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Mesh Generation

• Given a geometry, determine node points and element connectivity

• Resolve the geometry and high element qualities, but few elements

• Applications: Numerical solution of PDEs (FEM, FVM, DGM, BEM),

interpolation, computer graphics, visualization
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Geometry Representations

Explicit Geometry

• Parameterized boundaries

(x,y) = (x(s), y(s))

Implicit Geometry

• Boundaries given by zero level set

f (x,y)<0

f (x,y)>0

f (x,y)=0
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Meshing Algorithms

• Delaunay refinement

– Refine an initial triangulation by inserting points and updating

connectivities

– Efficient and robust

• Advancing front

– Propagate a layer of elements from boundaries into domain, stitch

together at intersection

– High quality meshes, good for boundary layers, but somewhat

unreliable in 3-D
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Meshing Algorithms

• Octree mesh

– Create an octree, refine until geometry well resolved, form elements

between cell intersections

– Guaranteed quality even in 3-D, however somewhat ugly meshes

• DistMesh

– Improve initial triangulation by node movements and connectivity

updates

– Easy to understand and use, handles implicit geometries, high element

qualities, but non-robust and low performance
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Delaunay Triangulation

• Find non-overlapping triangles that fill the convex hull of a set of points

• Properties:

– Every edge is shared by at most two triangles

– The circumcircle of a triangle contains no other input points

– Maximizes the minimum angle of all the triangles

Delaunay triangulation Voronoi tesselation

Empty circumcircle
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Constrained Delaunay Triangulation

• The Delaunay triangulation might not respect given input edges

Non-conforming triangles

• Use local edge swaps to recover the input edges
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Delaunay Refinement Method

• Algorithm:

– Form initial triangulation using boundary points and outer box

– Replace an undesired element (bad or large) by inserting its

circumcenter, retriangulate and repeat until mesh is good

• Will converge with high element qualities in 2-D

• Very fast – time almost linear in number of nodes
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The Advancing Front Method

• Discretise the boundary as initial front

• Add elements into the domain and update the front

• When front is empty the mesh is complete

Original front New front

Original front New front

New element

New element

δ
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Grid Based and Octree Meshing

• Overlay domain with regular grid, crop and warp edge points to boundary

• Octree instead of regular grid gives

graded mesh with fewer elements
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The DistMesh Mesh Generator

1. Start with any topologically correct initial mesh, for example random node

distribution and Delaunay triangulation

2. Move nodes to find force equilibrium in edges

• Project boundary nodes using implicit function φ

• Update element connectivities
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Mesh Size Functions

• Function h(x) specifying desired mesh element size

• Many mesh generators need a priori mesh size functions

– Physically-based methods such as DistMesh

– Advancing front and Paving methods

• Discretize mesh size function h(x) on a coarse background grid
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Mesh Size Functions

• Based on several factors:

– Curvature of geometry boundary

– Local feature size of geometry

– Numerical error estimates (adaptive solvers)

– Any user-specified size constraints

• Also: |∇h(x)| ≤ g to limit ratio G = g + 1 of neighboring element sizes
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Explicit Mesh Size Functions

• A point-source

h(x) = hpnt + g|x− x0|

• Any shape, with distance function φ(x)

h(x) = hshape + gφ(x)

• Combine mesh size functions by min operator:

h(x) = min
i
hi(x)

• For more general h(x), solve the gradient limiting equation [Persson]

∂h

∂t
+ |∇h| = min(|∇h|, g),

h(t = 0,x) = h0(x).
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Mesh Size Functions – 2-D Examples

Mesh Size Function h(x) Mesh Based on h(x)

15



Laplacian Smoothing

• Improve node locations by iteratively moving nodes to average of

neighbors:

xi ←
1

ni

ni∑
j=1

xj

• Usually a good postprocessing step for Delaunay refinement

• However, element quality can get worse and elements might even invert:

16



Face and Edge Swapping

• In 3-D there are several swappings between neighboring elements

• Face and edge swapping important postprocessing of Delaunay meshes

 Figure 30:  Face-edge swapping
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Boundary Layer Meshes

• Unstructured mesh for offset curve ψ(x)− δ

• The structured grid is easily created with the distance function
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