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Abstract

The simulation of optical resonance filters based on quarter-wave shifted
waveguide gratings is described. Wavelet-based numerical homogenization
is applied to the filters, and the properties of the homogenized operators
and their solutions are investigated. A method is proposed for replicating
periodical sub-structures in the homogenized operators, making it possible
to model very large structures with moderate computational effort.
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1 Introduction

In this report, I present the numerical simulation of an optical filter. The
filter consists of a waveguide with two gratings separated by a small dis-
placement. A wave with the specific resonant frequency will be transmitted
when sent through the filter, while waves with the adjacent frequencies will
be reflected.

The design of the filter determines many of its interesting properties, for
instance the value of the resonant frequency and the sharpness of the reso-
nance peak. Design parameters of interest are, for example, the geometry of
the gratings, the number of etches, the materials used and the width of the
waveguide. It is of great interest to simulate the filter numerically in order
to anticipate the influence of these parameters.

The calculations of a wave interacting with the waveguide gratings in
the filter can be very complicated. The geometry needs to be described in
at least two dimensions, and the number of etches in the gratings is very
large. Furthermore, in order to accurately model the interference between
the reflected waves, a high resolution is needed.

In order to make the computations more efficient, I have studied the
advantages of using wavelet homogenization. This technique makes it pos-
sible to compute the solution on a coarse grid without losing the influence
of the fine-scale details. For the optical filter, the individual etches can be
very accurately represented without making the final solution process more
difficult.

As we will see, it is not necessary to homogenize the complete filter. Since
the gratings are periodical repetitions of etches with identical geometry, the
homogenized operator will be periodical as well. Thus it is sufficient to
homogenize a few etches, and by replicating them it is easy to construct the
operator representing the whole filter. Using this technique, I have been
able to simulate filters with a very large number of high-detail etches on
an ordinary workstation. The high resolution facilitates, for example, the
analysis and the optimizations of complex grating-geometries1.

Wavelet homogenization can be used in the same way in other appli-
cations to make computations more efficient. Examples are the studies
of antenna-arrays and anti-reflection coatings, both having periodical sub-
structures that need to be resolved in detail.

Most of the calculations in this work have been made in MATLAB 5.0 on
a Sun Ultra 1 workstation. However, to be able to perform the computations
on the large two-dimensional filters in Section 3.3 (without homogenization),
the code was rewritten in C++. This made it possible to use “Strindberg”,
the IBM SP2 parallel computer at PDC, to obtain very high calculation

1Today, the grating fabrication process is limited to produce rectangularly shaped
gratings [11], but an optimization would be of theoretical interest.

1



speeds.
I have exclusively used gaussian elimination to solve the banded linear

systems that arise from the discretizations. To reduce the memory require-
ments, I made an implementation of the biconjugate gradients method as
well. In practice, I never used this iterative solver because of its longer
execution time.

This report consists of three parts. The mathematics needed for the
simulations is given in Section 2. The actual calculations on the optical filters
and the properties of the solutions are presented in Section 3, and finally in
Section 4 the theory of the wavelet homogenization and its application on
the filters are shown. The report ends with a short concluding section.

2 Time-harmonic solutions to the wave equation

The governing equation in the simulation of wave propagation is the wave
equation, which can be written

ψtt = c2∇ · (a∇ψ) , a =
(
v

c

)2

(1)

where the propagation velocity v is permitted to vary in space and c is a
reference velocity. The dimensionless quantity a is introduced in order to
simplify the equations later on.

2.1 The Helmholtz equation

In the modeling of wave propagation, scattering and interference phenom-
ena, the detailed time-dependence in the solutions of (1) is often of less
interest, and the calculations can be simplified by seeking time-harmonic
solutions. Assume the solution ψ(x, t) oscillates with the same fixed angu-
lar frequency ω at all points in space,

ψ(x, t) = u(x) · eiωt. (2)

Substitution into the wave equation (1) gives

−ω2u(x) · eiωt = c2∇ · (a(x)∇u(x)) · eiωt (3)

and finally, with the wave number k = ω/c,

∇ · (a∇u) + k2u = 0. (4)

This time independent partial differential equation is known as the Helmholtz
equation.
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2.2 Discretization of the Helmholtz equation

To solve the Helmholtz equation numerically, it must first be discretized. In
one dimension, (4) becomes

d

dx

(
a(x)

d

dx
u(x)

)
+ k2u(x) = 0. (5)

Introduce a grid of N + 2 equally spaced points {xi} such that

xi = xin + (i− 1/2)h,

{
i= 0, . . . , N + 1,
h= (xout − xin)/N.

