
High-Order LES Simulations using

Implicit-Explicit Runge-Kutta Schemes

Per-Olof Persson∗

University of California, Berkeley, Berkeley, CA 94720-3840, U.S.A.

For many flow problems modeled by Large Eddy Simulation (LES), the computational
meshes are such that a large number of the elements would allow for explicit timestepping,
but the CFL-condition is highly limited by the smaller stretched elements in the bound-
ary layers. We propose an implicit-explicit time-integration scheme that uses an implicit
solver only for the smaller portion of the domain that requires it to avoid severe timestep
restrictions, but an efficient explicit solver for the rest of the domain. We use the Runge-
Kutta IMEX schemes and consider several schemes of varying number of stages, orders of
accuracy, and stability properties, and study the stability and the accuracy of the solver.
We also show the application of the technique on a realistic LES-type problem of turbulent
flow around an airfoil, where we conclude that the approach can give performance that is
superior to both fully explicit and fully implicit methods.

I. Introduction

Time-accurate integration of high-order discretizations of the Navier-Stokes equations poses several dif-
ficulties. The CFL conditions imposed by explicit schemes usually dictate timesteps that are several mag-
nitudes too small to be practical. On the other hand, high-order discretizations often produce very large
Jacobian matrices, which makes fully implicit schemes prohibitively expensive to use.

There are several sources of stiffness that cause these severe timestep restrictions for explicit schemes,
such as the acoustic waves for low-Mach number flows, viscous effects, and large variations in the mesh sizes.
For problems involving turbulent flows modeled by Large Eddy Simulation (LES), the most critical reason
for employing implicit methods is often the small and stretched mesh elements that are required to resolve
the thin boundary layers. For these simulations, the stiffness is caused by the equations corresponding to
the degrees of freedom in the stretched region, and the mesh elements away from the bodies might be better
handled by explicit time integration. This effect will likely be even more important on the future generation
of multi-core and GPU computer architectures, which appear to favor local explicit methods over the more
memory-intensive implicit ones.1

In an attempt to take advantage of the fact that the problems are nonstiff in most of the computational
domain, we propose using the so-called IMEX schemes2,3 to obtain a combination of the best properties
of the implicit and the explicit solvers. These methods are based on a splitting of the residual vector into
a stiff and a nonstiff part, and an additive Runge-Kutta method creates a combined method that can be
made high-order accurate in time. Many of the original applications of the IMEX schemes used splittings of
the actual equations (for example into nonstiff advective terms and stiff diffusive terms), but here we use a
splitting based on the size of the elements in the mesh, similar to the geometry-induced stiffness considered
in ref. 4. The resulting scheme can be highly efficient, and the Jacobians that have to be computed and used
for solving nonlinear equations might only be a fraction of the size of the fully implicit ones. In addition,
we re-use both the computed Jacobian matrices as well as the incomplete factorizations, which brings down
the cost of the implicit solvers further.

To discretize the compressible Navier-Stokes equations, we use a high-order discontinuous Galerkin
method on unstructured meshes of triangles and tetrahedra.5,6 The implicit parts of the problem are
treated with a Newton-Krylov solver with block incomplete-LU preconditioning and approximately optimal

∗Assistant Professor, Department of Mathematics, University of California, Berkeley, Berkeley CA 94720-3840. E-mail:
persson@berkeley.edu. AIAA Member.

1 of 10

element ordering.7 We present the schemes, use simple model problems to determine the stability and the
accuracy of the schemes, and finally show the application of the method to a realistic LES problem of flow
around an airfoil at a Reynolds number of 100,000.

II. Governing Equations and Space Discretization

II.A. The Compressible Navier-Stokes Equations

The compressible Navier-Stokes equations are written as:

∂ρ

∂t
+

∂

∂xi
(ρui) = 0, (1)

∂

∂t
(ρui) +

∂

∂xi
(ρuiuj + p) = +

∂τij
∂xj

for i = 1, 2, 3, (2)

∂

∂t
(ρE) +

∂

∂xi
(uj(ρE + p)) = − ∂qj

∂xj
+

∂

∂xj
(ujτij), (3)

where ρ is the fluid density, u1, u2, u3 are the velocity components, and E is the total energy. The viscous
stress tensor and heat flux are given by

