
High-Order Methods for Turbulent
Flow Simulations on Deforming Domains

Per-Olof Persson

Department of Mathematics, University of California, Berkeley
Mathematics Department, Lawrence Berkeley National Laboratory

Joint work with B. Froehle, L. Wang, S. Kanner, M. Zahr, D. J. Willis, J. Peraire

Séminaire du Laboratoire Jacques-Louis Lions
Université Pierre et Marie Curie (Paris VI)

November 13, 2015

Outline

1 Introduction and Motivation
2 Numerical Schemes – Discretization and Solvers

The Discontinuous Galerkin Method

The Compact Discontinuous Galerkin (CDG) Method

Preconditioning for Newton-Krylov Solvers

Reducing the cost: The Line-DG Method
3 Methods for Deforming Domains

High-Order ALE Formulation

Unstructured Mesh Space-Time Methods

Outline

1 Introduction and Motivation

2 Numerical Schemes – Discretization and Solvers

The Discontinuous Galerkin Method

The Compact Discontinuous Galerkin (CDG) Method

Preconditioning for Newton-Krylov Solvers

Reducing the cost: The Line-DG Method

3 Methods for Deforming Domains

High-Order ALE Formulation

Unstructured Mesh Space-Time Methods

Motivation

Need for higher fidelity predictions in computational mechanics
Turbulent flows, wave propagation, multiscale phenomena,
non-linear interactions

Many practical applications involve time-varying geometries
Fluid/structure interaction, flapping flight, wind turbines,
rotor-stator flows

Goal: Develop robust, efficient, and accurate high-order methods

based on fully unstructured meshes

Why Unstructured Meshes?

Complex geometries need flexible element topologies

Complex solution fields need spatially variable resolution

Fully automated mesh generators for CAD geometries are based

on unstructured simplex elements

Real-world simulation software dominated by unstructured mesh

discretization schemes

Why high-order accurate methods?
Scalar convection equation ut + ux = 0

High-order gives superior performance for equal resolution

High-Order Discontinuous Galerkin Simulations

Discontinuous Galerkin (DG) methods have desirable properties:

FVM FDM FEM DG

1) High-order/Low dispersion

2) Complex geometries

3) Stabilization for convection

However, several problems to resolve:

High CPU/memory requirements (compared to FVM or H-O FDM)
Robustness issues, low tolerance to under-resolved features
High-order geometry representation and mesh generation

Need to make DG competitive for real-world problems

Outline

1 Introduction and Motivation

2 Numerical Schemes – Discretization and Solvers

The Discontinuous Galerkin Method

The Compact Discontinuous Galerkin (CDG) Method

Preconditioning for Newton-Krylov Solvers

Reducing the cost: The Line-DG Method

3 Methods for Deforming Domains

High-Order ALE Formulation

Unstructured Mesh Space-Time Methods

Outline

1 Introduction and Motivation

2 Numerical Schemes – Discretization and Solvers

The Discontinuous Galerkin Method

The Compact Discontinuous Galerkin (CDG) Method

Preconditioning for Newton-Krylov Solvers

Reducing the cost: The Line-DG Method

3 Methods for Deforming Domains

High-Order ALE Formulation

Unstructured Mesh Space-Time Methods

The Discontinuous Galerkin Method

(Reed/Hill 1973, Lesaint/Raviart 1974, Cockburn/Shu 1989-, etc)

Consider non-linear hyperbolic system in conservative form:

ut +∇ · Fi(u) = 0

Triangulate domain Ω into elements κ ∈ Th

Seek approximate solution uh in space of element-wise

polynomials:

Vp
h = {v ∈ L2(Ω) : v|κ ∈ Pp(κ) ∀κ ∈ Th}

Multiply by test function vh ∈ Vp
h and integrate over element κ:∫

κ
[(uh)t +∇ · Fi(uh)] vh dx = 0

The Discontinuous Galerkin Method

Integrate by parts:∫
κ

[(uh)t] vh dx−
∫
κ
Fi(uh)∇vh dx +

∫
∂κ
F̂i(u+

h ,u
−
h , n̂)v+

h ds = 0

with numerical flux function F̂i(uL,uR, n̂) for left/right states uL,uR in

direction n̂ (Godunov, Roe, Osher, Van Leer, Lax-Friedrichs, etc)

Global problem: Find uh ∈ Vp
h such

that this weighted residual is zero for

all vh ∈ Vp
h

Error = O(hp+1) for smooth solutions
∂κ

κ

n

u
L

u
R

The DG Method – Observations

Reduces to the finite volume method for p = 0:

