

(j)
n + β∆U

(j)
n , where β is a damping parameter determined by

forcing the residual to decrease. The iterations are continued until the residual is sufficiently small. The
Jacobian J is obtained by differentiation of Eq. (3) (dropping the iteration superscript):

J(Un) =
dRBDF

dUn
= α0M −∆t

dR

dUn
≡ α0M −∆tK. (5)

In this paper, we will focus on the solution of the linear system of equations (4) using iterative methods and
deliberately ignore other issues related to the convergence of the Newton method, such as the determination
of the step sizes ∆t, etc. We will consider three test problems with a wide range of timesteps ∆t and different
flow properties. The constant α0 is assumed to be exactly one for simplicity (which is the case for k = 1 and
a good approximation for higher k).

B. Jacobian Sparsity Pattern and Representation

Our system matrix A = M −∆tK is sparse with a non-trivial block structure. It can be represented in a
general sparse matrix format, such as the compressed column format,8 but then we would not take advantage
of the large dense submatrices (for example to obtain high performance in the matrix-vector products).

To analyze the sparsity structure in D dimensions, assume there are ns nodes in each element and nes

nodes on each face. For a simplex element, ns =
(
p+D

D

)
and nes =

(
p+D−1

D−1

)
. Furthermore, assume there are

nc solution components (nc = D + 2 for the compressible Navier-Stokes equations) and nt elements. The
total number of unknowns is then n = nsncnt. Clearly we can store the solution vector u in one contiguous
piece of memory, and it is convenient to treat it as a three-dimensional array uis,ic,it

with indices is, ic, it for
node, component, and element, respectively.

A block diagonal matrix can easily be stored in a block-wise dense format. The mass matrix M has ncnt

blocks of size ns-by-ns along the diagonal, and we represent it by an array Mis,js,it of dimension ns-by-ns-
by-nt, where M·,·,it is the elemental mass matrix for element it. We do not duplicate these blocks for all
nc solution components since they are identical. In this format it is trivial to apply M times a vector by
high-performance dense library routines, and also to compute the inverse M−1 block-wise.

We split the stiffness matrix K into a viscous part Kv and an inviscid part Ki:

K = Kv −Ki =
dFv

dU
− dFi

dU
. (6)

The sparsity structure of the inviscid matrix Ki consists of nt blocks of size nsnc-by-nsnc along the diagonal
(larger blocks than for M since the components are connected) plus connections between the nodes on
neighboring element faces. In the DG formulation, the diagonal blocks correspond to the volume integrals
plus the self-terms from the face integrals, and the off-diagonal entries correspond to the face integrals
between elements.

We store the block diagonal part of Ki in a three-dimensional array Disic,jsjc,it , which has a structure sim-
ilar to that of the mass matrix. The off-diagonal parts are stored in a four-dimensional array Ciesic,jesjc,ie,it

of dimension nesnc-by- nesnc-by-(D + 1)-by-nt, where ie is the face index in element it. Note that these
dense blocks are smaller than the block diagonal (nesnc compared to nsnc). Again we can see that applying
Ki times a vector can be done efficiently using this format, although the implementation is slightly more
complex since the element connectivities are required, and since the face nodes are generally not consecutive
in memory.

The viscous matrix Kv is more complicated. The LDG method introduces a new set of unknowns
q = ∇u and discretizes a system of first-order equations using standard DG methods. At the element faces,
the numerical fluxes are chosen by upwinding in two opposite directions for the two sets of equations. This
leads to the following form of the matrix:2

Kv =
dFv

dU
=

∂Fv

∂U
+

∂Fv

∂Q
M−1C. (7)

3 of 11

American Institute of Aeronautics and Astronautics

Here, the partial derivative matrices and C all have the same structure as Ki, that is, block diagonal plus
face contributions, and they can be stored as before. Note that the dimension of Q is D times larger than
that of U , and so are the matrices ∂Fv/∂Q and C. The mass matrix M−1 is the same as before (but again
D times as many blocks). Also, C is much sparser since it does not connect the different components (except
for certain boundary conditions, which can be treated by small separate arrays).

