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@ Many important problems require predictions of fluid-structure
interaction (FSI):
e Oscillatory interactions in engineering systems (e.g. aircraft,
turbines, and bridges) can lead to failure
e The blood flow in arteries and artificial heart valves is highly
dependent on structural interactions

@ Requirements on numerical solvers:

e High-order accuracy, to capture
non-linear interactions and
multiscale phenomena

e Unstructured meshes, for
complex geometries and
adaptivity
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wing kinematics [Persson/Willis "11]

@ Automatic generation of optimized flapping %

@ Camber crucial to avoid excessive flow
separation — can be imposed using
compliant wings and fluid-structure
interaction




_ical Axis Wind Turbines

@ Recent interest in vertical axis wind =

turbines (VAWT) due to several o
attractive properties .
@ Modeling of structural interactions
important for study of sensitivities to - ’
design conditions and fatigue s




@ Two main numerical approaches for the coupling:

o Fully coupled (monolithic): Solve the fluid/structure equations
simultaneously. Accurate, but requires specialized codes and
solvers are often slow.

o Weakly coupled (partitioned): Use standard solvers for
fluid/structure and apply a separate coupling scheme, often
together with subiterations. Efficient and simple, but issues with
accuracy and stability.




Explicit time integration

@ In [Persson, Peraire, Bonet, 2007], we developed a fully coupled FSI
solver using DG, membrane models, and explicit time stepping
@ Implicit solvers required for more challenging problems in 3-D

Experiment (A. Song, Brown U) Fluid/membrane simulation

Compliant membrane

Rigid flat plate



-: Dragonfly, Compliant Wings

Experiment (A. Song, Brown U) Fluid/membrane simulation




_kin Discretization for Fluids

@ High-order nodal-DG method for unstructured simplex meshes
@ Compressible Navier-Stokes equations, Roe’s numerical fluxes
@ CDG fluxes for second-order terms [Peraire/Persson 2008],
— High level of sparsity in Jacobian matrices
@ Implicit time integration by matrix-based Newton-Krylov solvers
o L-stable Diagonally Implicit Runge-Kutta
(DIRK) methods
e Block-ILU(0) preconditioners and
automatic element ordering
[Persson/Peraire ’08]
e Implicit-Explicit Runge-Kutta schemes
for LES-type problems [Persson '11]
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@ Implicit solvers typically required because of CFL restrictions from
viscous effects, low Mach numbers, and adaptive/anisotropic grids
@ Jacobian matrices are large even at p = 2 or p = 3, however:
@ They are required for non-trivial preconditioners
e They are very expensive to recompute

@ Distributed parallel solvers developed in [Persson '09]
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@ Parallelization to 1000’s of egﬁﬁg%v

processes by domain 3‘%7
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@ Map from reference domain V to physical domain v(z)

ox ox
F i .] = F X = — =
X 5 det ) V( at) ot ; )4 pPov
@ Conservation of linear momentum:
op
—=V.P b
at + £0

with first Piola-Kirchhoff stress tensor P(F)
@ Hyperelastic Neo-Hookean Constitutive Model
@ Straight-forward second-order formulation in terms of material
points x and momentum p:
0x op
Bt =p/po; s — V- P(F) = pob
@ Discretize by standard high-order continuous Galerkin FEM
method, temporal integration by high-order DIRK schemes



-ity solvers for thin structures

@ Volumetric modeling of
thin structures = stiff
nonlinear systems

@ However, direct solvers
scale well due to 2-D
nature of the mesh

@ Parallel MPI solvers using
the MUMPS package




@ Lagrangian CG-FEM formulation for the solid dynamics
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written as a system of first-order ODEs

@ Structure motion and an (algebraic) mesh deformation scheme
induce a deformation of the fluid domain, ¥’ = x/ (u*)

@ Fluid flow governed by the compressible Navier-Stokes equations:

on’ Fipf o)
E—FV-F(uf,xf)—O

with mapping-based ALE formulation for the deforming domain

@ Fluid induces forces on the structure, €5 = €5/, x/)



@ Eliminate the mesh deformation x” and include interface forces
explicitly in the structure residual, to obtain a system of ODEs
Mu = r(u) where

u ¥ (W u) M
u = s = s M g
u’ r(u®) + (05  u)) M
@ A fully coupled implicit solver requires solution of systems of the
form (M — aAtK)u = f, with Jacobian matrix structure

