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SUMMARY

The design of efficient flapping wings for human engineered micro aerial vehicles (MAVs) has long
been an elusive goal, in part due to the large size of the design space. One strategy for overcoming
this difficulty is to use a multi-fidelity simulation strategy appropriately balances computation time
and accuracy. We compare two models with different geometric and physical fidelity. The low-fidelity
model is an inviscid doublet lattice method with infinitely thin lifting surfaces. The high-fidelity
model is a high-order accurate discontinuous Galerkin Navier-Stokes solver which uses an accurate
representation of the flapping wing geometry. To compare the performance of the two methods, we
consider a model flapping wing with an elliptical planform and an analytically prescribed spanwise
wing twist, at size scales relevant to MAVs. Our results show that in many cases, including those with
mild separation, low fidelity simulations can accurately predict integrated forces, provide insight into
the flow structure, indicate regions of likely separation and shed light on design relevant quantities.
But for problems with significant levels of separation, higher fidelity methods are required to capture
the details of the flow-field. Inevitably high-fidelity simulations are needed to establish the limits of
validity of the lower fidelity simulations. Copyright c© 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Flapping propulsion strategies that are observed in nature are a result of many years of
refinement and evolution. While nature presents a diversity of flapping winged animals,
it is difficult to assess the relative importance of flapping parameters (flapping frequency,
amplitude, upstroke retraction, forward-aft flapping etc.), shape characteristics (wing camber,
twist, spanwise bending, etc) and skeletal structure (wing stiffness, material properties, skeletal
layout) by simply observing and recording the wingbeat kinematics of these animals. For
example, most birds exploit a wing retraction during the upstroke, however, it is not clear
from experimental observations of natural flyers what the importance of those kinematics are,
and whether a human designed micro aerial vehicle (MAV) would benefit from mimicking
this behavior or whether a related, but different set of kinematics would suffice. Furthermore,
there is a strong dependence between the various possible flapping parameters. For example,
modulating flapping frequency independently of wing shape adjustments provides a partial
and potentially misleading view of the performance envelope. It is unfeasible to develop a full
appreciation of the flapping flight design space from nature alone. Thus, the use of analytical
and computational models which are capable of capturing the essential mechanisms of flapping
flight becomes a necessity. The use of these models allows us to characterize the role of different
flapping parameters, including those commonly observed in natural flapping flight.

Computational modeling and simulation have been used to understand the kinematics
and aerodynamics of flapping winged animals and vehicles [1, 2, 3, 4, 5, 6]. At one end
of the modeling spectrum are efficient, low-fidelity methods such as linear potential flow
methods (momentum disk and vortex methods [7, 8, 9], lifting line [1, 10, 11], vortex/doublet
lattice methods [12, 13], and panel methods [14, 2, 3, 15]). These lower fidelity simulations
are computationally efficient and require limited user involvement in the description and
representation of the geometry. The solution time for these methods is typically on the
order of seconds or minutes on a desktop computer. Unfortunately, many of these lower-
fidelity simulations are considered unreliable for modeling flapping wings due to the physical
assumptions associated with potential flow. Specifically, these methods employ limited or no
viscous modeling, and as a result, critical effects such as flow separation are ignored, or at
best poorly represented. At the other end of the spectrum are the higher fidelity Navier-Stokes
methods which incorporate a complete physical model of the problem [4, 5, 3]. These methods,
despite offering an opportunity to model the flow accurately, are prohibitively expensive for
examining every possible combination of flapping kinematics. While these methods are capable
of accounting for the detailed flow characteristics, the solution comes at a significant cost, both
in setting up the geometry and in simulating the flow.

Several research efforts have proposed and developed modeling strategies that exploit
variable- or multiple-fidelity physics and geometry representations [16, 3, 17]. We have proposed
a multi-fidelity computational framework [6, 18, 16] that uses a collection of potential flow
methods (Wake-Only Energetics, Lifting Line and Panel Methods) with differing levels of
geometric representation, and a high-order Navier-Stokes method. We focus here on two
independent methods from our multi-fidelity framework for modeling flapping flight; a panel
method and a high-order accurate Navier-Stokes method. By examining and understanding
how the introduction of viscosity at the higher fidelity level impacts the flow-field and
performance of a flapping wing, we can more confidently apply our multi-fidelity framework
to design more effective flapping wings.
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NUMERICAL SIMULATION OF FLAPPING WINGS 3

In this paper, we compare initial results of a lower fidelity model (potential flow panel
method) with higher fidelity simulations (Navier-Stokes). Here, we consider an analytically
described three-dimensional flapping wing and present a small collection of three-dimensional
computations. The flapping motions we consider has varying levels of prescribed active twist
modulation [14, 19, 20, 21, 22]. A primary objective of this paper is to understand the
applicability of each fidelity level in different regimes of the design space. Although the
Reynolds number in the Navier-Stokes simulations (Re = 3000) is in characteristic of insect
flight, we expect this study to provide general insight into the applicability of the numerical
methods across a wide range of animals, including insects, bats and birds. The lower Reynolds
number regime in the Navier-Stokes simulations is dominated by viscous laminar flow, which
will, in general be more susceptible to flow separation and strong viscous effects. This highly
viscous regime is expected to produce a range of flow behavior that can not be captured by the
inviscid methods. We find for flapping kinematics where there is limited to no flow separation,
our potential flow model predicts integrated quantities such as vertical and horizontal forces
with good trend accuracy. Even when there is mild separation, the potential flow accurately
predicts trends, most likely because the Kutta condition in the potential flow method still
accurately accounts for the wing-bound circulation. There is however, a noticeable degradation
in the predictive capability of our potential flow model for cases where the flow separates from
the wing and does not re-attach. While it is easy to observe the inconsistencies between our
potential flow predictions and the Navier-Stokes simulations aposteriori, it is a challenge to
predict when potential flow results will adequately represent reality and which will not. We
find that one such apriori indicator is the presence of a strong leading edge suction peak and
subsequent significant adverse pressure gradient. A strong adverse pressure gradient after the
leading edge suction peak was a strong indication of flow separation.