A problem with the LDG discretization is that the stencil is wider than for the inviscid part. Although
each of the individual matrices in Eq. (7) only connects to neighbors, the matrix product might connect
neighbors’ neighbors as well. This makes it harder to store Kv directly in a compact dense format. Instead,
we store the matrix implicitly by the individual matrices in Eq. (7), and work with this formulation through-
out the solution procedure. In our iterative solvers we must be able to apply the following operations with
Kv:

1. Apply the matrix-vector product Kvp

2. Form the block-diagonal of Kv for preconditioning

3. Form the incomplete LU factorization of Kv for preconditioning

We perform all of these operations using our split format. The matrix-vector product is easily applied by
multiplication of each of the matrices in the product in Eq. (7) from right to left. The block-diagonal of Kv

is computed directly by a blocked matrix multiplication. Finally, the incomplete factorization requires both
diagonal and off-diagonal blocks, but since it is approximate anyway we choose to ignore the connections
between neighbors’ neighbors and store it in a compact block-format. This approximation might decrease
the performance of the incomplete factorization, but as we show later it still performs well, in particular as
a smoother for a low-degree preconditioner.

Using these techniques we avoid the wider stencil, which is one of the main disadvantages with the LDG
method.

III. Implicit Solution Procedure

A. Iterative Solvers

We use iterative solvers for the linear system Au = b. The matrix A is unsymmetric, so the popular Con-
jugate Gradient method can not be used (unless applied to the normal equations, which makes the system
ill-conditioned). A simple method is Jacobi’s method, or block Jacobi, which only requires computation of
residuals and solution of block diagonal systems. We also consider unsymmetric Krylov subspace methods:
the Quasi-Minimal Residual method (QMR), the Conjugate Gradient Squared method (CGS), the Gen-
eralized Minimal RESidual method (GMRES), and restarted GMRES with restart value m, GMRES(m).
Among these, GMRES converges faster since it minimizes the true residual in each Krylov subspace, but its
storage and computational cost increases with the number of iterations. GMRES with restarts is an attempt
to resolve this, however it is well known that its convergence may occasionally stagnate. The two methods
CGS and QMR are variants of the biorthogonalization method BiCG, and are also cheap to store and apply.
See Barrett et al8 for more details on these methods.

B. Preconditioning

In general the Krylov subspace methods must be preconditioned to perform well. This amounts to finding an
approximate solver for Au = b, which is relatively inexpensive to apply. For our block structured matrices,
a natural choice is to set matrix entries outside the diagonal blocks to zero and invert the resulting matrix.
This block-diagonal preconditioner does a decent job, but it turns out that we can do significantly better.

1. Incomplete Factorizations

A more ambitious approach is to factorize A = LU by Gaussian elimination. Obviously, if this is done
without approximations, the problem is solved exactly and the iterative solver becomes obsolete. But this
requires large amounts of additional storage for the fill-in (matrix entries that are zero in A but non-zero in
U or L), and also large computational costs.

4 of 11

American Institute of Aeronautics and Astronautics

A compromise is to compute an incomplete factorization, such as the ILU(0) factorization.9 Here, no
new matrix entries are allowed into the factorization (they are simply set to zero during the factorization),
which makes the algorithm cheap to apply, and it requires about the same memory storage as A itself. The
resulting factorization L̃Ũ might approximate A well, but its performance is hard to analyze. Alternatives
which perform better keep some of the fill-in in the factorization, for example the neighbors’ neighbors, or
elements larger than a threshold value.

With our block-structured matrices it is natural to use a blocked incomplete factorization. The incomplete
factorization provides a way around the wider stencil of the LDG method by simply ignoring the additional
matrix entries.

2. Multi-Level Schemes and Low-Degree Corrections

Another technique for solving Au = b approximately is to use multi-level methods, such as the multigrid
method.10 Problems on a coarser scale are considered, either by using a coarser mesh (h-multigrid) or,
for high-order methods, by reducing the polynomial degree p (p-multigrid11,12). An approximate error is
computed on this coarse scale, which is applied as a correction to the fine scale solution. In the multigrid
method a hierarchy of levels is used. On each level, a few iterations of a smoother (such as Jacobi’s method)
are applied to reduce the high-frequency errors.