(6)

The gridfunctions corresponding to u(x) and a(x) can then be defined as

ui ≈ u(xi), i = 0, . . . , N + 1,
ai+1/2 = a(xi + h/2), i = 0, . . . , N.

(7)

When discretizing the derivatives, they are replaced by central difference
approximations according to

d

dx
f(x) ≈

f(x+ h
2 )− f(x− h

2 )
h

. (8)

Now, the discretization of (5) becomes

1
h

(
ai+1/2

ui+1 − ui

h
− ai−1/2

ui − ui−1

h

)
+ k2ui = 0, i = 1, . . . , N (9)

or, equivalently,

ai+1/2ui+1− (ai+1/2 +ai−1/2)ui +ai−1/2ui−1 +h2k2ui = 0, i = 1, . . . , N.
(10)

This can be written as a tridiagonal linear system of equations,

Lu = f, (11)

where u = (u1, ..., uN )T and f is a vector determined by the boundary
conditions (see Section 2.3).

Extending the discretization to higher order space dimensions is straight-
forward. In two dimensions, the y-axis is discretized with M + 2 points in
the same manner as in (6). Define the gridfunction corresponding to u(x, y)
as

ui,j ≈ u(xi, yj),

{
i= 0, . . . , N + 1,
j = 0, . . . ,M + 1,

(12)

and similarly for a(x, y). Assuming the same grid-spacing h in both dimen-
sions, the discretization of the Helmholtz equation becomes

ai+1/2,jui+1,j − (ai+1/2,j + ai−1/2,j)ui,j + ai−1/2,jui−1,j

+ ai,j+1/2ui,j+1 − (ai,j+1/2 + ai,j−1/2)ui,j + ai,j−1/2ui,j−1 + h2k2ui,j = 0.
(13)

Also in two dimensions this corresponds to a sparse linear system of equa-
tions, similar to (11).
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2.3 Boundary conditions

In the simulation of a wave propagating through a fiber, it is important
that no reflections arise at the boundaries of the computational region. To
achieve this, non-reflecting boundary conditions must be used.

Assume the one-dimensional solution u(x) to be composed of two waves,
u→(x) = e−ikx and u←(x) = eikx, propagating in the positive and the nega-
tive x-direction respectively. The condition that there should be no reflection
at the boundary where the wave leaves the domain can be expressed as

u(x) = Tu→(x), x ≈ xout, (14)

where T is the transmitted amplitude. Differentiation of (14) gives the first
boundary condition,

d

dx
u(x) + iku(x) = 0, x = xout. (15)

At the boundary where the wave enters the domain, the solution consists
of the incoming wave with the amplitude 1 and a reflected wave with the
(unknown) amplitude R,

u(x) = 1 · u→(x) +R · u←(x), x ≈ xin. (16)

Differentiation of (16) and elimination of R gives,

d

dx
u(x) = −1 · iku→(x) +R · iku←(x)

= −1 · iku→(x) + ik · (u(x)− 1 · u→(x)) (17)
= −2 · iku→(x) + iku(x)

and the second boundary condition becomes

d

dx
u(x)− iku(x) = −2ike−ikx, x = xin. (18)

The relations (18) and (15) are discretized as

u1 − u0

h
− ik

u1 + u0

2
= 2ike−ikxin ,

uN+1 − uN

h
+ ik

uN+1 + uN

2
= 0,

(19)

which after simplification becomes

(2 + ihk)u0 − (2− ihk)u1 = 4ihke−ikxin ,
(2 + ihk)uN+1 − (2− ihk)uN = 0.