2. PROBLEM STATEMENT

Our study is based on a prescribed motion flapping wing, with parameters than allow us to
vary the lift and thrust forces to obtain a wide variety of flow regimes.

2.1. Wing Geometry and Flapping Motion

The wing geometry is a symmetric HT13 airfoil with an elliptical planform. The baseline wing
kinematics are derived analytically to obtain approximate feathering conditions. This motion
is then modified by introducing a twist scaling factor that we use to get thrust-producing
flapping kinematics. In addition, we vary the angle of attack in order to get a range of lift
forces.

The wing geometry is described in terms of a fixed reference frame X,Y, Z. We start by
considering a wing with elliptical planform in the XY -plane:

Y = ±1

2

√
1−

(
X

b

)2

. (1)

The maximum normalized chord at the wing centerline is c = 1 and the wing tip-to-tip span
is 2b = 10. An HT13 airfoil is selected for the entire wing span, resulting in a maximum wing
thickness of t = 0.065 at the wing centerline.

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 01:1–20
Prepared using nmeauth.cls



4 P.-O PERSSON, D. J. WILLIS, AND J. PERAIRE

y

z

θ
x

z

φ

Figure 1. The wing geometry is an elliptic extrusion of an HT13 wing section. The flapping motion is
described in terms of a flapping angle φ and a twist angle θ.

The flapping motions occur symmetrically about a hinge located at the wing centerline (see
figure. 1).

We prescribe the symmetric wing motion using a flapping angle at the wing centerline hinge
given by

φ(t) = Aφ cosωt (2)

where t is the time, Aφ is the flapping amplitude and ω the flapping angular frequency. In
addition, a wing twist angle is prescribed as a function of the span location. At the distance
X from the centerline of the wing, the twist angle is

θ(t,X) = ε (a(X) sinωt+ b(X) cosωt) (3)

where the twist scaling factor ε ∈ [0, 1] is a parameter that controls the amount of spanwise
twist, and the coefficients a(X), b(X) are chosen to locally align the wing with the flow when
ε = 1, as described below.

Consider a point P = (X,Y, 0) located on the leading edge of the wing, with approximate
velocity

vP = −Xφ̇+ Y θ̇. (4)

The feathered condition for a free-stream flow of uinf in the positive Y -direction is then

v = uinf tan θ ≈ uinfθ. (5)

Combining the above expressions with equation (1) for the wing profile, we get

1

2

√
1−

(
X

b

)2

θ̇ − uinfθ = Xφ̇ = −XAφω sinωt (6)

or

A(X)θ̇ − θ = B(X) sinωt, where A(X) = −
√
b2 −X2

4u∞b
, B(X) =

Xφ0ω

u∞
(7)
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Figure 2. Comparison of the function S(X) =
√
b2 −X2, which is non-smooth at X = b and not

defined for X > b, with the approximate functions S̃(X) from (9) using different values of r and b = 5.

Solving this equation, we can determine the coefficients a(X) and b(X) in expression (3) after
setting ε = 1,

a(X) =
B(X)

A(X)2ω2 + 1
, b(X) =

B(X)A(X)ω

A(X)2ω2 + 1
. (8)

Because of the elliptical planform, the function A(X) is not differentiable at the tip of the
wing (X = b). In order to obtain this tip singularity, we modify the flapping motion locally
and replace the numerator in A(X) by a smooth approximation√

b2 −X2 ≈ S̃(X) ≡ arctan(r(b−X))

arctan(rb)
b (9)

where we empirically choose the appropriate value r = 1.2, see Fig. 2 for an illustration.
Therefore, A(X) becomes

A(X) = − S̃(X)

4u∞b
. (10)

Note that this expression is well defined and smooth beyond the wing (X > b) and will be
used below to construct a smooth embedding of the deforming domain.

The resulting flapping motion is illustrated in figure 3. We note that this is motion is
parametrized in terms of the twist scaling factor ε and the global angle of attack. Although
this is not an optimized flapping motion, it is adequate for the purposes of comparing the
simulation results obtained with our two different computational models.

2.2. Flow Properties and Test Matrix

The free stream flow has a Mach number of 0.1, and for the Navier-Stokes simulations, the
wing root chord Reynolds number is 3,000. We have used nine sets of parameters for our
simulations, corresponding to three freestream angles of attack α = 0, 5,and 10 degrees, and
three twist scaling factors ε = 1.0, 0.75, and 0.5. The twist scaling factors were chosen to
provide reasonable levels of local wing incidence alleviation during flapping. ε = 0.5 represents
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Figure 3. The prescribed flapping motion for the elliptic wing (feathered condition ε = 1.0).

a case with high local angles of attack during much of the flapping cycle. While more aggressive
cases than ε = 0.5 could be considered (eg: ε = 0.0), the resulting motions have poor lift and
thrust production efficiency due to overly aggressive local angles of attack. .

The wing geometry, frequency, and amplitude are held constant for all simulations, with a
flapping amplitude of Aφ = 30◦ and an angular frequency of ω = 2π/20. This corresponds to
a reduced frequency k = cω/(2uinf) = π/20 ≈ 0.16. This reduced frequency is lower than most
low Reynolds number natural flyers.

3. COMPUTATIONAL MODELS

We solve our flapping wing problem using two techniques – the potential flow panel method
code FastAero, and the Navier-Stokes based discontinuous Galerkin code 3DG. Here, we give
an overview of the two methods and a description of the discretization and solution techniques
we use. For more details, we refer to previous work by us and other authors.

3.1. Panel Method: FastAero

FastAero [23, 6, 18, 16] is a boundary element or aerodynamic panel method [24, 2, 25]
for solving unsteady, linear potential flow. Despite the simplifications introduced by linear
potential flow (inviscid, irrotational, incompressible flow), panel methods are powerful and
accurate when analyzing the aerodynamic behavior of streamlined shapes such as wings,
fuselages and faired bodies [2]. Although, it is reasonable to expect flapping wings to experience
some flow separation, we assume that large regions of separated flow are not desirable in cruise
flapping flight due to the increased energetic demands. As such, for the most desirable cruise
configurations, we expect our panel method to be an adequate model.

