Implicit Solution of Viscous Aerodynamic Flows using the Discontinuous Galerkin Method

Per-Olof Persson and Jaime Peraire
Massachusetts Institute of Technology

7th World Congress on Computational Mechanics
Los Angeles, July 16-22, 2006
Background

- Objective: Solve large scale problems in fluid mechanics efficiently and accurately on complex geometries

- Requirements:
 - Low dispersion/high accuracy discretization
 - Methods based on unstructured simplex meshes
 - Robust and fully automated solution process
 - Efficient solvers/simple parallelization
Application Areas

• Computational aeroacoustics
 – Direct solution of the compressible Navier-Stokes equations
 – No modeling of acoustic waves (Lighthill, linearized Euler, etc)
 – High accuracy essential to capture turbulent noise sources, propagate acoustic waves, and to ensure stability at low Mach numbers
 – Complex geometries, e.g. in wind noise prediction for vehicles

• Other DNS/LES/DES problems
 – High order methods a clear benefit in DNS/LES region
 – Need flexible meshes e.g. in the boundary layers

• Drag prediction
 – Solve high Reynolds number transonic flow for various geometries
 – Determine drag coefficient accurately
Example: Inviscid 2-D Flow

- Lower dissipation with high order schemes \rightarrow Higher accuracy/DOF

24576 DOFs, $p = 1$

7680 DOFs, $p = 4$
Example: Aeroacoustics and K-H Instability

- Nonlinear behavior: Large scale acoustic wave interacts with small scale flow features, leading to vorticity generation
- \(p = 7 \) (8th order accuracy), 100-by-20 square elements
The Discontinuous Galerkin Method

- (Reed/Hill 1973, Lesaint/Raviart 1974, Cockburn/Shu 1989-, etc)
- Consider non-linear hyperbolic system in conservative form:

\[u_t + \nabla \cdot F_i(u) = 0 \]

- Triangulate domain \(\Omega \) into elements \(\kappa \in T_h \)
- Seek approximate solution \(u_h \) in space of element-wise polynomials:

\[\mathcal{V}^p_h = \{ v \in L^2(\Omega) : v|_\kappa \in P^p(\kappa) \ \forall \kappa \in T_h \} \]

- Multiply by test function \(v_h \in \mathcal{V}^p_h \) and integrate over element \(\kappa \):

\[\int_\kappa [(u_h)_t + \nabla \cdot F_i(u_h)] v_h \, dx = 0 \]
The Discontinuous Galerkin Method

- Integrate by parts:

\[
\int_{\kappa} [(u_h)_t] v_h \, dx - \int_{\kappa} F_i(u_h) \nabla v_h \, dx + \int_{\partial \kappa} \mathcal{H}_i(u_h^+, u_h^-, \hat{n}) v_h^+ \, ds = 0
\]

with numerical flux function \(\mathcal{H}_i(u_L, u_R, \hat{n}) \) for left/right states \(u_L, u_R \) in direction \(\hat{n} \) (Godunov, Roe, Osher, Van Leer, Lax-Friedrichs, etc)

- Global view: Find \(u_h \in V_h^p \) such that this weighted residual is zero for all \(v_h \in V_h^p \)

- Error \(O(h^{p+1}) \) for smooth problems
The DG Method – Observations

• Reduces to the finite volume method for $p = 0$:

\[(u_h)_t A_\kappa + \int_{\partial \kappa} H_i(u_h^+, u_h^-, \hat{n}) \, ds = 0 \]

• Boundary conditions enforced naturally for any polynomial degree p

• Mass matrix block-diagonal (no overlap between element basis functions)

• Edge integrals connect neighboring elements – block-wise compact stencil
Nodal Basis and Curved Boundaries

- Nodal basis within each element \rightarrow sparse element connectivities
- Isoparametric treatment of curved elements (not only at boundaries)

Isotropic mesh

Anisotropic mesh

W1 wing (Drag Prediction Workshop)
Viscous Discretization

- Our *Compact DG* (CDG) scheme reduces the connectivities for the viscous discretization
- About 50% fewer DOFs than full connectivity (3-D tetrahedra, $p = 4$)
Implicit DG Memory Requirements

- Consider simplex elements, polynomial degree \(p \), mesh resolution \(r \), with \(N \) solution components in \(D \) dimensions
 - Nodes/element \(S = \binom{p+D}{D} \)
 - Nodes/edge element \(S_e = \binom{p+D-1}{D-1} \)
 - Element neighbors \(B = D + 1 \)
 - Elements \(T = \frac{D!}{(pr)^D} \)

- Storage required for solution and Jacobian:
 - DOFs = \(SNT \)
 - Matrix entries (Full) = \((SN)^2T + (SN)^2BT \)
 - Matrix entries (CDG) = \((SN)^2T + SS_eN^2BT \)
Implicit DG Memory Requirements

- Example: Navier-Stokes + S-A in 3-D, $p = 4, 10,000$ tetrahedra
 - DOFs = $6 \cdot 35 \cdot 10,000 = 2,100,000$
 - Matrix entries (Full) = $2.2 \cdot 10^9$ elements = $17.6 GB$
 - Matrix entries (CDG) = $1.2 \cdot 10^9$ elements = $9.6 GB$

- Observations:
 - $p = 2$ and $p = 3$ optimal for tetrahedra
 - For $p \geq 2$, 6 tetrahedra cheaper than 1 hex (!)
Matrix Storage and Operations

- Store matrices in block format
 - Diagonal blocks: \(SN\)-by-\(SN\)-by-\(T\) dense array
 - Off-diagonal blocks (CDG): \(SN\)-by-\(S_eN\)-by-\(B\)-by-\(T\) dense array