(20)

The intensity Itr of the transmitted wave is given by

Itr = |u(xout)|2 ≈ |uN |2 . (21)
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In two dimensions, the same non-reflecting boundary conditions are used
at the left and right boundary of the domain. There must also be boundary
conditions for the top and bottom of the waveguide. In this case I will use
a Neumann condition, du/dn = 0, which is discretized as{

ui,0 = ui,1,
ui,M+1 = ui,M ,

i = 1, . . . , N. (22)

For the boundary conditions (15) and (18) to be accurate in higher space
dimensions, it is important that the wavefront is planar at the input and
output boundaries, and that the incidence is normal. As we will see later,
this is almost true in my simulations of optical fibers. The transmitted
intensity Itr is then calculated as an integral over the cross-section at the
output boundary Γout,

Itr =
∫
Γout

|u|2 dS ≈ h
M∑

j=1

|uN,j |2 . (23)

3 Simulation of optical filter

An optical filter is a device that distinguishes a specific frequency of light
from the adjacent frequencies. It can be used in optical fiber communication,
where information is sent at multiple frequencies through the same wave-
guide in order to get a larger bandwidth. At the end of the communication
line, filters are used to separate the information.

3.1 The grating resonance filter

In the grating resonance filter, the wave to be filtered is sent through a
waveguide with grating etches. The etches are equally spaced, except for a
quarter-wave step somewhere in between, see Figure 1 (left). This causes
the resonant wavelength λres = 2Λneff to pass through while the adjacent
wavelengths are filtered out. Here Λ is the grating spacing and neff is the
effective index of refraction.

Actually, the etches can be replaced by anything that reflects a small
portion of the wave, for example as in the Fabry-Perot interference filter [8]
where quarter-wave plates of alternately high and low refractive indices are
put together. In the middle, two identical layers are joined to form the
quarter-wave step, see Figure 1 (right).

The optical distances between the etches are exactly λres/2. Without
the quarter-wave step, all the reflected waves will therefore have the same
phase and the resonant wavelength will be reflected instead of transmitted.
With the quarter-wave step the reflected waves from the two sections will
cancel each other, causing the wave to be completely transmitted.
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Figure 1: The grating resonance filter (left) and the Fabry-Perot interference
filter (right). Note the quarter-wave displacements in the middle of the
filters.

3.2 Approximation in one dimension

An approximative simulation of the optical filter can be made by solving
the Helmholtz equation in one dimension using the discretization in Section
2.2. The gratings are modeled by variations in the wave propagation speed.
This corresponds to normal incidence in the Fabry-Perot interference filter,
although the width of the etches does not necessarily need to be a quarter of
the wavelength. This approximate calculation will also be motivated by the
results in Section 4.4, where we will see how an equivalent one-dimensional
filter can be computed from a more realistic two-dimensional representation.

The actual values of the wave propagation speed in the etches are quite
arbitrary, the desired effect will be observed as long as reflections occur.
However, the fewer etches, the larger reflections are required to get a sharp
resonance peak.

Now, by solving the Helmholtz equation for different values of the wave
number k, a spectrum of the transmitted intensity can be plotted. This is
done in Figure 2, with and without the quarter-wave displacement. The
wave numbers k are normalized with respect to the resonant wave number
kres according to

knorm =
k − kres

kres
. (24)

The resonance effect is indeed very evident in this example, even though
only 24+24 etches are used. In reality, as we will see in the next section,
the resonance peak will not always be this sharp with so few etches.

In Figure 3 the real part of the solution is shown for two different cases,
at the resonant frequency and at a slightly lower frequency where almost
no intensity is transmitted. Note that the amplitude inside the filter at
resonance is much larger than the incoming amplitude, because of the inter-
ference effects.
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Figure 2: Spectrum from the one-dimensional simulation of the optical filter,
with and without the quarter-wave displacement.
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Figure 3: Real parts and intensities of the solutions for two different fre-
quencies, the resonant frequency (left) and a slightly lower frequency (right).
Note the large amplitudes inside the filter at resonance.
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3.3 Two-dimensional calculations

Although there are a lot of similarities between the Fabry-Perot interference
filter and the grating resonance filter, there are still questions unanswered
by the one-dimensional calculations in the previous section. For instance,
what influence does the grating depth have on the solution2? If the etches
would cover the whole cross-section, then it is clear that the results would
be similar to the one-dimensional case. But with smaller etches, the wave
will change direction of propagation when interacting with the gratings, and
the situation will become much more complicated. As we will see, the width
of the waveguide will affect the solution as well.

By simulating the optical filter in two dimensions, the true geometry
of the waveguide, Figure 1 (left), can be represented. Using the methods
described in Section 2.2, I have solved the Helmholtz equation for a two-
dimensional model of the waveguide. Along the sides of the waveguide I
have, somewhat arbitrarily, used a Neumann boundary condition. How-
ever, numerical experiments indicate that the character of the interference
phenomena in the solution does not change much when more physically
motivated boundary conditions are used.