A simpler and cheaper version of this is to use a two-grid scheme and compute a low-degree correction
to the problem. In our DG setting, we project the residual r = b − Au to p = 1 using an orthogonal
Koornwinder expansion.13 With a p = 1 discretization we solve for an approximate error, which is then
prolongated to the original polynomial order and used as a correction to the solution. Before and after this
procedure we perform a step of block Jacobi (damped with a factor 2/3 to make it a smoother).

3. The p1-ILU(0) Preconditioner

During our experiments with different preconditioners, we have observed that the block ILU(0) preconditioner
and the low-degree preconditioner complement each other, and sometimes one is better than the other and
vice-versa. It is well known that an ILU factorization can be used as a smoother for multigrid methods,14,15

and it has been reported that it performs well for the Navier-Stokes equations, at least in the incompressible
case using low-order discretizations.16 Inspired by this, we use the block ILU(0) as a pre-smoother for a
two-level scheme, which turns out to be many times better than pure ILU(0) or pure two-level scheme with
a Jacobi smoother, without being significantly more expensive.

This preconditioner is essentially the p1-correction, but using ILU(0) instead of block Jacobi for the
pre-smoothing. Below is a high-level description of the algorithm, for approximately solving Au = b:

Solve L̃Ũu′ = b with block ILU(0) factorization A ≈ L̃Ũ

Compute the residual r′ = b−Au′

Compute p = 1 projection r′
L of r′ using the Koornwinder basis

Solve exactly (e.g. with direct solver) ALe′
L = r′, with AL projected from A

Compute prolongation e′ from e′
L

Add correction u′′ = u′ + e′

Compute u by applying a Jacobi step to u′′

The only difference between this algorithm and the Jacobi smoothed p1-correction is the first step, which
requires about the same computational cost as a Jacobi step, except for the calculation of L̃Ũ which is done
only once per system.

IV. Results

A. Test Problems

We have studied three simplified test problems which we believe are representative for a large class of
real-world problems. They are as follows:

5 of 11

American Institute of Aeronautics and Astronautics

1. Inviscid flow over duct. Structured, almost uniform mesh (figure 1). A total of 384 elements.

Figure 1. The inviscid flow over duct test problem at Mach 0.2. The entire mesh with DG nodes for p = 4
(top) and the Mach number of the solution (bottom).

2. Flat plate boundary layer, Reynolds number 50,000 based on the plate length. Graded and anisotropic
mesh (Figure 2), with maximum stretching ratio of about 20. A total of 224 elements.

3. Flow around NACA0012 wing, angle of attach 5 degrees. Reynolds number 1000 based on the
freestream condition and on the profile chord. Somewhat graded isotropic mesh (Figure 3). A to-
tal of 735 elements.

We solve for a steady-state solution to each problem for different Mach numbers, which we compute lin-
earizations K around. We then consider the solution of Au = b with A = M−∆tK and random right-hand
side b.

B. Iterative Solvers

First we solve the NACA test problem at Mach 0.2 using five different iterative solvers: Block-Jacobi, QMR,
CGS, GMRES(20), and GMRES. The four Krylov solvers are preconditioned with the block diagonal to get
a fair comparison, with similar computational cost for all methods. We count matrix-vector products instead
of iterations, since the QMR and the CGS methods require two matrix-vector products per iteration. During
the iterations we study the norm of the true error of the solution (not the residual), and we iterate until a
relative error of 10−5 is obtained.

The results are shown in figure 4 for the timesteps ∆t = 10−3 and ∆t = 10−1 (the explicit timestep
limit is about ∆t0 = 10−5). For the small timestep (left plot) we note that all solvers perform well, with
block-Jacobi and QMR requiring about twice as many matrix-vector products than the other three solvers.
CGS is highly erratic, but usually performs about as good as GMRES. The restarted GMRES gives only a
slightly slower convergence than the more expensive full GMRES.

The relative behaviour of the four Krylov solvers for the larger and the smaller timesteps is analogous.
However, the block-Jacobi solver diverges after a few hundred iterations.

