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Mesh Generation

e Given a geometry, determine node points and element connectivity
e Resolve the geometry and high element qualities, but few elements

e Applications: Numerical solution of PDEs (FEM, FVM, DGM, BEM),

Interpolation, computer graphics, visualization
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e Parameterized boundaries

Geometry Representations

Explicit Geometry

>

<
(Xy) = (X(8), ¥(8))

Implicit Geometry

e Boundaries given by zero level set

F(xy)=0

e

@ f(x,y)<O0

\

f (x,y)>0



Meshing Algorithms

e Delaunay refinement

— Refine an initial triangulation by inserting points and updating

connectivities

— Efficient and robust

e Advancing front

— Propagate a layer of elements from boundaries into domain, stitch

together at intersection

— High quality meshes, good for boundary layers, but somewhat

unreliable in 3-D



Meshing Algorithms

e QOctree mesh

— Create an octree, refine until geometry well resolved, form elements

between cell intersections

— Guaranteed quality even in 3-D, however somewhat ugly meshes

e DistMesh

— Improve initial triangulation by node movements and connectivity

updates

— Easy to understand and use, handles implicit geometries, high element

gualities, but non-robust and low performance



Delaunay Triangulation

e Find non-overlapping triangles that fill the convex hull of a set of points

e Properties:
— Every edge is shared by at most two triangles
— The circumcircle of a triangle contains no other input points

— Maximizes the minimum angle of all the triangles

Empty circumcircle

;

Delaunay triangulation Voronoi tesselation
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Constrained Delaunay Triangulation

e The Delaunay triangulation might not respect given input edges

Non-conforming trianales

e Use local edge swaps to recover the input edges
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Delaunay Refinement Method

e Algorithm:
— Form initial triangulation using boundary points and outer box

— Replace an undesired element (bad or large) by inserting its

circumcenter, retriangulate and repeat until mesh is good
e Will converge with high element qualities in 2-D

e \ery fast — time almost linear in number of nodes




The Advancing Front Method

e Discretise the boundary as initial front
e Add elements into the domain and update the front

e \When front is empty the mesh is complete
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Grid Based and Octree Meshing

e Overlay domain with regular grid, crop and warp edge points to boundary
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The DistMesh Mesh Generator

1. Start with any topologically correct initial mesh, for example random node
distribution and Delaunay triangulation

2. Move nodes to find force equilibrium in edges
e Project boundary nodes using implicit function ¢

e Update element connectivities
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Mesh Size Functions

e Function h(x) specifying desired mesh element size

e Many mesh generators need a priori mesh size functions
— Physically-based methods such as DistMesh

— Advancing front and Paving methods

e Discretize mesh size function h(a) on a coarse background grid
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Mesh Size Functions

e Based on several factors:
— Curvature of geometry boundary
— Local feature size of geometry
— Numerical error estimates (adaptive solvers)

— Any user-specified size constraints

e Also: [Vh(x)| < gtolimitratio G = g + 1 of neighboring element sizes
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Explicit Mesh Size Functions

e A point-source
h(x) = hpnt + gl — 20
e Any shape, with distance function ¢(x)
h(z) = Nshape + go()
e Combine mesh size functions by min operator:

h(x) = mz_in hi(x)

e For more general h(a;) solve the gradient limiting equation [Persson]

Oh
=+ |Vh| = min(|Vhl, )

h(t =0,x) = ho(x).
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Mesh Size Functions — 2-D Examples

Mesh Size Function h(x) Mesh Based on h(x)
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Laplacian Smoothing

e Improve node locations by iteratively moving nodes to average of

neighbors:
1 —
Xr, < — E £
n; <
j=1

e Usually a good postprocessing step for Delaunay refinement

e However, element quality can get worse and elements might even invert:

=
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Face and Edge Swapping

e In 3-D there are several swappings between neighboring elements

e Face and edge swapping important postprocessing of Delaunay meshes
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Boundary Layer Meshes

e Unstructured mesh for offset curve y)(x) — 0

e The structured grid is easily created with the distance function
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