In [9], the fabrication of an optical filter is described. In order to get
a realistic design, I have tried to resemble this filter as much as possible.
I assume the material of the waveguide to be GaAs with refractive index
of n ≈ 3.3 and the surrounding medium to be vacuum. The width of the
waveguide is three resonant wavelengths and the number of etches a few
thousands. The spectrum of the transmitted intensity for this geometry is
shown in Figure 4 (left).

A clear resonance peak appears even in this spectrum, although it is
not as distinct as in the one-dimensional case. The reason for this is, as
previously indicated, that the waves are allowed to propagate in different
directions along the waveguide, which results in a much less efficient inter-
ference. This can to some extent, as in my simulations, be compensated for
with an increased number of etches.

From this description, it is easy to understand that the width of the
waveguide has a very large influence on the performance of the filter. With
a thinner waveguide the wave will not be permitted to bounce back and
forth between the sides, and the interference between the reflected waves
will be more efficient. The result is a sharper resonance peak, as can be seen
in Figure 4 (right) where the spectrum is shown for a waveguide of width
λres/2 and only 6+6 etches, but with the same geometry of the etches as
before. The ripple in this spectrum is likely due to numerical errors.

The solutions to the two-dimensional calculations are easily visualized
with a gray scale plot of the absolute amplitude. In Figure 5, this is shown

2Discussions of the influences of the etch depth and the etch width are given in [13]
and in [12].
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Figure 4: Spectra from the two-dimensional simulations. Left: A wide
waveguide with thousands of etches. Right: A thin waveguide with only
6+6 etches. The interference is much more efficient for thin waveguides.

for the filter with 6+6 etches at two different frequencies. For comparison
with the one-dimensional solutions in the previous section, Figure 3, I have
also included plots of the intensities in the cross-sections. The similarities
show that it is the same phenomena that occurs in the two simulations, and
that the Fabry-Perot interference filter indeed is a special case of the grating
resonance filter.

4 Wavelet homogenization

In many problems, large structures that contain fine details need to be
modeled. The details must be resolved in order to get a correct solution, but
the computations become too extensive with a small grid-size. In [4] and [1],
the method of wavelet-based numerical homogenization was presented as
a general tool to deal with this multiple scale problem. The idea of the
numerical homogenization is to construct operators acting on coarse grids,
but with the sub-grid phenomena included.

I have applied the wavelet homogenization on the optical filter from
Section 3, which is a large-scale system (the whole waveguide) with fine-
scale structure (the individual etches).

4.1 Theory

In this section I will limit myself to a brief description of the practical proce-
dure of wavelet homogenization using the Haar-basis. More detailed treat-
ments, including two-dimensional extensions, can be found in [4] and [1].

In the Haar system, the shape function ϕ(x) and the mother wavelet
ψ(x) are given by (see Figure 6)
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Figure 5: Two-dimensional solutions to the optical filter for two different
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Figure 6: The shape function and the mother wavelet in the Haar-basis.

ϕ(x) =

{
1, if 0 ≤ x ≤ 1,
0, otherwise,

ψ(x) =


1, if 0 ≤ x ≤ 1/2,
−1, if 1/2 ≤ x ≤ 1,
0, otherwise.

(25)

Let W be the orthogonal transformation that corresponds to one step
in the discrete Haar-basis wavelet transform. It has the following matrix
representation,

W =
1√
2



1 −1 0 · · ·
0 0 1 −1 0 · · ·
.
.
.

.

.

.
. . .

. . .

0 0 · · · 0 1 −1
1 1 0 · · ·
0 0 1 1 0 · · ·
.
.
.

.

.

.
. . .

. . .

0 0 · · · 0 1 1


. (26)

Applying the transformation W on a vector U will have the effect of ex-
tracting the high and the low frequency parts Uh and Ul,

WU =

[
Uh

Ul

]
. (27)

Similarly, a linear operator Lj+1 acting on a fine subspace can be decom-
posed into four operators Aj , Bj , Cj and Lj according to

WLj+1W> =

[
Aj Bj

Cj Lj

]
. (28)

The operator Lj is the low frequency part of Lj+1, but does not in itself in-
clude the influence of high frequency phenomena. The object of the wavelet
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homogenization is to construct an operator Lj acting on the same coarse
subspace as Lj , but with the fine-scale structure taken into account.