@ Using IMEX schemes, we will treat the terms involving €* (v, u*)
explicitly, which makes the Jacobian matrix block upper-triangular



ISR IEifRunge-Kutta Methods

@ Based on a splitting % = f(u) + g(u) where f(u) is considered
nonstiff terms and g(u) stiff terms
@ Two Runge-Kutta schemes

@ Diagonally Implicit Runge-Kutta (DIRK) scheme c, A, b for g(u)
@ Explicit Runge-Kutta (ERK) scheme ¢, A, b for f(u)

/}1 If(“n)
fori=1tos i i
Solve for k; in ki = g(us.i), Where un; = u + Aty _aijki+ Aty a1 jk;
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Evaluate ki1 = f (1)

end for
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IMEX1: 2-stage, 2nd order DIRK + 3-stage, 2nd order ERK

0|0 0 0
e « 0 a | «a 0 0
cla  1|l-a a elA  1]8 1-4 0
|bT_ |1—a a |f)T_ |0 l—a «
where o = 1 — % § = —2v/2/3. 2nd order, L-stable.
IMEX2: 2-stage, 3rd order DIRK + 3-stage, 3rd order ERK
0 0 0
o o 0 « « 0
c|A l-a]l1-2a « 6|A _l-aja-1 2(1-a) 0
A R L B %

where a = (3 + 1/3)/6. 3rd order accurate, no L-stability.



IMEX3: 3-stage, 3rd order DIRK + 4-stage, 3rd order ERK

0.43586652 | 0.43586652 0 0
0.71793326 | 0.28206673 0.43586652 0
cl A 1 1.2084966  —0.64436317  0.43586652
»l = 1.2084966  —0.64436317  0.43586652
0 0 0 0 0
0.43586652 0.43586652 0 0 0
0.71793326 0.32127888 0.39665437 0 0
ol A 1 —0.10585829  0.55292914 0.55292914 0
b = | 0 1.20849664  —0.64436317  0.43586652

3rd order accurate, L-stable.



@ The IMEX schemes can be used to derive accurate partitioning
methods for fully coupled FSI problems [van Zuijlen, 2006]
@ For our FSI system, we treat the interface forces #° (v, u*)
explicitly and everything else implicitly:
rf(uf,us)] B [ 0 ] N ¥ (W u)
r(uf, €°) S (0F (W ut)) r(u)
@ The interface forces can thenilgcla :?olved for algebraically:
p ajj — ajj
b= J—Zl jaii jen’j
@ The remaining structure and fluid components can be solved by

back-solution of the block upper-triangular system

@ Use new fluid/structure stage solutions u’:” u,, ; to update the
interface forces £,,; — £,

@ Consistent forces, no subiterations required

] =f(u) +g(u)




@ Simple FSI benchmark problem for studying the high-order

accuracy of the IMEX scheme

@ Rigid pitching/heaving NACA 0012 airfoil, torsional spring

@ Smooth heaving step y(r) prescribed, angle 6(r) measured

Setup

Mach number



Validation, Benchmark Pitching Airfoil System

@ High-order DG for Navier-Stokes, ALE for moving domain

@ Study convergence of §(r) as At — 0

Angle 0(t) vs time ¢ Entropy



@ Up to 5th order of convergence in time
@ Without the predictor, at most 2nd order convergence
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@ Volumetric modeling of Lagrangian Neo-Hookean membrane

@ Membrane ends are held fixed but allowed to rotate

@ Angle of attack 20°, Reynolds number 2,000

@ Implicit schemes handle complex behavior with large time-steps
@ Low membrane stiffness




@ Higher membrane stiffness




@ Lower angle of attack




@ Higher angle of attack




@ Mesh motion
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@ Model “flag” by hinging left edge only




IR ene only, 3-0

@ Preliminary results for single membrane simulation




@ High-order accurate time integration of fully coupled FSI problems
@ Partitioned Runge-Kutta methods derived from IMEX schemes
@ Volumetric modeling of thin membrane structures

@ Current work includes 3D simulations, more sophisticated mesh
deformation, and real-world applications
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