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xj

δij

)
and qj = − µ

Pr

∂

∂xj

(
E +

p

ρ
− 1

2
ukuk

)
. (4)

Here, µ is the viscosity coefficient and Pr = 0.72 is the Prandtl number which we assume to be constant.
For an ideal gas, the pressure p has the form

p = (γ − 1)ρ

(
E − 1

2
ukuj

)
, (5)

where γ is the adiabatic gas constant.
For the modeling of the turbulent flows we use Implicit Large Eddy Simulation (ILES). In LES modeling,

the large scale flow features are resolved while the small scales are modeled. The rationale behind this is
that the small scales are isotropic, carry less of the flow energy and therefore do not have as much influence
on the mean flow, and can therefore be approximated or modeled. The effect of these subgrid scales (SGS) is
approximated by an eddy viscosity which can be derived from a so-called SGS model or can be taken to be
equal to the dissipation in the numerical scheme, which is the principle behind the ILES model.8 Simulations
based on ILES models often give very accurate predictions but are limited to low Reynolds number flows
because of the high computational cost of resolving the large scale features of the flow.

II.A.1. High-Order DG Spatial Discretization

Our 3DG flow solver is based on the high-order Discontinuous Galerkin (DG) method with tetrahedral mesh
elements and nodal basis functions. We write the governing equations (1)-(3) in a split form as

∂u

∂t
+∇ · F i(u)−∇ · F v(u, q) = 0 (6)

q = ∇u. (7)

The equations (6)-(7) are discretized using a discontinuous Galerkin method5 with the Compact Discontinu-
ous Galerkin (CDG) method9 for the viscous terms. The spatial domain Ω is discretized into a triangulation
Th, and we seek solutions in the finite element spaces

Vh = {v ∈ [L2(Ω)]5 | v|K ∈ [Pp(K)]5, ∀K ∈ Th} , (8)

Σh = {r ∈ [L2(Ω)]5×3 | r|K ∈ [Pp(K)]5×3, ∀K ∈ Th} , (9)

2 of 10

where Pp(K) is the space of polynomial functions of degree at most p > 0. Our DG formulation becomes:
find uh ∈ Vh and qh ∈ Σh such that for all K ∈ Th, we have∫

K

∂uh
∂t

v dx−
∫
K

(
F i(uh)− F v(uh, qh)

)
· ∇v dx+

∫
∂K

(
F̂ i − F̂ v

)
v ds = 0, ∀v ∈ [Pp(K)]5 , (10)∫

K

qh · r dx = −
∫
K

uh∇ · r dx+

∫
∂K

ûr · nds, ∀r ∈ [Pp(K)]5×3 . (11)

Here, the inviscid numerical fluxes F̂ i are approximated using the method due to Roe.10 For the viscous
fluxes F̂ v, we use the compact discontinuous Galerkin (CDG) scheme9 and choose û and F̂ v according to

(F̂ v)e = {{F v(uh, q
e
h) · n}}+ C11[[uhn]] + C12[[F v(uh, q

e
h) · n]] (12)

û = {{uh}} −C12 · [[uhn]] . (13)

Here, {{ }} and [[]] denote the average and jump operators across the interface.9 We set C11 = 0 at most
internal faces, and C11 = 10/h at the Dirichlet boundaries for elements of height h normal to the boundary as
well as on internal faces of highly stretched elements, to obtain some additional stabilization. Furthermore,
we set C12 = n∗, where n∗ is the unit normal to the interface taken with an arbitrary sign. The “edge”
fluxes qeh are computed by solving the equation∫

K

qeh · r dx = −
∫
K

uh∇ · r dx+

∫
∂K

ûer · nds, ∀r ∈ [Pp(K)]5×3 , (14)

where

ûeh =

ûh on edge e, given by equation (13),

uh otherwise.
(15)

The boundary conditions are imposed in terms of the fluxes û and F̂ i, F̂ v. For more details on the scheme
we refer to ref. 9.

