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Motivation

Many important problems require predictions of fluid-structure
interaction (FSI):

Oscillatory interactions in engineering systems (e.g. aircraft,
turbines, and bridges) can lead to failure
The blood flow in arteries and artificial heart valves is highly
dependent on structural interactions

Requirements on numerical solvers:

High-order accuracy, to capture
non-linear interactions and
multiscale phenomena
Unstructured meshes, for
complex geometries and
adaptivity



Application: Optimal Design of Flapping Wings

Automatic generation of optimized flapping

wing kinematics [Persson/Willis ’11]

Camber crucial to avoid excessive flow

separation – can be imposed using

compliant wings and fluid-structure

interaction



Application: Vertical Axis Wind Turbines

Recent interest in vertical axis wind

turbines (VAWT) due to several

attractive properties

Modeling of structural interactions

important for study of sensitivities to
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Full vs. weak coupling

Two main numerical approaches for the coupling:
Fully coupled (monolithic): Solve the fluid/structure equations
simultaneously. Accurate, but requires specialized codes and
solvers are often slow.
Weakly coupled (partitioned): Use standard solvers for
fluid/structure and apply a separate coupling scheme, often
together with subiterations. Efficient and simple, but issues with
accuracy and stability.



Explicit time integration

In [Persson, Peraire, Bonet, 2007], we developed a fully coupled FSI

solver using DG, membrane models, and explicit time stepping

Implicit solvers required for more challenging problems in 3-D

Experiment (A. Song, Brown U) Fluid/membrane simulation

Compliant membrane

Rigid flat plate



Example: Dragonfly, Compliant Wings

Experiment (A. Song, Brown U) Fluid/membrane simulation



Discontinuous Galerkin Discretization for Fluids

High-order nodal-DG method for unstructured simplex meshes

Compressible Navier-Stokes equations, Roe’s numerical fluxes

CDG fluxes for second-order terms [Peraire/Persson 2008],

=⇒ High level of sparsity in Jacobian matrices

Implicit time integration by matrix-based Newton-Krylov solvers
L-stable Diagonally Implicit Runge-Kutta
(DIRK) methods
Block-ILU(0) preconditioners and
automatic element ordering
[Persson/Peraire ’08]
Implicit-Explicit Runge-Kutta schemes
for LES-type problems [Persson ’11]

1

1

2

2

3

3

4

4

and

and

CDG :

LDG :

BR2 :



Parallel Solvers

Implicit solvers typically required because of CFL restrictions from

viscous effects, low Mach numbers, and adaptive/anisotropic grids
Jacobian matrices are large even at p = 2 or p = 3, however:

They are required for non-trivial preconditioners
They are very expensive to recompute

Distributed parallel solvers developed in [Persson ’09]

Parallelization to 1000’s of

processes by domain

decomposition

Close to perfect speedup for

time accurate simulations



Lagrangian FEM Discretization of Structures

Map from reference domain V to physical domain v(t)

F =
∂x
∂X

, J = det F , v(X, t) =
∂x
∂t

, p = ρ0v

Conservation of linear momentum:
∂p
∂t

= ∇ · P + ρ0b

with first Piola-Kirchhoff stress tensor P(F)

Hyperelastic Neo-Hookean Constitutive Model

Straight-forward second-order formulation in terms of material

points x and momentum p:
∂x
∂t

= p/ρ0,
∂p
∂t
−∇ · P(F) = ρ0b

Discretize by standard high-order continuous Galerkin FEM

method, temporal integration by high-order DIRK schemes



Nonlinear elasticity solvers for thin structures

Volumetric modeling of

thin structures =⇒ stiff

nonlinear systems

However, direct solvers

scale well due to 2-D

nature of the mesh

Parallel MPI solvers using

the MUMPS package



Coupled Fluid-Structure Formulation

Lagrangian CG-FEM formulation for the solid dynamics

∂us

∂t
+∇ · Fs(us; `fs) = 0

written as a system of first-order ODEs

Structure motion and an (algebraic) mesh deformation scheme

induce a deformation of the fluid domain, xf = xf (us)

Fluid flow governed by the compressible Navier-Stokes equations:

∂uf

∂t
+∇ · Ff (uf ; xf ) = 0

with mapping-based ALE formulation for the deforming domain

Fluid induces forces on the structure, `fs = `fs(uf , xf )



Coupled system structure

Eliminate the mesh deformation xf and include interface forces

explicitly in the structure residual, to obtain a system of ODEs

Mu̇ = r(u) where

u =

[
uf

us

]
, r =

[
rf (uf ,us)

rs(us) + rfs(`fs(uf ,us))

]
, M =

[
Mf

Ms

]

