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We present some recent results for shock capturing using high-order discontinuous
Galerkin schemes on fully unstructured meshes. We study the application of sensor-based
artificial viscosity to problem with moving shocks, time-stepped using high-order accurate
implicit schemes with Jacobian-based Newton-Krylov solvers. We demonstrate that the
sensors can be coupled weakly without losing robustness, which simplifies the implementa-
tion and reduces the computational times. The weak coupling also allows for non-compact
regularization of the artificial viscosity, and we show how different levels of smoothness
in the sensor affect the solutions. We present a number of benchmarks and applications
of our methods, including transonic, supersonic, and hypersonic flow problems in two and
three space dimensions.

I. Introduction

While it is clear that the discontinuous Galerkin (DG) and related high-order methods1–3 are getting
sufficiently mature to handle realistic problems, they are still suffering from the lack of nonlinear stability
and their high sensitivity to under-resolved features. This directly affects the solution of important problems
involving shocks and turbulence models, but it has also turned out to be a problem for simpler problems
such as laminar or inviscid flows, if the meshes are not well adapted to the solution fields.

Several approaches have been proposed for handling shocks. One simple method is to calculate some sort
of sensor that identifies the elements in the shock region and reduce the order of interpolating polynomials.4,5

This is usually combined with h-adaptivity to better resolve the shocks, and it can be quite satisfactory for
in particular steady-state problems. More sophisticated approaches include limiting, for example based on
weighted essentially non-oscillatory (WENO) concepts.1,6, 7

In Ref. 8, we proposed a new strategy inspired by the early artificial viscosity methods,9 which has
proved to be effective in the context of high-order DG methods.10–12 The method combines a highly selective
spectral sensor, based on orthogonal polynomials, with a consistently discretized artificial viscosity added
to the equations. The goal is to smooth the discontinuities in the solution to a width that is appropriately
resolved by the mesh and the polynomial approximations, which means in particular that the method obtains
subcell resolution for high-order discretizations. This gives a number of important benefits, and in Ref. 8 we
demonstrated fully converged solutions using a consistent Newton method, for both transonic and supersonic
flow problems.

In this work, we present our recent development of the artificial viscosity approach for transient problems
with supersonic and hypersonic flows. In particular, we have found that for time-accurate simulations the
sensor can be decoupled from the implicit solver without losing stability, which allows for a more efficient
Newton solution procedure. This also allows us to process the sensor variable in a non-compact way, and
we show that continuity or higher levels of smoothness significantly improves the resulting solutions. We
show results for the Woodward-Colella problems of a forward-facing step, the double mach reflection, an
implosion, as well as transonic flow over a 3-D wing.
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II. Governing Equations and Spatial Discretization

We consider the Euler equations of gas dynamics with a simple Laplacian diffusion term added to each
equation:
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where ρ is the fluid density, u1, u2, u3 are the velocity components, and E is the total energy. For an ideal
gas, the pressure p has the form p = (γ − 1)ρ(E − 1

2ukuk), where γ is the adiabatic gas constant. The
parameter ε controls the amount of viscosity. We write the system (1)-(3) in a compact form as a system of
equations

∂u

∂t
+∇ · F (u) = ∇ · (ε∇u), (4)

with solution vector u = (ρ, ρu1, ρu2, ρu3, ρE)T and flux vector F (u). We will consider two boundary
conditions, standard characteristic far field conditions with prescribed free-stream flow u∞, and adiabatic
wall boundary conditions with prescribed fluxes Fwall(u) = (0, pn1, pn2, pn3, 0).