(uh)tAκ +

∫
∂κ
F̂i(u+

h ,u
−
h , n̂) ds = 0

Boundary conditions enforced naturally for any degree p

Block-diagonal mass matrix (no overlap between basis functions)

Block-wise compact stencil – neighboring elements connected

Mass Matrix Jacobian

∂κ

κ

n

u
L

u
R

Outline

1 Introduction and Motivation

2 Numerical Schemes – Discretization and Solvers

The Discontinuous Galerkin Method

The Compact Discontinuous Galerkin (CDG) Method

Preconditioning for Newton-Krylov Solvers

Reducing the cost: The Line-DG Method

3 Methods for Deforming Domains

High-Order ALE Formulation

Unstructured Mesh Space-Time Methods

Viscous Discretization

General approach for second derivatives:

Write as system of first order equations [Arnold et al 02]:

ut +∇ · Fi(u)−∇ · Fv(u,σ) = 0

σ −∇u = 0

Discretize using DG, choose appropriate numerical fluxes σ̂, û

Various schemes have been proposed:

BR2 [Bassi/Rebay 1998]: Different lifting operator for each edge,
compact connectivities, similar to Interior Penalty (IP)
LDG [Cockburn/Shu 1998]: Upwind/Downwind, non-compact
CDG [Peraire/Persson 2008]:
Modification of LDG for local dependence – sparse and compact

The Local DG Method

Consider Poisson problem −∇ · (κ∇u) = f

Write as system of first order equations,

−∇ · σ = f

σ = κ∇u

Use numerical inter-element fluxes

1

2

3

4

5

6

7

8

σ̂ = {σh} − C11[uh] + C12[σh]

û = {uh} − C12 · [uh]

where {·}, [·] denote averaging and difference

In particular, choosing C12 = 1 or −1 depending on a switch for

each edge, will upwind/downwind σ̂, û

The Local DG Scheme

Solving for the variables σh gives

σh = κ∇huh + σ̄h

where

σ̄h = κr([uh]) + κl(C12 · [uh]) + boundary terms

and r(φ) and l(q) are lifting operators (essentially L2-projections)

In general, this introduces non-local

couplings since the lifting operators involve

all element edges

1

2
3

4

The Compact DG Scheme

In the CDG scheme, we split the lifting operators into sums of

edge-wise lifting operators re(φ), le(q), and set

σ̂ = {σe
h} − C11[uh] + C12[σe

h]

û = {uh} − C12 · [uh]

where σe
h = κ∇huh + σ̄e

h, with

σ̄e
h = κre([uh]) + κle(C12 · [uh]) + boundary terms

Since only the lifting operator corresponding

to the current edge is used, only neighboring

elements are connected

1

2
3

4

Error Estimates

In primal form, the LDG scheme becomes (ignoring bnd terms):∫
Ω
κ(r([u]) + l(C12 · [u])) · (r([v]) + l(C12 · [v])) dx =∑

e∈Ei

∑
f∈Ei

∫
Ω
κ(re([u]) + le(C12 · [u])) · (rf ([v]) + lf (C12 · [v])) dx

The CDG scheme excludes some terms that are indefinite:∑
e∈Ei

∫
Ω
κ(re([u]) + le(C12 · [u])) · (re([v]) + le(C12 · [v])) dx =

∑
e∈Ei

∑
f∈Ei

δef

∫
Ω
κ(re([u]) + le(C12 · [u])) · (rf ([v]) + lf (C12 · [v])) dx

Non-compact terms are eliminated but the scheme remains stable

Error Estimates

Coercivity and boundedness for the CDG scheme same as for

LDG, leading to a-priori estimates:

|||u− uh||| ≤ Chp|u|p+1,Ω

and

||u− uh||0,Ω ≤ Chp+1|u|p+1,Ω

with the norm

|||v|||2 =
∑
K∈Th

|v|21,K +
∑
e∈Ei

||re([v])||20,Ω +
∑

e∈∂ΩD

||rD(v)||20,Ω

Assumes C11 = O(h−1), but is observed numerically for C11 = 0

The CDG Method – Summary

1

1

2

2

3

3

4

4

and

and

CDG :

LDG :

BR2 :

1

2
3

4

Modification of numerical fluxes in LDG scheme

Excludes non-compact and indefinite terms

Provably optimal accuracy O(hp+1)

