
Lecture 2
Unstructured Mesh Generation

MIT 16.930

Advanced Topics in Numerical Methods for Partial Differential Equations

Per-Olof Persson (persson@mit.edu)

February 13, 2006

1

Mesh Generation

• Given a geometry, determine node points and element connectivity

• Resolve the geometry and high element qualities, but few elements

• Applications: Numerical solution of PDEs (FEM, FVM, DGM, BEM),

interpolation, computer graphics, visualization

2

Geometry Representations

Explicit Geometry

• Parameterized boundaries

(x,y) = (x(s), y(s))

Implicit Geometry

• Boundaries given by zero level set

f (x,y)<0

f (x,y)>0

f (x,y)=0

3

Meshing Algorithms

• Delaunay refinement

– Refine an initial triangulation by inserting points and updating

connectivities

– Efficient and robust

• Advancing front

– Propagate a layer of elements from boundaries into domain, stitch

together at intersection

– High quality meshes, good for boundary layers, but somewhat

unreliable in 3-D

4

Meshing Algorithms

• Octree mesh

– Create an octree, refine until geometry well resolved, form elements

between cell intersections

– Guaranteed quality even in 3-D, however somewhat ugly meshes

• DistMesh

– Improve initial triangulation by node movements and connectivity

updates

– Easy to understand and use, handles implicit geometries, high element

qualities, but non-robust and low performance

5

Delaunay Triangulation

• Find non-overlapping triangles that fill the convex hull of a set of points

• Properties:

– Every edge is shared by at most two triangles

– The circumcircle of a triangle contains no other input points

– Maximizes the minimum angle of all the triangles

Delaunay triangulation Voronoi tesselation

Empty circumcircle

6

Constrained Delaunay Triangulation

• The Delaunay triangulation might not respect given input edges

Non-conforming triangles

• Use local edge swaps to recover the input edges

7

Delaunay Refinement Method

• Algorithm:

– Form initial triangulation using boundary points and outer box

– Replace an undesired element (bad or large) by inserting its

circumcenter, retriangulate and repeat until mesh is good

• Will converge with high element qualities in 2-D

• Very fast – time almost linear in number of nodes

2)

° 12

)

8

The Advancing Front Method

• Discretise the boundary as initial front

• Add elements into the domain and update the front

• When front is empty the mesh is complete

Original front New front

Original front New front

New element

New element

δ

9

Grid Based and Octree Meshing

• Overlay domain with regular grid, crop and warp edge points to boundary

• Octree instead of regular grid gives

graded mesh with fewer elements

10

The DistMesh Mesh Generator

1. Start with any topologically correct initial mesh, for example random node

distribution and Delaunay triangulation

2. Move nodes to find force equilibrium in edges

• Project boundary nodes using implicit function φ

• Update element connectivities

11

Mesh Size Functions

• Function h(x) specifying desired mesh element size

• Many mesh generators need a priori mesh size functions

– Physically-based methods such as DistMesh

– Advancing front and Paving methods

• Discretize mesh size function h(x) on a coarse background grid

12

Mesh Size Functions

• Based on several factors:

– Curvature of geometry boundary

– Local feature size of geometry

– Numerical error estimates (adaptive solvers)

– Any user-specified size constraints

• Also: |∇h(x)| ≤ g to limit ratio G = g + 1 of neighboring element sizes

13

Explicit Mesh Size Functions

• A point-source

h(x) = hpnt + g|x− x0|

• Any shape, with distance function φ(x)

h(x) = hshape + gφ(x)

• Combine mesh size functions by min operator:

h(x) = min
i
hi(x)

• For more general h(x), solve the gradient limiting equation [Persson]

∂h

∂t
+ |∇h| = min(|∇h|, g),

h(t = 0,x) = h0(x).

14

Mesh Size Functions – 2-D Examples

Mesh Size Function h(x) Mesh Based on h(x)

15

Laplacian Smoothing

• Improve node locations by iteratively moving nodes to average of

neighbors:

xi ←
1

ni

ni∑
j=1

xj

• Usually a good postprocessing step for Delaunay refinement

• However, element quality can get worse and elements might even invert:

16

Face and Edge Swapping

• In 3-D there are several swappings between neighboring elements

• Face and edge swapping important postprocessing of Delaunay meshes

 Figure 30: Face-edge swapping

17

Boundary Layer Meshes

• Unstructured mesh for offset curve ψ(x)− δ

• The structured grid is easily created with the distance function

18