II.A. Discontinuous Galerkin discretization

For the spatial discretization of the physical domain, we use a standard nodal discontinuous Galerkin method.
We denote the elements of the mesh by Th = {K}. Further, we introduce the finite element spaces Vph and
Σph as:

V ph = {v ∈ [L2(Ω)]5 | v|K ∈ [Pp(K)]5 ∀K ∈ Th}, (5)

Σph = {τ ∈ [L2(Ω)]5×3 | τ |K ∈ [Pp(K)]5×3 ∀K ∈ Th}, (6)

where Pp(K) is the space of polynomial functions of degree at most p ≥ 1 on K. To obtain a form that
is appropriate for discretization using the CDG method, we multiply the system of equations (4) by test
functions v, τ and integrate by parts. Our semi-discrete DG formulation is then expressed as: find uh ∈ V ph
and qh ∈ Σph such that for all K ∈ Th, we have∫

K

∂uh
∂t
· v dx+

∫
K

(F (uh)− εqh) : ∇v dx−
∮
∂K

(
F̂ (uh)− εq̂h

)
· v ds = 0, ∀v ∈ [Pp(K)]5, (7)∫

K

qh : τ dx+

∫
K

uh · (∇ · τ ) dx−
∮
∂K

(ûh ⊗ n) : τ ds = 0, ∀τ ∈ [Pp(K)]5×3. (8)

To complete the description we need to specify the numerical fluxes for all element boundaries ∂K. The

inviscid fluxes F̂ (uh) are computed using Roe’s method.13 For the viscous fluxes q̂h, ûh, we use a formulation
based on the CDG method,14 which is a slight modification of the LDG method15 to obtain a compact and
sparser stencil with improved stability properties. This compactness is important in a practical solver, where
for example the parallelization is greatly simplified when elements only communicate with their neighbors.
These fluxes also include a parameter C11 which often is set to zero (the so-called minimal dissipation LDG
method,16). However, here we use the value C11 = 10/hmin where hmin is the height of the element, in order
to provide additional nonlinear stabilization. At a boundary face, we impose the appropriate conditions
weakly through the fluxes.

II.B. Semi-discrete equations

The actual discretization procedure is carried out using a standard finite element technique. We define a set
of equidistributed nodes xj , j = 1, . . . , Np, within each element K, where for simplex elements Np =

(
p+D
D

)
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in D spatial dimensions, and for block elements Np = (p + 1)D. We then determine the shape functions as
the Lagrange interpolation functions φi(x) ∈ Pp(K) such that φi(xj) = δij . Using these, the solution in
each element can be written in terms of its discrete expansion coefficients ui as:

uh(x) =

n∑
i=1

uiφi(x) (9)

and similarly for the auxiliary variable qh, the test functions v, τ , and the time-derivatives ∂uh/∂t. We
evaluate all integrals in (7),(8) using high-order Gaussian quadrature rules, and setting the test function
expansion coefficients to the identity matrix we obtain the semi-discrete form of our equations:

M
dU

dt
= R(U), (10)

for solution vector U , mass matrix M , and residual function R(U).

III. Stabilization by Artificial Viscosity

The main idea behind the resolution sensor is to determine the decay rate of the expansion coefficients
of the solution in an orthogonal basis. For smooth solutions, the coefficients in the expansion are expected
to decay very quickly. But when the solution is under-resolved, the strength of the discontinuity will dictate
the rate of decay of the expansion coefficients. Our resolution sensor is based on the amount of the highest
order coefficients for one of the solution components, within each element.

We first expand the solution within each element in terms of a hierarchical family of orthogonal polynomi-
als. In 1-D we use the standard orthogonal Legendre polynomials, and for block elements in higher dimensions
we use outer products of these. For simplex elements, we use the orthonormal Dubiner/Koornwinder ba-
sis17,18 within each element. In terms of these, we can write a scalar solution component u in terms of the
orthogonal basis functions ψi as

u =

Np∑
i=1

uiψi,

where Np is the dimension of the solution space, as defined above. In all our examples we choose the density
ρ as the scalar field, which in our experience this results in a highly sensitive yet selective shock indicator. We
express the solution of order p within each element in terms of an orthogonal basis, we consider a truncated
expansion of the same solution, and define a resolution indicator:

u =

N(p)∑
i=1

uiψi, û =

N(p−1)∑
i=1

uiψi, se = log10

(
(u− û, u− û)e

(u, u)e

)
Next we determine an element-wise viscosity over each element e by the following smooth function,

εe =


0 if se < s0 − κ ,
ε0
2

(
1 + sin π(se−s0)

2κ

)
if s0 − κ ≤ se ≤ s0 + κ ,

ε0 if se > s0 + κ .