While our implementation is fully general and capable of three dimensional simulations of arbitrary
orders, we limit ourselves here to two space dimensions and polynomial degrees p = 4. The discrete finite
element spaces Vh,Σh are represented by nodal Lagrange basis functions within each tetrahedral element.
All volume and face integrals are computed by specialized Gaussian integration rules for simplex elements,
up to an order of precision 3p. We note that due to the choice of û in the CDG scheme (13), the variables qh
can be explicitly solved for in (11) and therefore eliminated from (10). This results in a discretized scheme
that only depends explicitly on uh, or the solution vector U , in the form of a nonlinear system of ODEs:

M
dU

dt
= R(U) (16)

with mass matrix M and residual vector R(U). This system is integrated in time using explicit or implicit
schemes, or as in this work, a combination of both.

III. Implicit-Explicit Runge-Kutta Methods

The IMEX schemes are based on a splitting of the residual vector in a system of ODEs of the form

du

dt
= f(u) + g(u) (17)

where f(u) is considered nonstiff terms and g(u) stiff terms. The schemes are of Runge-Kutta type, with

one scheme c, A, b for the implicit treatment of g(u) and another scheme ĉ, Â, b̂ for the explicit treatment
of f(u). These are standard Runge-Kutta schemes by themselves, of the types Diagonally Implicit Runge-
Kutta (DIRK)11 and Explicit Runge-Kutta (ERK). However, the schemes are also designed in such a way
that they can be combined for integration of ODEs of the split form (17).

To integrate from step n to step n + 1 using the timestep ∆t, the first stage is always explicit, and
the remaining s stages are done pairwise implicit/explicit. The solution at timestep n + 1 is then a linear
combination of the stage derivatives of both schemes, and the method can be written as:

3 of 10

k̂1 = f(un)
for i = 1 to s

Solve for ki in ki = g(un,i), where un,i = un + ∆t

i∑
j=1

ai,jkj + ∆t

i∑
j=1

âi+1,j k̂j

Evaluate k̂i+1 = f(un,i)
end for

un+1 = un + ∆t

s∑
i=1

bjkj + ∆t

s+1∑
i=1

b̂j k̂j

A number of IMEX schemes of this form have been developed, with various orders of accuracy and stability
properties.2 Here we consider three typical schemes:

IMEX1: 2nd order accurate: 2-stage, 2nd order DIRK + 3-stage, 2nd order ERK

c A

bT
=

α α 0

1 1− α α

1− α α

ĉ Â

b̂T
=

0 0 0 0

α α 0 0

1 δ 1− δ 0

0 1− α α

with α = 1−
√

2
2 and δ = −2

√
2/3. This DIRK scheme is stiffly accurate, and while the ERK is only second

order accurate it has the same stability region as a third order ERK which is appropriate for problems with
eigenvalues close to the imaginary axis.

IMEX2: 3rd order accurate: 2-stage, 3rd order DIRK + 3-stage, 3rd order ERK

c A

bT
=

α α 0

1− α 1− 2α α
1
2

1
2

ĉ Â

b̂T
=

0 0 0 0

α α 0 0

1− α α− 1 2(1− α) 0

0 1
2

1
2

with α = (3 +
√

3)/6. The resulting scheme is third order accurate with the same number of stages as the
previous scheme, at the cost of losing the L-stability of the DIRK scheme.

IMEX3: 3rd order accurate: 3-stage, 3rd order DIRK + 4-stage, 3rd order ERK

c A

bT
=

0.4358665215 0.4358665215 0 0

0.7179332608 0.2820667392 0.4358665215 0

1 1.208496649 -0.644363171 0.4358665215

1.208496649 -0.644363171 0.4358665215

ĉ Â

b̂T
=

0 0 0 0 0

0.4358665215 0.4358665215 0 0 0

0.7179332608 0.3212788860 0.3966543747 0 0

1 -0.105858296 0.5529291479 0.5529291479 0

0 1.208496649 -0.644363171 0.4358665215

This 3-stage DIRK scheme is L-stable and third order accurate, and the 4-stage ERK scheme is third order
accurate but has the larger stability region of a fourth order ERK.