The three-dimensional panel method, FastAero, [23] is an unsteady, accelerated, panel
method with vortex particle wakes. FastAero includes options for Dirichlet boundary conditions
(modeling potential flow around both thick wings and [2]) and Neumann doublet lattice method
formulations (modeling potential flow around thin wings [12]). Linear strength basis functions
[26] are used in FastAero to represent the distribution of source and/or doublet strength on
each of the triangular elements. The integration of the linear source and doublet influences,
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at a given point in the domain, is performed using analytical panel integration [26]. The
boundary conditions on each panel are satisfied using a Galerkin weighted residual method,
with the integrals being numerically approximated by multi-point Gaussian Quadrature [27].
While computationally more costly than traditional constant collocation panel methods, our
approach has several benefits. First, the high-order representation of the source and doublet
distributions leads to a more robust and accurate solution. Second, high-order panel methods
are more tolerant for irregular discretizations, which are likely to occur in unsteady flapping
wing geometries. Third, the tangential components of the velocity at the body, and thus the
surface pressure, is computed by evaluating the gradient of the surface potential on each panel
rather than using finite difference methods. This simpler surface gradient computation enables
the use of triangular panels and also results in efficient post-processing routines that do not
impose geometric constraints on the model (eg: ordered, quadrilateral panels).

Linear potential flow approaches often vary in their representation of the trailing wake –
the thin sheet of vorticity shed behind each lifting surface. In FastAero we model and convect
the shed vorticity using a vortex particle method [28, 29, 30, 31]. We use the vortex particle
method because of its relative simplicity and automatic handling of the wake evolution in
complex flows.

One of the enabling features FastAero for analyzing flapping flight is the low computational
cost. The computational cost of a single FastAero time-step scales approximately linearly with
the number of unknowns in the problem (O(n log(n))) due to the use of iterative matrix solution
methods combined with approximate matrix vector product calculations. A precorrected-FFT
method (pFFT [32]) is used to accelerate the solution of the linear system using the GMRES
[33] iterative method, while a fast mutlipole tree algorithm [34, 35] is used to reduce the
complexity of evaluating the influences of the vortex particle wake on the body, the wake and
the surroundings. Not only does this acceleration help to efficiently solve the boundary integral
equation, it also allows us to use a larger number of discrete surface elements as required to
obtain grid converged solutions.

Due to the inviscid assumption in potential flow analyses, a Kutta condition must be imposed
at the sharp trailing edge of the wing to prescribe the strength of the shed vorticity at each
time-step [36]. In our implementation, we can select between a linear Kutta condition, based on
the continuity of the potential jump strength, or a non-linear Kutta condition, which imposes
pressure equality at the trailing edge. Here, we use the iterative, non-linear, pressure Kutta
condition. Although this pressure Kutta condition is more expensive computationally, it is able
to more rigorously satisfy the actual condition at the trailing edge of the flapping wing.

Once the potential flow equation is solved for a given timestep, the surface velocity, pressure
and forces can be easily obtained by post-processing the potential solution. The total surface
velocity is computed by adding the tangential components of the surface potential gradient and
the tangential component of the free stream velocity. Once the surface velocity is determined,
the unsteady Bernoulli equation is used to determine the surface pressure.

3.2. Discontinuous Galerkin Arbitrary Lagrangian-Eulerian (ALE) Navier-Stokes: 3DG

For the high-fidelity simulations, we use the 3DG code [37, 38, 39, 40, 41, 42], which implements
a high-order accurate discontinuous Galerkin method to solve the compressible Navier-Stokes
equations on unstructured meshes of tetrahedra. Although the flow is nearly incompressible,
the use of a compressible flow formulation has the advantage of providing high-order accuracy
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in time with regular ODE time integrators. Furthermore, we have found that the ILU
preconditioner employed scales well on parallel computers even though the connections across
subdomains are neglected. This behavior can be explained by the fact that small times are
required for accuracy which in turn produce better conditioned global matrices.

High-order methods are advantageous for applications requiring low numerical dispersion
and high time accuracy. The DG method produces stable discretizations of the convective
operator for any order discretization, thus avoiding the need for additional stabilization or
filtering. For the flows considered, with a fairly low Reynolds number of 3,000, high-order
methods are capable of fully resolving all the scales present in the flow and hence accurately
predict flow separation and reattachment.

The fully unstructured simplex meshes allow for arbitrary geometries and domains, and
for efficient adapted meshes that focus the computational resources on relevant regions. To
handle the moving boundaries and the deforming domains, we use a mapping-based Arbitrary
Lagrangian-Eulerian (ALE) formulation [43].

Our solvers have been verified in several ways before. In [44], it was shown that transitional
flows in non-deforming domains modeled using Implicit Large Eddy Simulations agree well with
experiments and other simulations. Fully turbulent flows with RANS modeling were considered
in [42], and the ALE formulation for deforming domains was validated for a number of two-
dimensional cases in [43]. While it is hard to find experimental data for the complex flapping
motions and flow regimes considered in this work, we show that our results converge in both
space and time when the orders of the schemes are increased. This is a good indication that
the simulations accurately predict these laminar flows.

3.2.1. Spatial Discretization using Curved Mesh Elements In order to obtain maximum
geometric flexibility, we employ fully unstructured meshes of triangles and tetrahedra. We
use the symmetry of the problem to only simulate one half of the domain. The outer boundary
of the domain is a half-cylinder, with a radius of 10 chord lengths and a height of 20 chord
lengths. We generate all the surface meshes (the wing, the symmetry plane, and the cylindrical
outer surfaces) in parametrized form using the DistMesh triangular mesh generator [45]. The
tetrahedral volume mesh is then generated by a Delaunay refinement based code [46]. The
resulting mesh has about 43,000 nodes and 231,000 tetrahedral elements for the half-domain.
A mesh size function is used to focus the resolution on the area around the wings, in particular
at the leading and the trailing edges, as well as in the wake. The mesh used in the computations
is shown in figure. 4.