(11)

Here, se = log10 Se and the parameters ε0 ∼ h/p, s0 ∼ 1/p4, and κ are chosen empirically sufficiently large
so as to obtain a sharp but smooth shock profile.8 These element-wise viscosities are used to define a field
ε(x) = εe(x), where e(x) identifies the element to which x belongs.

In addition to ε(x), we will also consider two modifications with higher level of smoothness:

• For C0-continuity, we form a new viscosity field ε0(x) by calculating for each mesh vertex the maximum
viscosity εe at all neighboring elements e. These values are then interpolated linearly within each
element.

• For C2-continuity, we form a new viscosity field ε2(x) as follows. In 1-D, we fit an interpolating cubic
spline to the element-wise viscosities at the center of each element. In 2-D, we use the Loop subdivision
scheme19 to interpolate the node values of ε0(x) and produce a C2-continuous function everywhere
except at irregular nodes. This procedure can be generalized to 3-D but we have not yet implemented
this.
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IV. Time Integration and Nonlinear Solvers

IV.A. Temporal Discretization

We integrate (10) in time using L-stable Diagonally Implicit Runge-Kutta schemes of the form:

Ki = R

(
Un + ∆t

s∑
j=1

aijKj

)
, i = 1, . . . , s (12)

Un+1 = Un + ∆t

s∑
j=1

bjKj , (13)

In particular, we use a three-stage, third-order accurate method20 with s = 3 and the coefficients given by
the Runge-Kutta tableaux below.

c A

bT
=

α α 0 0

τ2 τ2 − α α 0

1 b1 b2 α

b1 b2 α

α = 0.435866521508459

τ2 = (1 + α)/2

b1 = −(6α2 − 16α+ 1)/4

b2 = (6α2 − 20α+ 5)/4

We also use the standard one-stage backward Euler method, for computing steady-state solutions and pro-
viding further stabilization in our adaptive solvers.

IV.B. Inexact Newton and Preconditioned Krylov Methods

For the implicit time-stepping, nonlinear systems of equations Ki = (Un,i) must be solved. For this, we
use an inexact Newton method with a Jacobian matrix J = M − α∆tA, where ∆t is the timestep, α is a
parameter of order one, and A = ∂R/∂U is the Jacobian matrix of the steady-state problem. This matrix is
computed and stored explicitly but re-used between the iterations as well as between the stages. This results
in only one Jacobian calculation per timestep, which greatly reduces the assembly time without significantly
impairing the Newton convergence.

To solve the linear systems of equations involving J , we use a preconditioned Newton-Krylov technique,
consisting of an ILU-preconditioned restarted GMRES solver with element ordering by the Minimum Dis-
carded Fill (MDF) algorithm.21 Since we re-use the Jacobian matrix many times, we can also re-use the
incomplete factorization and the total implicit solution time is dominated by the matrix-vector products and
the backsolves in the GMRES method.

IV.C. Weakly coupled sensors

Since our viscosity fields depend on the solution in a non-local way, the Jacobian matrix has a wider stencil
than the original DG scheme and it is difficult to compute. However, for time-accurate solutions we have
found that it is sufficient to couple the sensor weakly to the Navier-Stokes equations. More specifically, for
our DIRK time integrator we simply compute a viscosity field at each initial time and keep it constant for
the entire timestep. This simplifies the nonlinear solvers significantly, since the solution-dependency of the
sensor does not have to be considered in the Jacobian matrices.

V. Results

V.A. Regularity of the sensor

To demonstrate how a constant viscosity field ε will introduce new irregularities in the solution, we show in
figure 1 the numerical solution of Burgers’ equation using our three different viscosities – piecewise constant,
C0-continuous, and C2-continuous. The piecewise constant case uses εe according to (11) directly, while the
continuous versions ε0(x) and ε2(x) are calculated as described in Section III.

The plots clearly show that the piecewise constant viscosity introduces undesired oscillations in the solu-
tion. The continuous versions give significantly smoother solutions, however with small differences between
the C0 and the C2 continuity.
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Figure 1. Burgers’ equations with three different types of artificial viscosity, solution (left) and viscosity (right).