III.A. Mesh-Size Based Splitting of Residual

For our system of ODEs (16), we associate each component of the solution vector U with an equation in the
residual R(U). Our splitting is based on identifying stiff components Uim that are located in mesh elements

4 of 10

smaller than a given size, and the remaining nonstiff components Uex. This produces a splitting of the
residual vector as

R(u) =

[
Rim(U)

Rex(U)

]
=

[
0

Rex(U)

]
+

[
Rim(U)

0

]
= f(U) + g(U) (18)

The idea behind this splitting is that the stiffness from the implicit equations should not affect the explicit
ones much, and it should be possible to use a timestep limited by the equations in the nonstiff region only.
But note that depending on the equations and on the splitting this might not be the case, since the two
schemes are coupled between each integration stage and it is unclear how this affects the stability properties
of the full scheme. However, as we show in our numerical results below, it is often the case that the IMEX
schemes can produce stable results with the larger timestep dictated by the element sizes in the explicit
region only.

III.B. Quasi-Newton and Preconditioned Krylov Methods

For the implicit part of the IMEX scheme, nonlinear systems of equations ki = g(un,i) must be solved. For
this, we use a quasi-Newton method with a Jacobian matrix J = M −α∆tdR/dU , where ∆t is the timestep
and α is a parameter of order one. This matrix is computed and stored explicitly but re-used between
the iterations as well as between the timesteps. This turns out to work extremely well for these types of
computations, and with the exception of the first initial transients we essentially never have to recompute
the Jacobian matrix.

To solve the linear systems of equations involving J , we use a preconditioned Newton-Krylov technique,
consisting of an ILU-preconditioned CGS solver with element ordering by the Minimum Discarded Fill (MDF)
algorithm.7 Since we re-use the Jacobian matrix many times, we can also re-use the incomplete factorization
and the total implicit solution time is dominated by the matrix-vector products and the backsolves in the
CGS method.

We would also like to point out that since the Jacobian is re-used, one possibility is to employ a direct
linear solver and re-use the entire factorization. While normally not considered competitive for three di-
mensional problems, our implicit problems only involve layers of elements close to the boundary and might
therefore behave more like planar problems, which are well-known to scale better in terms of both memory
and computational cost.12

IV. Results

We demonstrate our method on three test problems. First, we study the stability of the schemes using
a model problem of flow over a flat plate in a rectangular domain. Next, we use an Euler vortex model
problem to determine the orders of accuracy. Finally, we apply the technique on a more realistic simulation
of turbulent flow over an airfoil at a high angle of attack. All simulations are done using our software package
3DG,13 which is a general-purpose toolkit for discretization of arbitrary systems of conservation laws.9 It
produces fully analytical Jacobian matrices, and it includes efficient parallel Newton-Krylov solvers.7,14 Due
to the highly modular and general design of the 3DG software, it was straight-forward to incorporate the
implicit-explicit capabilities and it required only a few dozen lines of additional code.

IV.A. Absolute Stability – Flow Over a Flat Plate

Our first problem is a simple flat plate model problem that we use to to identify the feasibility of the approach,
and in particular to determine if the CFL condition for the explicit portion of the domain is affected by the
implicit portion. The domain is a square of unit length, with free-stream boundary conditions at left/top,
no-slip wall conditions at bottom, and an outflow condition at the right boundary. We set the Mach number
to 0.2 and the Reynolds number to 10,000 based on the domain width. A mesh and a steady-state solution
is shown in Fig. 1.

A series of meshes of increasing anisotropy is generated in the following way: The initial mesh has 10-by-
10 uniformly sized squares (of size 0.1-by-0.1). The bottom row is then split horizontally, and this process
is repeated nref times to generate an anisotropic boundary layer mesh. Finally, we split each quadrilateral
into two triangles, since our code is based on simplex elements. We note that the smallest element height is
hmin = 0.1/2nref , and the highest element aspect ratio is 2nref .

5 of 10

Implicit/Explicit Mesh Density

Figure 1. The flow over a flat plate model problem with a thin boundary layer. A typical computational mesh (left)
and the steady-state solution (right).