- Use high-performance dense matrix libraries for operations
 - BLAS3 performance for matrix assembly (matrix-matrix products)
 - BLAS2 performance in Krylov solver (matrix-vector products)
 - Direct solvers: BLAS3 performance by block Gaussian elimination

- Hard to take advantage of block structure with a general format such as compressed column storage
Time Integration

• Consider the time-dependent compressible Navier-Stokes equations:

\[
\frac{\partial u}{\partial t} + \nabla \cdot F_i(u) - \nabla \cdot F_v(u, \nabla u) = 0
\]

• Discretization in space using DG gives system of ODEs:

\[
M \dot{U} = F_v(U) - F_i(U) \equiv R(U)
\]

• Discretization by BDF-k in time leads to nonlinear system

\[
R_{BDF}(U_n) \equiv M \sum_{i=0}^{k} \alpha_i U_{n-i} - \Delta t R(U_n) = 0
\]

with mass-matrix \(M \) and residual \(R(U_n) \)
Time Integration

- Newton’s method requires solving $U^{(j+1)}_n = U^{(j)}_n + \beta \Delta U^{(j)}$ with the Jacobian

$$J(U_n) = \frac{dR_{BDF}}{dU_n} = \alpha_0 M - \Delta t \frac{dR}{dU_n} \equiv \alpha_0 M - \Delta t K$$

- $\alpha_0 \approx 1$ for $k = 0, \ldots, 4$

- Study iterative techniques for $A = M - \Delta t K$

- Use NACA 0012 model problem, Re=1000, $p = 4$
Iterative Solvers for Linear Systems

- **Block-Jacobi**
 - Simple, but can be efficient for certain problems
 - Convergence depends only weekly on approximation order p
 - Asymptotically poor convergence for viscous model problems

- **Krylov subspace methods**
 - Generally better convergence, in particular for model problems
 - Can be improved by preconditioning
 - For unsymmetric matrices: GMRES, GMRES(k), QMR, CGS, etc

- **Computational cost for high-order discretizations** dominated by matrix-vector products and preconditioning
 - Except possibly GMRES for large number of iterations
Convergence of Iterative Solvers

- Convergence of various solvers with block-diagonal preconditioner
- GMRES/GMRES(20)/CGS comparable cost, QMR about twice as much
- Block Jacobi great when it works, but unreliable
- From now on, focus on GMRES(20) for studying preconditioners
Preconditioners for Krylov Methods

- Performance of Krylov methods greatly improved by preconditioning
- Various standard methods:
 - Block-diagonal: $A \approx \text{blockdiag}(A)$
 - Block-Incomplete LU: $A \approx \tilde{L}\tilde{U}$
 - p-multigrid (low-degree) preconditioner
- Highly efficient combination (Persson/Peraire 2006)
 - Use block-ILU(0) as post-smoother for coarse scale correction
 - In particular, convergence is almost independent of Mach number
Pseudo-code for our preconditioner (approximate solution of $Au = b$)

1. Compute coarse projection b_0 of b (element-wise averaging)
2. Solve exactly (e.g. with direct solver) $A_0 u_0 = b_0$, with A_0 projected from A
3. Compute prolongation u from u_0
4. Compute the residual $r = b - Au$
5. Solve $\tilde{L}\tilde{U}u' = r$ with block ILU(0) factorization $A \approx \tilde{L}\tilde{U}$
6. Add correction u' to u
Timestep Dependence

- #GMRES iterations as function of timestep Δt for various preconditioners
- Need large timesteps to beat explicit techniques (dashed line), because of uniform mesh and no viscosity
Mach Number Dependence

- The ILU(0)/Coarse scale preconditioner appears to make convergence almost independent of Mach number.

- Individually, ILU(0) and coarse corrections perform poorly for low Mach.

- Clearly, ILU(0) is an efficient smoother and reduces errors in high frequencies (within and between the elements).

![Graph showing Mach Number Dependence](image)
ILU(0)/Coarse scale, h and p Dependence

- Flat plate model problem, N-by-N elements
- #GMRES iterations grows approximately linearly with N
 - Expected: Diameter of problem is N (no h-multigrid)
- #GMRES iterations grows with p
 - Expected: No full p-multigrid
- Performance still competitive because of the low cost
Examples

• We have successfully applied our solver/preconditioner to:
 – Two- and three-dimensional flows
 – Large range of timesteps, including steady-state solutions
 – Highly graded meshes with RANS turbulence modeling
 – Problems with shocks, captured using sensors and artificial viscosity

Cylinder, Re=2000 (Entropy) Sphere, Re=1000 (Mach & Velocity)
Example: Transonic Flow

- NACA 0012, 1.5° attack angle
- $M = 0.8$ and $p = 4$
- Implicit steady-state solution with Newton solver
Example: Turbulent Flow over NACA 0012 Airfoil

- Spalart-Allmaras turbulence modeling, $M = 0.3, \text{Re} = 1.86 \cdot 10^6$
- p-convergence and good agreement with experimental data
Example: Unsteady Turbulent Flow over Cylinder

- Spalart-Allmaras turbulence modeling, \(M = 0.2, \text{Re} = 5 \cdot 10^5, p = 2 \)
- LES in 2-D not physically meaningful, but comparison shows how URANS smears out complex flow features
Conclusions

• Important steps toward an industrial DG solver:
 – Low-cost compact viscous discretization
 – Simple and effective ILU/coarse scale preconditioner
 – Block matrix storage and operations using high performance libraries

• Current status:
 – Flexible, lightweight, and highly efficient n-D code fully developed
 – Implicit and explicit solvers, various Krylov solvers and preconditioners
 – Handles large 2-D problems and moderate size 3-D problems in serial

• Current work:
 – Parallelization of code, implementation of LES/DES capabilities,
 solution of large scale 3-D problems