ε(x) ε0(x) ε2(x)
Figure 2. Flow around a cylinder at a free-stream Mach number of 2, using three different regularizations of the viscosity.
The piecewise constant viscosity ε(x) (left) gives considerably more oscillations than the C0- and the C2-continuous
viscosities (middle and right).

Our second example shows the supersonic flow around a cylinder at a free-stream Mach number of 2. We
use interpolating polynomials of degree p = 4, and compare again the 3 viscosities (element-wise constant,
continuous piece-wise linear, and subdivision-based C2-continuity). In figure 2, the Mach number is shown as
color plots for the three cases, together with the viscosity fields. The results are similar to the 1-D example,
with the element-wise constant viscosity showing clear oscillations in the solution, but small differences
between the C0- and the C2-continuity.
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V.B. The Woodward-Colella forward facing step

Next we show the forward facing step problem of Woodward and Colella.22 The free-stream Mach number is
3, and we use polynomials of degree p = 4 for the space discretization. Figure 3 shows the solution (density),
and the C0-continuous artificial viscosity for two different meshes. We note that the viscosity is highly
localized around the shock regions. The benefits of the fully implicit DIRK-scheme is demonstrated by the
small elements at the corner, which would severely restrict the timestep for an explicit time integrator. For
the finer mesh, we can observe a Kelvin-Helmholtz instability near the top of the domain, which appears to
be well resolved by our high-order approximations.

Coarse mesh Fine mesh
Figure 3. The Woodward-Colella forward facing step problem. The plots show three levels of mesh refinement, and
include the mesh, the solution (density) and the C0-continuous artificial viscosity ε0(x).

V.C. The Woodward-Colella double mach reflection

We also consider the double mach reflection problem of Woodward and Colella.22 The hypersonic flow has a
Mach number of 10, and a shock wave propagates diagonally into a wall and reflects, forming a jet of denser
gas. Figure 4 shows the results for three levels of mesh refinement. The results are similar to the previous
problem.

V.D. Implosion

Our next problem involves an implosion,23 which is a good test of the numerical scheme’s ability to maintain
symmetry. The problem is solved in a square domain, and initiated by an overpressured region above the line
x + y = 0.5 which sends a shock wave towards the origin. The shock waves are reflected at the boundaries
and create a complex pattern of interacting jets and reflected shocks. The true solution is symmetric across
the line x = y.

We deliberately use a low-quality, highly non-symmetric triangular mesh (figure 5, left). The solution
field (middle) clearly shows the highly symmetric pattern, which is a good indication that the scheme is
accurate.
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Zoom-in

Figure 4. The Woodward-Colella double mach reflection problem. The plots show three levels of mesh refinement,
with the density at the final time (left plots) and the C0-continuous artificial viscosity ε0(x) (right plots). The bottom
plots show a zoom-in of the lower-right region.

Figure 5. The implosion problem, with unstructured mesh (left), the density (middle), and the C0-continuous artificial
viscosity (right). The symmetry of the numerical solution is a good indication of the accuracy.
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V.E. Tapered wing

Our final example is the transonic flow around a 3-D wing section, see figure 6. The free-stream Mach
number is 0.85 and the angle of attack 3◦. The solution is computed using polynomials of degree p = 3 and
the C0-continuous artificial viscosity. The figure shows the pressure at the wing and the symmetry plane, as
well as the applied viscosity. We observe similar results as in 2-D, with a narrow band of artificial viscosity
and smooth solutions with subcell resolution. The sensor is active in the shock region and along some of
the sharp edges around the wing tip, showing how the scheme can be used to stabilize other under-resolved
features.

Figure 6. Transonic flow around a tapered wing, pressure (left) and the C0-continuous artificial viscosity (right).

VI. Conclusions

We have demonstrated a high-order DG solver with implicit time-stepping for transonic, supersonic, and
hypersonic flow problems. The artificial viscosity approach is used with a hierarchical sensor, and a simple
de-coupled approach is used to integrate the systems in time. We demonstrate the importance of continuity
in the sensor, and how the scheme can stabilize problems with strong shocks using only a narrow band of
artificial viscosity.
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