To obtain high-order accuracy in the simulations, the straight-sided tetrahedral meshes
must be modified to account for the curved domain boundaries. This mesh modification is
accomplished using the nonlinear elasticity approach proposed in Ref. [47], whereby the layer
of elements around the wing is considered to be a deformable elastic solid obeying a nonlinear
neo-Hookean constitutive law. This approach leads to a well-shaped mesh in which the facets
of the elements in contact with the surface are curved to align with the true geometry.

3.2.2. ALE Formulation We solve the compressible Navier-Stokes equations in conservative
form, which can be written as a system of conservation laws

∂u

∂t
+∇ · F i(u)−∇ · F v(u,∇u) = 0 (11)

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 01:1–20
Prepared using nmeauth.cls



NUMERICAL SIMULATION OF FLAPPING WINGS 9

Figure 4. A tetrahedral mesh for the domain around the elliptic wing pair.

where u = (ρ, ρu1, ρu2, ρu3, ρE)T is the solution vector of conserved components, with density
ρ, velocities u1, u2, u3, and total energy E, and F i and F v are the inviscid and viscous flux
functions, respectively.

To account for the deforming domain, we employ the mapping based Arbitrary Lagrangian-
Eulerian (ALE) formulation proposed in Ref. [43]. It uses a mapping x = x(X, t) between the
coordinates X in a reference domain and the corresponding coordinates x in the deforming
physical domain. We introduce the mapping deformation gradient G and the mapping velocity
ν as

G =
∂x

∂X
, ν =

∂x

∂t
. (12)

In addition, we denote the Jacobian of the mapping by g = det(G). This allows us to transform
the original system (11) into an equivalent system of conservation laws in the reference domain:

∂uX
∂t

∣∣∣∣
X

+∇X · F i
X(uX)−∇ · F v

X(uX ,∇XuX) = 0 (13)

where the time derivative is at a constant X and the spatial derivatives are with respect to
the X variables. The transformed vector of conserved quantities and corresponding fluxes in
the reference space are

uX = gu (14)

F i
X = gG−1F i − uxG−1ν (15)

F v
X = gG−1F v (16)

and

∇u = ∇X(g−1uX)G−1 = (g−1∇XuX + uX∇X(g−1))G−1 (17)

This formulation has the advantage that it solves the transformed equations on fixed
computational mesh and the complexity of the deforming domain is accounted for in the
transformation mapping. This approach leads to arbitrary high orders of accuracy in both
space and time. We refer to [43] for additional details.
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3.3. Mapping function

The reference configuration for the wing flapping motion, is the neutral horizontal and
untwisted wing position. A time dependent smooth mapping function x = x(X) is created
such that, at the wing surface, it matches the wing prescribed motion. Ideally, we would like
the mapping that is well-behaved away from the wing such that is volume preserving (g = 1).
A volume preserving mapping not only simplifies the ALE equations, but we have found that it
also makes the scheme much less sensitive to the instabilities described in [43] and allow us to
solve without the additional considerations required for satisfying the geometric conservation
law.

While there are many ways to find such a mapping, we use an approach based on shearing,
blending, and scaling, as described below.

1. The deformation of a point (X,Y, Z) due to the rotations φ(t) and θ(t,X) is handled
by a vertical offset in the Z-direction by X sinφ + Y sin θ, and a compression in the
X,Y -plane of X cosφ, Y cos θ, respectively.

2. To reduce the amount of deformation away from the wing, we use smooth blendings for
the X,Y coordinates such that the grid deformation changes from that prescribed by
the wing close to the wing surface to a constant value for large |X|, |Y |.

3. Finally, the Z-coordinate is scaled to make the deformation volume preserving (g = 1).

More precisely, we first define a smoothed ramp function by

R(x) =


0 if x < 0,

0.5 if x > 1,

x6 − 3x5 + 5
2x

4 otherwise,

(18)

which we use to define limited X,Y coordinates by

Xlim = X − b · (2R(X/b− 1) +R(|X|/b− 1)), (19)

Ylim = Y − b · (2R(Y/b− 1) +R(|Y |/b− 1)). (20)

Note that Xlim = X when |X| < b and Xlim = b/2 when |X| > 2b, and similarly for Ylim.
We use these limited coordinate functions to reduce the effect of the shearing, but also to

make the coefficient B(X) in (7) better behaved away from the wing surface. The remaining
coefficients are defined as before in (10) and (8):

A(X) = − S̃(X)

4u∞b
, B(X) =

Xlimφ0ω

u∞
, (21)

a(X) =
B(X)

A(X)2ω2 + 1
, b(X) =

B(X)A(X)ω

A(X)2ω2 + 1
. (22)

and the final mapping has the form:

x(X, t) =

 X − (1− cosφ)Xlim

Y − (1− cos θ)Ylim
Z/ ((1− (1− cosφ)X ′lim) · (1− (1− cos θ)Y ′lim)) +Xlim sinφ+ Ylim sin θ

 , (23)

where the scaling of the Z coordinate is such that g = det(G) = 1. Note that the deformation
gradient G = ∂x

∂X is lower triangular, and we use analytical differentiation to find all its matrix
entries as well as the grid velocity ∂x/∂t.
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3.3.1. High-Order DG Spatial Discretization The 3DG flow solver is based on the high-
order Discontinuous Galerkin (DG) method with tetrahedral mesh elements and nodal basis
functions. Here, we use nodal basis functions and cubic polynomials (degree p = 3). We also
consider p = 1 and p = 2 for one of the test cases, in order to assess the discretization accuracy
and demonstrate grid convergence. The governing equations are written as a system of first
order conservation laws