Now consider a system of linear equations

Lj+1U = F (29)

like for instance the one in (11). Applying the wavelet transformations, we
have

WLj+1W> (WU) = WF (30)

or, with the notations in (27) and (28),[
Aj Bj

Cj Lj

] [
Uh

Ul

]
=

[
Fh

Fl

]
. (31)

Finally, Ul can be determined by Gaussian elimination,(
Lj − CjA

−1
j Bj

)
Ul = Fl − CjA

−1
j Fh (32)

and the homogenized large-scale operator Lj , as well as the homogenized
right hand side F j , is identified as

Lj = Lj − CjA
−1
j Bj , (33)

F j = Fl − CjA
−1
j Fh. (34)

The procedure can be applied recursively to get operators acting on even
coarser subspaces. The solution to each of the homogenized systems will be
identical to the solution to the original system (29) projected on the coarse
scale subspace.

4.2 Homogenization of optical filter

In this section I have applied the wavelet homogenization technique on the
one-dimensional optical filter from Section 3.2. In Figure 7, the operator is
shown at the resonant frequency after three homogenizations together with
a close-up of the quarter-wave step.

The most apparent property of the operator is that the elements are
concentrated to a band along the diagonal of the matrix. The physical
interpretation of this is that an etch only interact with its closest neighbors,
it does not “sense” what happens a few wavelengths away. Hence, the
homogenized operator is strongly diagonally dominant and essentially local.
In that respect it retains the form of the unhomogenized operator, which
is tridiagonal. The periodical structure of the gratings can be seen in the
operator, as well as the quarter-wave step in the middle.

If homogenization is to be a useful technique for calculations on the
optical filter, it is important that
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Figure 7: The full one-dimensional homogenized operator and a close-up of
the quarter-wave step. The operator is strongly diagonally dominant, and
it can be truncated to a bandwidth of 20+20 without losing accuracy in the
solutions.

• The homogenized solution gives an accurate value of the transmitted
amplitude.

• The homogenized operator can be approximated by a sparse operator,
for all fixed frequencies.

To see if the first demand is met, I have calculated the same spectrum as in
Figure 2 after 1-3 homogenizations. This corresponds to 16, 8 and 4 points
per wavelength. With further homogenization the oscillations would not be
resolved, and then it is obvious that the results would be inaccurate.

The spectra are shown in Figure 8 (left). The homogenized solution
consists of the mean values of the adjacent values in the original solution,
therefore the slight reduction of the transmission ratios was expected. But
the results are good enough for most purposes, even for the most homoge-
nized case.

In order to investigate how the sparsity of the homogenized operator
depends on the wave number k, a suitable measure of the concept sparsity
is needed. To keep things simple, I will plot the sum of the absolute values in
each diagonal. In Figure 8 (right) this is done for three values of k including
the resonant wave number, and the resonance phenomena does not seem to
influence the structure of the operator at all.

To summarize, homogenization of the optical filter preserves most of the
interesting resonance properties, including the filter effect, and the opera-
tors can be approximated by sparse matrices regardless of the frequency.
If the homogenization is made efficient, for example by implementing the
incomplete LU-factorization [6], the total solution procedure using homoge-
nization can be computationally as expensive as without it. However, large
gains can be made if homogenized blocks are reused many times, and in the
next section I will show how this can be done for the optical filter.
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Figure 8: Left: Spectrum after 0-3 homogenizations. The resonance proper-
ties of the filter are preserved after homogenization. Right: Plots of the sum
of the absolute diagonal values in the operator for three different frequen-
cies, showing that the sparsity is essentially independent of the interference
phenomena.

4.3 Extending periodical structures

The fact that the periodical structure of the optical filter is seen in the
homogenized operator, and that the etches only interact within a limited
range, can be very useful. It means that it is sufficient to homogenize a
certain number of etches, and then all the other etches will have the same
representation in the matrix.