Scheme ERK1 IMEX1 ERK2 IMEX2 ERK3 IMEX3

∆t0max 3.26 · 10−4 3.35 · 10−4 2.61 · 10−4

nref
∆tmax

∆t0max
Ratio ∆tmax

∆t0max
Ratio ∆tmax

∆t0max
Ratio

0 1.0000 Stable 1.0000 Stable 1.0000 Stable

1 0.6612 1.51 Stable 0.6671 1.50 Stable 0.4958 2.02 Stable

2 0.1747 3.79 Stable 0.1762 3.79 Stable 0.1298 3.82 Stable

3 0.0457 3.82 Stable 0.0461 3.82 Stable 0.0337 3.85 Stable

4 0.0118 3.89 Stable 0.0119 3.89 Stable 0.0086 3.92 Stable

5 0.0032 3.62 Stable 0.0033 3.62 Stable 0.0023 3.72 Stable

6 0.0009 3.82 Stable 0.0009 3.85 Stable 0.0006 3.89 Stable

Table 1. The flat plate test problem, using the three ERK schemes and the three IMEX schemes. This confirms that
the CFL condition for the IMEX schemes is not affected by the element sizes in the implicit boundary layer region.

For each of the three IMEX schemes, we first determine the largest stable timestep ∆tmax if the problem
was solved using the ERK method only. This is done in an automated way, using a bisection method applied
to a function that determines stability numerically. In particular, we define the timestep on the coarse
unrefined initial mesh by ∆t0max, which is also the timestep we hope to be able to use for our IMEX schemes
on any of the stretched meshes.

We then run the test problem using the full IMEX scheme, where all split elements are considered implicit
and the remaining (square) elements are considered explicit. To confirm that the stability of this scheme is
determined by the mesh size in the explicit portion of the domain, we verify that the method is stable on
any of the refined meshes using the timestep ∆t0max.

The results are presented in Tab. 1. We make the following observations:

• The timestep on the unrefined mesh ∆t0max is almost equal for ERK1 and ERK2 but about 25%
smaller for ERK3. This is unexpected since ERK3 has a larger linear stability region, but for this
highly nonlinear problem it appears to be more sensitive than the other two.

• As the boundary layer is refined, the timestep ∆tmax scales first linearly with hmin (ratio of about 2
between successive values of nref), and then quadratically (ratio of about 4). This is expected because
the inviscid timestep restrictions are dominant for the under-resolved meshes, but eventually the viscous
terms determine the timesteps.

• All the IMEX schemes are stable with the timestep ∆t0max, independently of the number of refinements
nref and, therefore, of hmin.

6 of 10

Implicit/Explicit Mesh Initial density Final density

Figure 2. Unsteady Euler vortex problem, computational mesh (left) with implicit elements blue and explicit elements
green, and the initial/final solutions (center and right).

10
−3

10
−2

10
−1

10
−7

10
−6

10
−5

10
−4

10
−3

Timestep ∆ t

L
2
−

e
rr

o
r

1

2

1

3

IMEX1

IMEX2

IMEX3

Figure 3. Temporal convergence of the three IMEX schemes for the Euler vortex problem on mesh with stretched
elements. The orders of convergence 2, 3, 3, correspond to the expected orders.

IV.A.1. Order of Accuracy, Euler vortex problem

To validate the accuracy of the IMEX schemes, we solve an inviscid model problem consisting of a com-
pressible vortex in a rectangular domain.15 We use a domain of size 20-by-15, with the vortex initially
centered at (x0, y0) = (5, 5) with respect to the lower-left corner. The Mach number is M∞ = 0.5 and the
free-stream velocity angle θ = arctan(1/2). We use periodic boundary conditions and integrate until time
t0 =

√
102 + 52, when the vortex has moved a relative distance of (10, 5).

Our mesh is again obtained by anisotropic refinement of an initial Cartesian grid. We split vertically
through the center of the rectangular domain, a total of nref = 5 times. The mesh, the initial solution, and
the final solution are shown in Fig. 2.

We compute a reference solution using the 4th order accurate RK4 scheme, using a stable timestep based
on the smallest element size. The error in the IMEX solutions are then computed in the L2-norm for the
three timestep ∆t0max, ∆t0max/2, and ∆t0max/4, where again ∆t0max, is the explicit timestep limit for the
unrefined mesh. The resulting convergence plot is shown in Fig. 3, and we can confirm that the order of
accuracy for the three IMEX schemes are about 2, 3, and 3, respectively. Note that while this is the expected
order of accuracy it was not certain that we would observe it here, since the implicit part of the problem
uses large CFL numbers and therefore might not be in the convergent regime.