∂u

∂t
+∇ · F i(u)−∇ · F v(u, q) = 0 (24)

q = ∇u, (25)

which are discretized using a discontinuous Galerkin method [48]. The spatial domain Ω is
discretized into a triangulation Th, and we seek solutions in the finite element spaces

Vh = {v ∈ [L2(Ω)]5 | v|K ∈ [Pp(K)]5, ∀K ∈ Th} , (26)

Σh = {r ∈ [L2(Ω)]5×3 | r|K ∈ [Pp(K)]5×3, ∀K ∈ Th} , (27)

where Pp(K) is the space of polynomial functions of degree at most p ≥ 0. The DG formulation
then becomes: find uh ∈ Vh and qh ∈ Σh such that for all K ∈ Th, we have∫
K

∂uh
∂t

v dx−
∫
K

(
F i(uh)− F v(uh, qh)

)
· ∇v dx+

∫
∂K

(
F̂ i − F̂ v

)
v ds = 0, ∀v ∈ [Pp(K)]5 ,

(28)∫
K

qh · r dx = −
∫
K

uh∇ · r dx+

∫
∂K

ûr · nds, ∀r ∈ [Pp(K)]5×3 . (29)

Here, the inviscid numerical fluxes F̂ i are approximated using the method of Roe[49]. For the
viscous fluxes F̂ v, we use the compact discontinuous Galerkin (CDG) scheme[37] and choose
û and F̂ v according to

(F̂ v)e = {{F v(uh, q
e
h) · n}}+ C11[[uhn]] +C12[[F v(uh, q

e
h) · n]] (30)

û = {{uh}} −C12 · [[uhn]] . (31)

Here, {{ }} and [[ ]] denote the average and jump operators across the interface [37]. We set
C11 = 0 at all internal faces, and C11 = 10/h at the Dirichlet boundaries where h is a typical
dimension of the element in the direction normal to the boundary, and C12 = n∗. Here, n∗

is the unit normal to the interface, which can be taken to have arbitrary sign provided the
sign is the same for the to elements sharing that face. The “edge” fluxes qeh are computed by
solving the equation∫

K

qeh · r dx = −
∫
K

uh∇ · r dx+

∫
∂K

ûer · nds, ∀r ∈ [Pp(K)]5×3 , (32)

where

ûeh =

{
ûh on edge e, given by equation (31),

uh otherwise.
(33)
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The boundary conditions are imposed in terms of the fluxes û and F̂ i, F̂ v. For more details on
the scheme we refer to Ref. [37].

The discrete finite element spaces Vh,Σh are represented by nodal Lagrange basis functions
within each tetrahedral element. All volume and face integrals are computed by specialized
Gaussian integration rules for simplex elements, up to an order of precision 3p. We note
that due to the choice of û in the CDG scheme (31), the variables qh can be evaluated
explicitly within each element and eliminated from the global equation system. This results in a
discretized scheme that only depends on uh. If U denotes the global solution vector containing
the nodal values of uh in each elements, we can write a nonlinear system of ODEs:

M
dU

dt
= R(U) (34)

with mass matrix M and residual vector R(U).

3.3.2. DIRK Temporal Discretization We integrate the system of ODEs (34) in time using a
third-order accurate three-stage Diagonally Implicit Runge-Kutta (DIRK) method [50], where
the solution is advanced from time tn to tn+1 using the scheme:

MKi = R

tn + ci∆t, Un + ∆t

s∑
j=1

aijKj

 , i = 1, . . . , s (35)

Un+1 = Un + ∆t

s∑
j=1

bjKj (36)

where s = 3 and the Runge-Kutta tableaux is given by:

c A
bT

=

α α 0 0

τ2 τ2 − α α 0

1 b1 b2 α

b1 b2 α

α = 0.435866521508459

τ2 = (1 + α)/2

b1 = −(6α2 − 16α+ 1)/4

b2 = (6α2 − 20α+ 5)/4

This one-step scheme is also L-stable, which we have found to be a requirement for the
simulations presented in this paper. Since our ODE scheme is implicit, it requires inversion of
matrices of the form M−α∆tdR/dU . This is accomplished by using a preconditioned Newton-
Krylov technique, as described below. All of our simulations are done using this three-stage
scheme, but for the temporal convergence study we also consider schemes with s = 1 and s = 2
stages, see [50] for details.

3.3.3. Parallel Newton-Krylov Solvers The systems of equations produced by the DG
discretization are typically very large. We use polynomials of degree p = 3, which gives
20 degrees of freedom per tetrahedron and solution component. Since we have 5 solution
components, this gives a total number of degrees of freedom around 23 million. In addition,
the Jacobian matrices tend to be less sparse than those typically obtained with low-order
methods. Although we use an efficient compressed compact storage format [39], each Jacobian
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has about 7 billion entries, and requires 55GB of storage. It is clear that parallel computers
are needed, both for storing these matrices and to perform the computations.

The parallel 3DG code [40] is based on the MPI interface, and runs on parallel computer
clusters. The domain is decomposed using the METIS software [51] and the discretization and
matrix assembly is done in parallel. In order to solve the linear systems in the Newton method,
we use an ILU-preconditioned CGS solver. To maximize the performance of the preconditioner,
we order the elements using the Minimum Discarded Fill (MDF) algorithm [39].

Most of the simulations were done on 16 compute nodes with 8 cores each, or a total of 128
processors. The simulation times in this setting are on the order of 24 hours per 100 timesteps,
although this depends on the problem, the timestep, and the tolerances in the Newton and
the Krylov solvers.

4. RESULTS

We first present a general characterization of the flowfield as predicted by the Navier-Stokes
and the panel method models. Then, we present the results for the time-evolution of the
integrated vertical and horizontal forces. Finally, we present the results for the wake structure.