The principle is illustrated in Figure 9. Two filters that are identical
apart from the number of etches are homogenized three times each. In the
final operator there are four points per wavelength, hence two points per
etch. In the plots of the operators, especially in the diagonal plots, it can be
seen that the etches are represented the same in the two cases, and so are the
quarter-wave step and the leading and trailing sections. The element-values
in the blocks are identical for the two operators, apart from the numerical
deviations. Therefore, the larger case can be constructed by “copying and
pasting” etches in the smaller matrix. In this way, it is possible to construct
an operator representing a filter with an arbitrary number of etches.

The method makes it possible to compute the solution to a filter with
a lot of etches on a coarse scale without computing the homogenization
to the complete filter. To show that the method gives correct solutions, I
have applied it to a case with thousands of etches with complex geometry,
and verified that the homogenized solution is identical to the exact solution
(after projection on the coarser subspace).

Note that it is not possible to homogenize each part of the waveguide
separately and then assemble the homogenized blocks. The etches, the
quarter-wave step and the leading and trailing sections must be homoge-
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Figure 9: Two filters with the same geometry, but with different numbers
of etches are homogenized (left). The diagonal plots of the operators (right)
show that the blocks are represented the same, and operators representing
filters of arbitrary sizes can therefore be constructed.

nized together. Otherwise the high frequency interaction between the blocks
would be lost, which would result in an incorrect solution. The minimum
bandwidth that can be accepted determines the number of etches that must
be homogenized.

If the structure had been completely periodical, then classical homog-
enization [2] would have predicted the correct solution in a very simple
manner. But in order to simulate a situation with blocks of partly period-
ical structures, where the blocks have high frequency interactions, classical
homogenization cannot be applied. Here, wavelet homogenization works
well, because of wavelets’ good ability to approximate local properties. The
representation of the structures and the interaction between them can be
seen clearly in the operators. However, the bandwidth of the matrix in-
creases after homogenization and for the method to yield significant gains
in efficiency, it need to be generalized to higher dimensions.
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Figure 10: Sections of the two-dimensional operator after 0-3 homogeniza-
tions.

4.4 Homogenization in two dimensions

The two-dimensional models of optical filters in Section 3.3 are very well
suited for numerical homogenization. The variations of the solution within
the cross-section are of no interest, and thus they need not be resolved.
Multiple homogenizations can be applied to reduce the number of points
in the cross-section to a single one, and thereby create an equivalent one-
dimensional model of the problem. As before, the wavelength must still be
resolved in the direction of propagation.

There is a lot to be gained computationally by homogenizing the two-
dimensional operators. The bandwidth does not grow as much after homog-
enization as it did in the one-dimensional case. Depending on the desired
accuracy, the bandwidth can sometimes even be diminished. Furthermore,
the homogenized operator is of the same kind as the one-dimensional opera-
tors in Section 4.2, and therefore the technique from Section 4.3 of extending
periodical structures can be applied here as well.

In Figure 10, operators corresponding to a two-dimensional optical filter
are shown after different numbers of homogenizations. The filter has ap-
proximately the same geometry as the filters in Section 3.3, the number of
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Figure 11: The two-dimensional correspondence to Figure 9, showing that
the “copy and paste”-technique can be used even in this case.

etches is 24+24 and the width of the waveguide is one wavelength. Note
how the main diagonal band is broadened after homogenization while the
outer sub-diagonals approaches the main diagonal, resulting in an essentially
unchanged bandwidth.

To show that the “copy and paste”-technique still is applicable, I have
made the same calculations as in Section 4.3 but in two dimensions. Two
filters, identical apart from the number of etches, have been homogenized
to the same extent. Plots of the main-diagonal and some sub-diagonals are
shown in Figure 11.

The similarities with Figure 9 imply that the periodical structures can be
extended in this two-dimensional case as well, and a more detailed analysis
shows that the method gives accurate results. Furthermore, the homog-
enized two-dimensional operator can be interpreted as an equivalent one-
dimensional operator, and this motivates the approximative calculation in
Section 3.2.

5 Conclusions

The simulation of optical filters is a good example of the practical use of
wavelet homogenization. Below, the main properties of the filter that make
it especially suitable for homogenization are listed.

• The geometry contains fine-scale details that affect the coarse-scale
solution.

• The solution does not need to be resolved in all space dimensions.

• The geometrical structure contains sections with identical blocks pe-
riodically repeated.
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The techniques I have described in this report can be applied to a lot of other
problems with the above properties, in order to reduce the computational
effort significantly.
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