Based on these observations, and the fact that similar results are obtained for other problem types, we
choose to only use the GMRES(20) solver in the remainder of the paper. The block-Jacobi solver is too

6 of 11

American Institute of Aeronautics and Astronautics

Figure 2. The boundary layer test problem at Mach 0.2 and Reynolds number 50,000. The entire mesh (top),
a close-up of the lower-left corner with DG nodes for p = 4 (middle), and the Mach number of the solution in
the close-up view (bottom).

Figure 3. The NACA0012 test problem at Mach 0.2 and Reynolds number 1,000. The entire mesh (left), a
close-up of the wing with DG nodes for p = 4 (top right), and the Mach number of the solution (bottom right).

7 of 11

American Institute of Aeronautics and Astronautics

0 10 20 30 40 50 60
10

2

10
3

10
4

10
5

10
6

10
7

10
8

Matrix−Vector products

E
rr

or

NACA, ∆ t=10−3

0 50 100 150 200 250 300 350 400 450 500
10

1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

Matrix−Vector products

E
rr

or

NACA, ∆ t=10−1

Block Jacobi
QMR
CGS
GMRES(20)
GMRES

Figure 4. Convergence of various iterative solvers for the NACA problem with ∆t = 10−3 (left) and ∆t = 10−1

(right).

unreliable for large timesteps, and although it is simpler to implement it is not significantly faster than
the other solvers if the cost is dominated by the matrix-vector multiplications. Also, it is not clear if the
convergence of block-Jacobi can be improved by better preconditioning.

The full GMRES has the disadvantage that the cost increases with the number of iterations, both the
storage and the computations. We have not observed any stagnation of the restarted GMRES(20) for our
problems, and its slightly slower convergence is well compensated by the lower cost of the method. The
solvers QMR and CGS are good alternatives since they are inexpensive and converge relatively fast.

C. Preconditioners for GMRES(20)

Next, we study the effect of different preconditioners on the convergence of the GMRES(20) method. In
figure 5, we show the convergence of the p1-ILU(0) preconditioner, the pure ILU(0) and the Jacobi smoothed
p1-correction preconditioners, as well as the diagonal block preconditioner used in the previous section. The
problem is again the NACA model, but with timestep ∆t = 1.0 in both plots, and Mach numbers 0.2 (left
plot) and 0.01 (right plot).

0 20 40 60 80 100 120 140 160 180 200
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

GMRES Iterations

E
rr

or

NACA, M=0.2, ∆ t=1.0

0 50 100 150 200 250 300 350 400
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

GMRES Iterations

E
rr

or

NACA, M=0.01, ∆ t=1.0

Block diagonal
ILU(0)
p1−correction
p1−ILU(0)

Figure 5. Convergence of GMRES(20) using various preconditioners for the NACA problem for Mach 0.2
(left) and Mach 0.01 (right). The timestep ∆t = 1.0 in both models.

8 of 11

American Institute of Aeronautics and Astronautics

As before, we plot the error but now as a function of the number of GMRES iterations, since the
performance of the preconditioners is implementation dependent and somewhat complex to analyze. A few
points can be noted. The block diagonal preconditioner is cheaper than the other ones, possibly up to an
order of magnitude. Applying ILU(0) is about the same cost as a matrix-vector product. The p1-correction
is likely to be somewhat more expensive, depending on the cost of solving the reduced system. Finally, the
p1-ILU(0) preconditioner is about the same cost as the Jacobi smoothed p1-correction, since one step of
ILU(0) is about the same cost as a block-Jacobi step.

The plots show clearly that the p1-ILU(0) preconditioner is superior to the other methods. For Mach
0.2, the Jacobi smoothed p1-correction and the pure ILU(0) methods converge more than four times slower.
The block-diagonal preconditioner is very inefficient for these large timesteps.

For the lower Mach number 0.01, all methods converge much slower (note the different scaling on the
x-axis), with the exception of p1-ILU(0) which appears to converge fast independently of the Mach number.
We will study this effect further in section E below.