A fully coupled implicit solver requires solution of systems of the

form (M − α∆tK)u = f , with Jacobian matrix structure

K =
dr
du

=




Using IMEX schemes, we will treat the terms involving `fs(uf ,us)

explicitly, which makes the Jacobian matrix block upper-triangular



Implicit-Explicit Runge-Kutta Methods

Based on a splitting du
dt = f (u) + g(u) where f (u) is considered

nonstiff terms and g(u) stiff terms

Two Runge-Kutta schemes
1 Diagonally Implicit Runge-Kutta (DIRK) scheme c,A, b for g(u)

2 Explicit Runge-Kutta (ERK) scheme ĉ, Â, b̂ for f (u)

k̂1 = f (un)

for i = 1 to s

Solve for ki in ki = g(un,i), where un,i = un + ∆t
i∑

j=1

ai,jkj + ∆t
i∑

j=1

âi+1,jk̂j

Evaluate k̂i+1 = f (un,i)

end for

un+1 = un + ∆t
s∑

i=1

bjkj + ∆t
s+1∑
i=1

b̂jk̂j



IMEX Schemes

IMEX1: 2-stage, 2nd order DIRK + 3-stage, 2nd order ERK

c A

bT
=

α α 0

1 1 − α α

1 − α α

ĉ Â

b̂T
=

0 0 0 0
α α 0 0
1 δ 1 − δ 0

0 1 − α α

where α = 1−
√

2
2 , δ = −2

√
2/3. 2nd order, L-stable.

IMEX2: 2-stage, 3rd order DIRK + 3-stage, 3rd order ERK

c A

bT
=

α α 0

1 − α 1 − 2α α
1
2

1
2

ĉ Â

b̂T
=

0 0 0 0
α α 0 0

1 − α α− 1 2(1 − α) 0

0 1
2

1
2

where α = (3 +
√

3)/6. 3rd order accurate, no L-stability.



IMEX Schemes

IMEX3: 3-stage, 3rd order DIRK + 4-stage, 3rd order ERK

c A

bT
=

0.43586652 0.43586652 0 0
0.71793326 0.28206673 0.43586652 0

1 1.2084966 −0.64436317 0.43586652

1.2084966 −0.64436317 0.43586652

ĉ Â

b̂T
=

0 0 0 0 0
0.43586652 0.43586652 0 0 0
0.71793326 0.32127888 0.39665437 0 0

1 −0.10585829 0.55292914 0.55292914 0

0 1.20849664 −0.64436317 0.43586652

3rd order accurate, L-stable.



Partitioned FSI using IMEX schemes

The IMEX schemes can be used to derive accurate partitioning

methods for fully coupled FSI problems [van Zuijlen, 2006]

For our FSI system, we treat the interface forces `fs(uf ,us)

explicitly and everything else implicitly:

r =

[
rf (uf ,us)

rs(us, `fs)

]
=

[
0

rfs(`fs(uf ,us))

]
+

[
rf (uf ,us)

rs(us)

]
= f(u) + g(u)

The interface forces can then be solved for algebraically:

ˆ̀n,i =

i−1∑
j=1

âij − aij

aii
`n,j

The remaining structure and fluid components can be solved by

back-solution of the block upper-triangular system

Use new fluid/structure stage solutions uf
n,i, us

n,i to update the

interface forces ˆ̀n,i → `n,i

Consistent forces, no subiterations required



Validation, Benchmark Pitching Airfoil System

Simple FSI benchmark problem for studying the high-order

accuracy of the IMEX scheme

Rigid pitching/heaving NACA 0012 airfoil, torsional spring

Smooth heaving step y(t) prescribed, angle θ(t) measured

Setup Mach number



Validation, Benchmark Pitching Airfoil System

High-order DG for Navier-Stokes, ALE for moving domain

Study convergence of θ(t) as ∆t→ 0
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Validation, Benchmark Pitching Airfoil System

Up to 5th order of convergence in time

Without the predictor, at most 2nd order convergence
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Flow around membrane, 2-D

Volumetric modeling of Lagrangian Neo-Hookean membrane

Membrane ends are held fixed but allowed to rotate

Angle of attack 20◦, Reynolds number 2, 000

Implicit schemes handle complex behavior with large time-steps

Low membrane stiffness



Flow around membrane, 2-D

Higher membrane stiffness



Flow around membrane, 2-D

Lower angle of attack



Flow around membrane, 2-D

Higher angle of attack



Flow around membrane, 2-D

Mesh motion



Flow around flag, 2-D

Model “flag” by hinging left edge only



Membrane only, 3-D

Preliminary results for single membrane simulation



Summary

High-order accurate time integration of fully coupled FSI problems

Partitioned Runge-Kutta methods derived from IMEX schemes

Volumetric modeling of thin membrane structures

Current work includes 3D simulations, more sophisticated mesh

deformation, and real-world applications
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