7 of 10

SD7003 wing section Mesh in cross-section and the wing surface

Figure 4. Geometry and the extruded hybrid mesh for the ILES problem, with 312,000 tetrahedral elements.

.

IV.B. Unsteady Large Eddy Simulations of Flow over Airfoil

As an example of a realistic problem where the IMEX schemes can make a significant difference in perfor-
mance, we study the flow over an SD7003 foil at Reynolds number 100,000 and 30◦ angle of attack. Our
mesh is a typical LES-type mesh – somewhat stretched elements for resolving the boundary layer profile,
and an almost uniform mesh in the wake that captures the large scale features of the unsteady flow, see
Fig. 4. It is generated using a hybrid approach, where the DistMesh mesh generator16 is used to create
an unstructured mesh for more of the domain, and the boundary points are connected to the airfoil in a
structured pattern that allow for a stretching of a factor between 10–50 along the wing surface. The elements
are curved to align with the boundaries using a nonlinear elasticity approach.17 Finally, the triangular mesh
is extruded in the span-wise direction to generate six layers of prismatic elements, which are each split into
three tetrahedral elements. The total number of elements in the mesh is 312,000, which corresponds to about
31 million degrees of freedom for the Navier-Stokes equations and polynomial orders of p = 3.

We split into implicit and explicit equations element-wise based on the smallest edge sizes. In figure 5 we
show the two-dimensional cross-section of the mesh and the corresponding element size distribution based
on the smallest edge length, since this is what will likely dictate the CFL condition for that element (at
least for well-shaped meshes). Less than 9% of the elements are considered boundary layer elements, and by
excluding them from the explicit region we bring up the smallest explicit element size by about a factor of
100.

For simplicity we consider only the IMEX1 scheme, and we obtain the following stability results:

• Using the ERK1 scheme on the explicit portion only, the largest stable timestep is about ∆t = 1.2·10−4.

• Using the ERK1 scheme on the entire mesh, the largest stable timestep is about ∆t = 1.8 · 10−8. This
large ratio between the two timesteps shows that they are restricted by the viscous effects, which leads
to a factor of about 1002 = 104.

• Using the IMEX1 scheme on the entire mesh with the splitting shown in figure 5, the largest stable
timestep is the same as for ERK1 alone on the explicit mesh, that is, about ∆t = 1.2 · 10−4.

This ratio of about 10,000 comes at the cost of solving non-linear systems of equations. However, these
only involve 9% of the unknowns and can be solved efficiently by re-using the Jacobians. After the initial
transients have decayed, our solvers uses an average of six Newton iterations per Runge-Kutta stage and the
number of Krylov iterations per linear system is less than 10. In our test implementation, this leads to a
total cost per stage (implicit and explicit) that is about 3 times higher than a fully explicit stage, which is
a performance improvement of about a factor of 3,000.

We did not perform a comparison with a fully implicit method, but we estimate that the IMEX solver
would be about a magnitude faster due to the low-cost explicit evaluations for 91% of the degrees of freedom.
In addition, the fully implicit scheme would require about 10 times as much memory for storing the full
Jacobians.

8 of 10

V. Conclusions

We have shown how to use the Runge-Kutta IMEX schemes to combine the advantages of implicit
and explicit time integrators for LES-type flow problems. Two test problems were used to show that the
approach produces a scheme which is both accurate and stable without the severe timestep restrictions of a
fully explicit method. A realistic larger-scale three dimensional flow problem was used to show that if the
meshes are such that a majority of the elements can be integrated explicitly, then the IMEX scheme can be
highly efficient compared to fully explicit or implicit schemes. The smaller Jacobian matrices that arise can
be re-used between many of the implicit solution steps, which saves additional computational time. Future
work includes a more detailed study of the parallel implementation of the scheme, including overlapping of
implicit/explicit calculations and using fast multi-core computations for the explicit part.

References

1Roca, X., Nguyen, N., and Peraire, J., “GPU-accelerated sparse matrix-vector product for a hybridizable discontinuous
Galerkin method,” 49th AIAA Aerospace Sciences Meeting and Exhibit, Orlando, Florida, 2011.