D. Timestep Dependence

It is clear that the behavior of the iterative solvers on our system matrix A = M −∆tK is highly dependent
on the timestep ∆t. For small values (about the same as the explicit timestep), A ≈ M and all of our
preconditioners will solve the problem exactly. When we use an implicit solver we hope that we will be able
to take much larger timesteps without a corresponding linear increase in cost. As ∆t →∞, the system A is
approximately a constant times K, and we are essentially solving for a steady-state solution.

To study this timestep dependence, we solve all three model problems for ∆t ranging from the explicit
limit to high, steady-state like values. For each problem we solve for Mach numbers 0.2 and 0.01. We use
GMRES(20) with the same four preconditioners as in the previous section.

The results can be seen in figure 6. For each problem and preconditioner, we plot the number of GMRES
iterations required to reach a relative error of 10−5. The dashed lines in the plots correspond to the explicit
cost, that is, the number of timesteps an explicit solver would need to reach a given time. An implicit solver
should be significantly below these curves in order to be efficient. Note that this comparison is not very
precise, since the overall expense depends on the relative cost between residual evaluation and matrix-vector
products/preconditioning.

All solvers converge in less than ten iterations for sufficiently small timesteps (about the explicit limit).
As ∆t increases, the block-diagonal preconditioner becomes less effective, and it fails to converge in less than
1000 iterations for timesteps larger than a few magnitudes times the explicit limit (except for the inviscid
Mach 0.2 problem). The ILU(0) and the p1-correction preconditioners both perform well, and considering
the lower cost of ILU(0) they are comparable. The p1-ILU(0) preconditioner is always more than a factor
of two better than the other methods for large timesteps. This difference is again more pronounced for low
Mach numbers, as shown in the three plots on the right.

E. Mach Number Dependence

To investigate how the convergence depends on the Mach number, we solve the NACA problem with ∆t = 1.0
for a wide range of Mach numbers. The plot in figure 7 shows again that all methods performs worse as the
Mach number decreases, except our p1-ILU(0) preconditioner. In fact, it appears to make the number of
GMRES iterations almost independent of the Mach number, which is remarkable.

V. Conclusions

We have shown a way to timestep DG problems implicitly using efficient memory storage and fast
iterative solvers. The discretized DG/LDG problems are stored block-wise, and in particular we circumvent
the wider stencil of the LDG method by keeping the matrix factors that arise from the discretization. We
studied several iterative solvers, and concluded that the restarted GMRES(20) works well in general. In
particular, when preconditioned with our p1-ILU(0) preconditioner, it performs consistently well on all our
test problems. It also made the convergence essentially independent of the Mach number.

The proposed method performs well for a number of problems with a large range of Reynolds and Mach
numbers. We think that this approach is a good candidate for the solution of the more complex equations
appearing in turbulence modeling. This will be the subject of future research.

9 of 11

American Institute of Aeronautics and Astronautics

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
0

10
1

10
2

10
3

Timestep

G

M
R

E
S

 It
er

at
io

ns
Duct, M=0.2

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
0

10
1

10
2

10
3

Timestep

G

M
R

E
S

 It
er

at
io

ns

Duct, M=0.01

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
0

10
1

10
2

10
3

Timestep

G

M
R

E
S

 It
er

at
io

ns

Boundary layer, M=0.2

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
0

10
1

10
2

10
3

Timestep

G

M
R

E
S

 It
er

at
io

ns

Boundary layer, M=0.01

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
0

10
1

10
2

10
3

Timestep

G

M
R

E
S

 It
er

at
io

ns

NACA, M=0.2

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
0

10
1

10
2

10
3

Timestep

G

M
R

E
S

 It
er

at
io

ns

NACA, M=0.01

Explicit
Block diagonal
ILU(0)
p1−correction
p1−ILU(0)

Figure 6. Convergence of GMRES(20) with various preconditioners, as a function of the timestep ∆t. The
problems are, from top to bottom, the duct problem, the boundary layer problem, and the NACA problem,
with Mach numbers 0.2 (left plots) and 0.01 (right plots).

10 of 11

American Institute of Aeronautics and Astronautics

10
−3

10
−2

10
−1

10
0

10
0

10
1

10
2

10
3

Mach Number

G

M
R

E
S

 It
er

at
io

ns

NACA, ∆ t=1.0

Block diagonal
ILU(0)
p1−correction
p1−ILU(0)

Figure 7. Convergence of GMRES(20) for the NACA problem, as a function of the Mach number. The
p1-ILU(0) preconditioner makes the convergence almost independent of the Mach number, while the other
solvers perform significantly worse for small values.