4.1. Characterizing the Flow

We use the both the panel method and the Navier-Stokes computations to model the flow
and predict the unsteady pressure differential between the top and bottom surface of the wing
(figure. 6). From the pressure differential results, we observe a distinct difference between
the approximately feathered wing (ε = 1) and the flapping kinematics for which a more
aggressive local incidence is prescribed (ε = 0.75 and ε = 0.5). For the feathered case, the
pressure differential distribution over the surface of the wing is almost unchanged over the
duration of the wingbeat cycle. Even when the global incidence angle is increased, the wing
still remains similarly loaded throughout the wingbeat. The pressure differential predicted
by both the panel method and the Navier-Stokes simulation are similar across the wingspan
in these less aggressive flight regimes. By contrast, we observe that the pressure differential
varies more when the wing twist is prescribed in a more aggressive manner (ε = 0.75 and
ε = 0.5). In these simulations, the pressure differential varies cyclicly with the the flapping
motions, producing a more negative pressure differential during the downstroke and a more
positive pressure differential during the upstroke. This overall trend is consistent in both
computational predictions; however, in the Navier-Stokes results we observe a pronounced
effect of flow separation on the wing surface pressure differential distribution. In particular,
the Navier-Stokes simulation differs from the panel method prediction during the downstroke
of the most aggressive wing twist angles, ε = 0.5, where significant flow separation is observed.
These pressure differential results also indicate that the wing global incidence, α, impacts the
pressure distribution across the entire wing; however, there is a higher pressure differential
effect in the outboard regions of the wing.

For most of the computational cases considered, the panel method predicts a large suction
peak along the leading edge of the wing. This pressure peak leads to a higher adverse pressure
gradient at locations directly downstream of the leading edge, indicating the potential for flow
separation. This peak is a consequence of the potential flow model enforcing an attached flow
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condition around the sharp leading edge of the wing. As seen in the Navier-Stokes simulations
(figures. 7–8), the less aggressive cases (low α and ε = 1.0, 0.75) exhibit consistently attached
flow, while the more aggressive cases (high α and ε = 0.75, 0.5) result in leading edge flow
separation due to the inability of viscous flows to conform to the extreme flow curvature around
the leading edge. This leading edge separation manifests in the surface pressure differential
plots computed using the Navier-Stokes solver (figure. 6). From the Navier-Stokes simulations
we observe that flow separation causes a mitigation of the leading edge pressure peak, and a
center of pressure that moves rearward toward the trailing edge.

The results of the Navier-Stokes simulations are shown in figures. 7–8. In figure. 7, entropy
iso-surfaces with Mach number color contours are generated to illustrate regions of flow
separation and wake vortex structures. The Mach number throughout the domain remains
below 0.25 for all cases, which indicates that compressibility effects are likely not important. For
the least aggressive cases considered (wing twist parameter, ε = 1, 0.75, and global incidence,
α = 0), the wing is approximately aligned with the flow for the duration of the flapping cycle.
In these two cases, the flow remains attached throughout the wingbeat cycle. When the wing
twist parameter is most aggressive (ε = 0.5), for the same global incidence angle (α = 0), the
Navier-Stokes simulation predicts flow separation in the outboard region of the wing during
both the upstroke and the downstroke. As the global incidence angle increases (α = 5, 10), we
observe a strong effect of global wing incidence on the flowfield. For these cases, the wing has
a more aggressive angle of attack during the downstroke than the upstroke, and consequently,
greater levels of flow separation are observed during the downstroke than the upstroke. The
first half of the downstroke is generally characterized by attached flow, while the second half
of the downstroke and the first quarter of the upstroke exhibit separated flow. For the most
aggressive case (ε = 0.5, α = 10), the flow is separated for most of the flapping cycle, with
the exception of the middle portions of the upstroke and the initial portion of the downstroke.
Overall, the Navier-Stokes results suggest that the cases chosen for this study exhibit many of
the flow characteristics of interest.

4.2. Time History of Integrated Forces: Panel Method and Navier-Stokes Simulation

The time evolution of vertical forces for both the panel method and the Navier-Stokes
simulation is shown in figure. 5. The vertical force direction is defined perpendicular to the
freestream flow (x-direction), and parallel with the z-dimension or gravity. These force histories
correlate with the flowfield results shown in figure. 6 and figure. 7. For the approximately
feathered geometry (ε = 1, α = 0), both the Navier-Stokes solver and FastAero predict
low vertical force magnitudes. For both computational methods, we observe a multi-peak-
force history, indicating that the wing is not perfectly feathered, rather there is some non-
zero incidence during parts of the wingbeat cycle. While both methods predict similar force
histories, there are differences between the two predictions, which can be attributed to the
viscous nature of the flow. When the wing global incidence angle is increased, we observe a
comparable multi-peak time-history of the vertical force in both modeling approaches, except
that, for these non-zero incidence cases the average vertical force is offset by a mean value.
At the highest incidence angle (α = 10), for the same twist motion (ε = 1), the force time-
histories indicate a fundamental difference. The Navier-Stokes simulation predicts an erratic
time history corresponding to flow separation, while the panel method solver continues to
predict smooth force histories as in the previous cases.
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Figure 5. The lift coefficients CL computed by the two simulation codes for the nine cases α = 0, 5,
10, and ε = 1.0, 0.75, 0.5.

When the wing twist parameter, ε, is reduced (ε = 0.75 and ε = 0.5) the vertical force has a
different time series characteristic. In both the Navier-Stokes and the panel method results, we
generally observe a single, dominant vertical force peak during the downstroke and a similar
single peak during the upstroke. Additionally, we also observe that increases in the global wing
incidence angle, α, produce a similar offset as previously seen in the vertical force time-history.
As the global incidence of the wing increases, the average vertical force also tends to increase.
For most of the computations performed, the panel method trends well with the Navier-Stokes
simulations. Once the simulations reach a periodic steady state, the panel method consistently
over-predicts the vertical force maximum value. In most cases, this difference is minor, with
only one case indicating a significant discrepancy between the panel method and the Navier-
Stokes simulation results (ε = 0.75, α = 10). The entropy-isosurface plots indicate that this
particular case exhibited significant flow separation through much of the downstroke. Similarly,
the force-histories predicted by the panel method and the Navier-Stokes solver are comparable
during the first half of the downstroke; however, during the second half of the downstroke the
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Figure 6. The panel method computed wing surface pressure differential is shown for a series of
snapshots during the flapping cycle for each angle of attack α and twist scaling factors ε = 1.0, 0.75, 0.5
from left to right. The pressure differential indicates a large pressure differential near the leading edge

of the wing, in particular in the outboard locations of the wing.

forces return to the zero-load condition later than the Navier-Stokes simulations indicate. This
phase shift in the force recovery is noticeable for all cases where the wing-twist parameter
is not-feathered (ε 6= 1). Based on the entropy isosurfaces, the actual flow exhibits vortex
shedding and large scale separation during the second half of the downstroke, suggesting this
phase shift in the force prediction is associated with the presence of a vortex structure above
the wing.