2Ascher, U. M., Ruuth, S. J., and Spiteri, R. J., “Implicit-explicit Runge-Kutta methods for time-dependent partial
differential equations,” Appl. Numer. Math., Vol. 25, No. 2-3, 1997, pp. 151–167, Special issue on time integration (Amsterdam,
1996).

3Kennedy, C. A. and Carpenter, M. H., “Additive Runge-Kutta schemes for convection-diffusion-reaction equations,”
Appl. Numer. Math., Vol. 44, No. 1-2, 2003, pp. 139–181.

4Kanevsky, A., Carpenter, M. H., Gottlieb, D., and Hesthaven, J. S., “Application of implicit-explicit high order Runge-
Kutta methods to discontinuous-Galerkin schemes,” J. Comput. Phys., Vol. 225, No. 2, 2007, pp. 1753–1781.

5Cockburn, B. and Shu, C.-W., “Runge-Kutta discontinuous Galerkin methods for convection-dominated problems,” J.
Sci. Comput., Vol. 16, No. 3, 2001, pp. 173–261.

6Peraire, J. and Persson, P.-O., Adaptive High-Order Methods in Computational Fluid Dynamics, Vol. 2 of Advances in
Computational Fluid Dynamics, chap. 5 – High-Order Discontinuous Galerkin Methods for CFD, World Scientific Publishing
Co., 2011.

7Persson, P.-O. and Peraire, J., “Newton-GMRES preconditioning for discontinuous Galerkin discretizations of the Navier-
Stokes equations,” SIAM J. Sci. Comput., Vol. 30, No. 6, 2008, pp. 2709–2733.

8Boris, J. P., On Large Eddy Simulation using subgrid turbulence models, Springer-Verlag, New York, 1990, In J.L. Lumley,
editor, Whither Turbulence? Turbulence at the Crossroads.

9Peraire, J. and Persson, P.-O., “The compact discontinuous Galerkin (CDG) method for elliptic problems,” SIAM J. Sci.
Comput., Vol. 30, No. 4, 2008, pp. 1806–1824.

10Roe, P. L., “Approximate Riemann solvers, parameter vectors, and difference schemes,” J. Comput. Phys., Vol. 43, No. 2,
1981, pp. 357–372.

11Alexander, R., “Diagonally implicit Runge-Kutta methods for stiff o.d.e.’s,” SIAM J. Numer. Anal., Vol. 14, No. 6, 1977,
pp. 1006–1021.

12Davis, T. A., Direct methods for sparse linear systems, Vol. 2 of Fundamentals of Algorithms, Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, 2006.

13Persson, P.-O., Peraire, J., et al., “The 3DG Project,” http://threedg.mit.edu.
14Persson, P.-O., “Scalable Parallel Newton-Krylov Solvers for Discontinuous Galerkin Discretizations,” 47th AIAA

Aerospace Sciences Meeting and Exhibit, Orlando, Florida, 2009, AIAA-2009-606.
15Persson, P.-O., Bonet, J., and Peraire, J., “Discontinuous Galerkin Solution of the Navier-Stokes Equations on Deformable

Domains,” Comput. Methods Appl. Mech. Engrg., Vol. 198, No. 17-20, 2009, pp. 1585–1595.
16Persson, P.-O. and Strang, G., “A simple mesh generator in Matlab,” SIAM Rev., Vol. 46, No. 2, 2004, pp. 329–345.
17Persson, P.-O. and Peraire, J., “Curved Mesh Generation and Mesh Refinement using Lagrangian Solid Mechanics,” 47th

AIAA Aerospace Sciences Meeting and Exhibit, Orlando, Florida, 2009, AIAA-2009-949.

9 of 10

Mesh Cross-Section

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
10

−4

10
−3

10
−2

10
−1

10
0

Boundary layer (implicit)

Wake (explicit)

Far field (explicit)

Element #

E
le

m
en

t s
iz

e
(m

in
 e

dg
e)

Element size distribution in cross-section

Explicit elements Implicit elements
Figure 5. Splitting of the mesh around an SD7003 airfoil into implicit and explicit elements. Less than 9% of the
elements are in the boundary layer and integrated with the implicit scheme.

Figure 6. Four instantaneous solution to the flow over an SD7003 airfoil, shown by the Mach number as color on an
isosurface of the entropy.

10 of 10