References

1Hesthaven, J. S. and Warburton, T., “Nodal high-order methods on unstructured grids. I. Time-domain solution of
Maxwell’s equations,” J. Comput. Phys., Vol. 181, No. 1, 2002, pp. 186–221.

2Cockburn, B. and Shu, C.-W., “The local discontinuous Galerkin method for time-dependent convection-diffusion sys-
tems,” SIAM J. Numer. Anal., Vol. 35, No. 6, 1998, pp. 2440–2463 (electronic).

3Arnold, D. N., Brezzi, F., Cockburn, B., and Marini, L. D., “Unified analysis of discontinuous Galerkin methods for
elliptic problems,” SIAM J. Numer. Anal., Vol. 39, No. 5, 2001/02, pp. 1749–1779 (electronic).

4Ascher, U. M., Ruuth, S. J., and Spiteri, R. J., “Implicit-explicit Runge-Kutta methods for time-dependent partial
differential equations,” Appl. Numer. Math., Vol. 25, No. 2-3, 1997, pp. 151–167, Special issue on time integration (Amsterdam,
1996).

5Kennedy, C. A. and Carpenter, M. H., “Additive Runge-Kutta schemes for convection-diffusion-reaction equations,”
Appl. Numer. Math., Vol. 44, No. 1-2, 2003, pp. 139–181.

6Cockburn, B. and Shu, C.-W., “Runge-Kutta discontinuous Galerkin methods for convection-dominated problems,” J.
Sci. Comput., Vol. 16, No. 3, 2001, pp. 173–261.

7Shampine, L. F. and Gear, C. W., “A user’s view of solving stiff ordinary differential equations,” SIAM Rev., Vol. 21,
No. 1, 1979, pp. 1–17.

8Barrett, R., Berry, M., Chan, T. F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., and
der Vorst, H. V., Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd Edition, SIAM,
Philadelphia, PA, 1994.

9Meijerink, J. A. and van der Vorst, H. A., “An iterative solution method for linear systems of which the coefficient matrix
is a symmetric M -matrix,” Math. Comp., Vol. 31, No. 137, 1977, pp. 148–162.

10Hackbusch, W., Multigrid methods and applications, Vol. 4 of Springer Series in Computational Mathematics, Springer-
Verlag, Berlin, 1985.

11Rønquist, E. M. and Patera, A. T., “Spectral element multigrid. I. Formulation and numerical results,” J. Sci. Comput.,
Vol. 2, No. 4, 1987, pp. 389–406.

12Fidkowski, K., Oliver, T., Lu, J., and Darmofal, D., “p-Multigrid solution of high-order discontinuous Galerkin discretiza-
tions of the compressible Navier-Stokes equations,” J. Comput. Phys., Vol. 207, No. 1, 2005, pp. 92–113.

13Koornwinder, T. H., “Askey-Wilson polynomials for root systems of type BC,” Hypergeometric functions on domains of
positivity, Jack polynomials, and applications (Tampa, FL, 1991), Vol. 138 of Contemp. Math., Amer. Math. Soc., Providence,
RI, 1992, pp. 189–204.

14Wesseling, P., “A robust and efficient multigrid method,” Multigrid methods (Cologne, 1981), Vol. 960 of Lecture Notes
in Math., Springer, Berlin, 1982, pp. 614–630.

15Wittum, G., “On the robustness of ILU-smoothing,” Robust multi-grid methods (Kiel, 1988), Vol. 23 of Notes Numer.
Fluid Mech., Vieweg, Braunschweig, 1989, pp. 217–239.

16Elman, H. C., Howle, V. E., Shadid, J. N., and Tuminaro, R. S., “A parallel block multi-level preconditioner for the 3D
incompressible Navier-Stokes equations,” J. Comput. Phys., Vol. 187, No. 2, 2003, pp. 504–523.

11 of 11

American Institute of Aeronautics and Astronautics