The predictions for the panel method and Navier-Stokes time evolution of the horizontal
forces are shown in figure. 8. Despite the lack of viscous force predictions in the panel method,
the trends and structure of the force history compares well with the Navier-Stokes method for
most of the cases examined. For all of the cases, there is a noticeable mean offset between the
magnitude of the Navier-Stokes and panel method horizontal force predictions, due mostly to
the lack of viscous modeling in the panel method. While this offset can be estimated using
integrated skin friction drag corrections, the underlying potential flow method is incapable of
capturing these viscous force contributions. While the time histories of the horizontal force
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Figure 8. The drag coefficients CD computed by the two simulation codes for the nine cases α = 0, 5,
10, and ε = 1.0, 0.75, 0.5.

appear to be trend accurate, the integrated drag and therefore the propulsive efficiency will
also be poorly predicted by the potential flow panel method unless an adequate viscous
flow correction is made. In addition, there is a phase shift, with peak drag forces being
consistently predicted later in the panel method than in the Navier-Stokes simulation. Finally,
the panel method exhibits smooth time-history predictions as before; however, the Navier-
Stokes simulation indicates portions of the flapping cycle where forces are negatively impacted
by flow separation.

4.2.1. Grid convergence In order to get an indication of the accuracy of the Navier-Stokes
computations, we perform a temporal and a spatial convergence study where we solve the same
problem using various timesteps as well as various polynomial orders of the spatial approxiating
space.

We consider the case α = 5◦, ε = 0.5, and show in figure 9 the resulting forces for the two
timesteps ∆t = 0.1 and ∆t = 0.1/5 = 0.02. We note that the computed forces are very close,
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Figure 9. Temporal convergence for the Navier-Stokes simulation, for the α = 5◦, ε = 0.5 case with
spatial discretization using polynomial degrees p = 3. Three different Runge-Kutta schemes were used,
with number of stages s = 1, 2, 3, and the small differences between s = 2 and s = 3 indicates that

the computed forces are accurate.

with a maximum error of less than 2% relative to the largest values.

Similarly, to examine the spatial convergence, we show the forces computed with polynomial
orders p = 1, p = 2, and p = 3 in figure 10. We note that the p = 1 case is highly inaccurate,
likely because the flow is under-resolved. However, the difference between p = 2 and p = 3 are
relatively small, which indicates that the p = 3 simulations are well-resolved and sufficiently
accurate for our purposes.

4.3. Wake Structure and Characteristics

In our panel method model, vorticity is shed from the trailing edge only. While leading edge
shedding is also possible in panel methods, this was not considered in the present analysis. We
make the underlying assumption that efficient flapping vehicles will have a minimum of flow
separation. In figure. 11, a-d we show the equivalent spatial trace of the wake circulation as
an equivalent doublet sheet. This wake-surface plot illustrates the wake structure. Regions of
higher circulation magnitude indicate indicate regions of higher wing loading. Regions of rapid
surface-tangential change in the circulation are indicative of increased vorticity distribution
magnitude. Contours of constant wake circulation provide an approximation of the wake vortex
structures. For the cases with more aggressive wing incidence (ε 6= 1) we observe a double
ladder structure – with clear tip, starting and stopping vortices during the cycle.
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Figure 10. Spatial convergence for the Navier-Stokes simulation, for the α = 5◦, ε = 0.5 case with
temporal discretization using the three-stage Runge-Kutta scheme. Three different polynomial orders
were used on the same grid, and the small differences between p = 2 and p = 3 indicates that the

computed forces are accurate.

5. DISCUSSION

5.1. General Discussion of Simulation Results

The Navier-Stokes simulation shows a wide range of flow behavior for the cases tested. In
the less aggressive cases the flow remains attached, while, the more aggressive cases are
characterized by separated flow for a large portion of the downstroke. Because of the potential
flow assumptions, the panel method does not predict or model flow separation. The effects
of viscosity are also observed in the Navier-Stokes simulation during the first half of the
downstroke, where a vortical structure develops and stays over the suction surface of the
wing. This raises the concern that the potential flow method, despite predicting the integrated
forces accurately, does not model the appropriate flow physics or accurate flow structures for
these cases. Despite not modeling the separated flow physics, the panel method does indicate
regions where flow separation is likely. These suspect regions are characterized by large adverse
pressure gradients, similar to those observed in the leading edge region of the wing in the more
aggressive flapping cases. The large spike in low pressure at the leading edge and subsequent
pressure recovery for the remainder of the chordwise flow indicates regions of likely separation;
however, because attached flow is assumed in the potential flow approach, separated flow is
not modeled. Obviously, if the details of the flow surrounding the wing are important, then
the Navier-Stokes simulation capability is essential; however, if basic insights into the flow are
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Figure 11. The wake circulation distribution predicted using the panel method is plotted on the surface
representing the spatial trace of the wing’s trailing edge, for each angle of attack α and twist scaling
factors ε = 1.0, 0.75, 0.5 from left to right. The wing is flying from left to right, starting with the
downstroke. The wake circulation distribution is an indication of both the momentum transfer to the

fluid from the flapping wing and the wake vortex structure.

desired at an early design stage, it may be sufficient to consider the adverse pressure gradient
as an indicator of possible flow separation and concern.

5.2. Effect of Separation on Force Prediction

Overall the forces predicted by the potential flow model are comparable and trend accurate
to the Navier-Stokes method. The detailed differences in the time evolution of the vertical
and horizontal forces illustrate several cases where the potential flow approximation lacks the
requisite physics to fully model the flow. The less aggressive cases, with at most moderate
separation, are adequately modeled using potential flow theory, while the trends are captured
approximately in the more aggressive separation cases. For all of the cases with a moderate
or high wing twist parameter (ε = 0.5, 0.75), the potential flow consistently over-predicts the
maximum vertical force. This is likely due to the lack of viscous modeling in the potential
flow which prevents the method from representing the effective thickening of the airfoil as well
as the modeling of flow separation. This close agreement between the potential flow model
and the Navier-Stokes model, even in the presence of moderate separation occurs as a result
of the nature of the flow separation. Two possibilities exist for explaining the unexpectedly
good agreement in cases with separation. The first, is that much of the flow separation may be
characterized by a subsequent re-attachment at downstream locations. This flow re-attachment
may be promoted by the oscillatory nature of the wing flapping motions that promote the
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growth of a suction side vortex structure during the initial downstroke portion of the flapping
cycle, with a shedding of this structure towards the end of the downstroke. Although not
modeled in the potential flow solver, the effect of this attached suction side vortex may
be modeled implicitly through the satisfaction of the Kutta condition at the trailing edge.
In essence, the wing bound circulation, although inadequately modeled, may actually have
the correct magnitude due to the satisfaction of the trailing edge condition. The second
possibility for the unexpectedly good agreement between the panel method and the Navier-
Stokes simulation when the flow is separated, is the contribution of the unsteady added mass
effects in the force prediction. It is likely that these two effects act in unison in the cases
we considered, but may act individually in other cases. Therefore, we expect good predictive
capability from the panel method when there is flow separation if the flow re-attaches on the
wing before the trailing edge and when the reduced frequency is high.

The force traces illustrate another feature of the viscous-inviscid modeling discrepancy. In
the second half of the downstroke of more aggressive cases (ε = 0.5, 0.75), the potential flow
method consistently over-predicts the vertical forces. In some cases the over-prediction is more
pronounced than others. This can once again be attributed to the lack of viscous modeling in
the potential flow model. There are two contributing factors to the viscous effects on the vertical
force attenuation. First, the actual flow starts to separate from the wing at mid-downstroke.
This flow separation causes a loss of vertical force due to the reduced circulation or flow
turning. The flow separation is not captured by the potential flow approach and therefore,
discrepancies will appear in these regimes. Secondly, the viscous boundary layers surrounding
the wing cause an effective thickening of the airfoil at low Reynolds numbers. The boundary
layers cause an effective displacement of the flow from the surface of the airfoil, reducing the
ability of the airfoil to turn the flow and produce lift. This viscous boundary layer effect is not
modeled in the potential flow.

The horizontal forces predicted by FastAero are also larger than those predicted by the
Navier-Stokes simulation. The potential flow method consistently predicts larger thrust forces
than the Navier-Stokes simulation results. Despite the trend accuracy, the lack of viscous
modeling here is a critical deficit in the method’s utility as a design tool, since accurate
prediction of the drag and thrust is critical to the overall force balance and flight mechanics.
At early stages of the design process, the accurate representation and prediction of the power
required for flight derives directly the the capability to accurately predict flight forces. As a
result, we recommend a viscous correction be considered for any potential flow method, to at
minimum permit a reasonable horizontal force prediction.

5.3. Wake structure

For most cases, the wake structure predicted by the FastAero results is a double ladder
configuration. This indicates that the downstroke is heavily loaded. The double ladder structure
also implies that the outboard wing is loaded more than the inboard wing during the
downstroke. These FastAero wakes are indicative of the general structure of the wake and
may be compared to experimental results to assess the accuracy of the simulation and the
efficacy of the design. The wake from the Navier-Stokes simulations indicates viscous effects
may be critical in accurately predicting the actual wake. In these simulations, the wake has
distinct tip structures, but the general behavior of the flow is much more complicated than
that predicted by the potential flow.
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5.4. Leading edge geometry

The results of the simulations show the importance of wing leading edge geometry and the
potential for designing effective leading edges for flapping vehicles using either method. The
panel method predicts a significant leading edge pressure jump and subsequent adverse pressure
gradient on the test cases – a strong indication of pending flow separation. The Navier-Stokes
simulations confirm the suspicion that the flow separates from the leading edge. While this
separation leads to a bound vortex which subsequently sheds into the wake, the leading edge
shape can be prescribed to reduce the magnitude of or completely eliminate the pressure
jump. This alignment or reshaping of the leading edge of the flapping wing may allow for
vehicles with substantially lower leading edge separation. In related studies, we observe that
the FastAero pressure differential predictions for geometrically accurate bat wings in flight [18]
do not have a significant leading edge pressure jump. This is a direct result of the shape of
the bat wing’s leading edge. In bat flight, the wing-muscle-skeletal system is able to present
an aligned or nearly aligned wing leading edge to the flow, thereby reducing the suction peak
and likely resulting in a lower susceptibility to leading edge separation. While leading edge
angle modulations are not guaranteed to eliminate flow separation, wing leading edge shape
is recommended for further study.

6. CONCLUSIONS

We have numerically simulated a set of flapping wing problems using both a low-order potential
flow model and a high-order accurate Navier-Stokes solver. The simulations confirm the
challenges in analyzing and designing effective flapping wings. While our cost effective potential
flow method produces accurate results for attached flow cases, it remains only trend relevant
once separated flow dominates. While trend relevance is adequate for preliminary design, it
may reduce the quality of the wing design if left unchecked. It is therefore critical to accompany
any inviscid design predictions with a viscous simulation to confirm the predicted behavior.
In essence, this study has confirmed our multi-fidelity approach while also demonstrating the
importance of the high fidelity simulations.
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