Higher stability/accuracy than LDG/BR2

Sparser than LDG/BR2/IP

10−2 10−1 100
10−12

10−10

10−8

10−6

10−4

10−2

100

p=1

p=2

p=3

p=4

p=5

∆ x

L 2 e
rro

r

CDG
LDG
BR2

Outline

1 Introduction and Motivation

2 Numerical Schemes – Discretization and Solvers

The Discontinuous Galerkin Method

The Compact Discontinuous Galerkin (CDG) Method

Preconditioning for Newton-Krylov Solvers

Reducing the cost: The Line-DG Method

3 Methods for Deforming Domains

High-Order ALE Formulation

Unstructured Mesh Space-Time Methods

Jacobian Matrix Sparsity Structure

Dual mesh connectivity, with each entry

a large complete graph Aij

Off-diagonal blocks actually sparser with

CDG, but assume dense for simplicity

Size N of submatrices Aij is often > 100

Block-based storage format essential for

high performance using BLAS routines

For other structures (e.g. elimination

matrices), use block-wise compressed

column

1

2

3

4

5

6
7

8

9

10

11

12

1314

15

Preconditioners for Krylov Methods

Preconditioning required for fast convergence in Krylov methods

Standard point-wise Jacobi, ILU, etc, ineffective for DG

Block Jacobi and Gauss Seidel are generally poor:

ÃJ
ij =

Aij if i = j,

0 if i 6= j,
and ÃGS

ij =

Aij if i ≤ j,

0 if i > j.

Block-ILU(0) algorithm ÃILU = L̃Ũ effective for good orderings

Block-ILU(0) postsmoothing for coarse scale correction [Persson,

Peraire 2008], cheap, general purpose preconditioner

Element Order Dependency

Properties of Gauss Seidel and ILU preconditioners highly

dependent on the ordering of the elements

For upwinded scalar convection, “ordering by lines” gives an

optimal upper triangular matrix

But for viscous or multivariate problems, best ordering not clear

Matrix-approach: Minimize error in

the approximations, rather than using

physical observations

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

0 50 100 150 200 250 300

0

50

100

150

200

250

300

nz = 2475

Minimum Discarded Fill Element Ordering

Greedy algorithm for element ordering [Persson, Peraire 2008]:

At step j, if j′ is chosen next, we would discard the fill

∆Ũ(j,j′)
ik = −Ũij′Ũ−1

j′j′ Ũj′k, for neighbors i ≥ j, k ≥ j of element j′

Choose the j′ that minimizes the norm of the discarded fill

w(j,j′) = ‖∆Ũ(j,j′)‖F

Some simplifications, min-heap data structure =⇒ O(n log n) cost

Increased locality: Consider only neighbors for j′

Effect of Ordering on ILU

MDF ordering makes

block-ILU0 with coarse grid

correction almost perfect for

convection-diffusion

Good element ordering critical

for Navier-Stokes as well:
10

−6
10

−4
10

−2
10

0
10

2
10

4
10

6
10

0

10
1

10
2

10
3

ε

G
M

R
E

S
 It

er
at

io
ns

BILU0
BJ−p1
BILU0−p1

Convection dominated Diffusion dominated

Problem Element Ordering
Random RCM MDF

Inviscid 51 27 12
Laminar, Re=1,000 200 135 12
Laminar, Re=20,000 197 139 27
RANS, Re=106 98 99 18

Convergence – Model Navier-Stokes Problem

×= No convergence after 1,000 iterations

Problem Parameters Preconditioner/Iterations
Block Jacobi Block G-S Block ILU0

∆t M B
J

B
J-

p1

B
G

S

B
G

S
-p

1

B
IL

U
0

B
IL

U
0-

p1

Inviscid 10−3 0.2 24 19 14 11 5 4
10−1 0.2 187 85 73 49 12 6
∞ 0.2 840 142 456 72 40 9

10−3 0.01 200 112 111 67 15 6
10−1 0.01 × × × 532 94 10
∞ 0.01 × × × × 374 16

Laminar 10−3 0.2 50 34 25 19 4 4
Re=1,000 10−1 0.2 × 597 477 225 11 5

∞ 0.2 × × × × 37 7
10−3 0.01 98 66 51 33 8 5
10−1 0.01 × 619 × 207 27 9
∞ 0.01 × × × 748 135 12

Convergence – Model Navier-Stokes Problem

×= No convergence after 1,000 iterations

Problem Parameters Preconditioner/Iterations
Block Jacobi Block G-S Block ILU0

∆t M B
J

B
J-

p1

B
G

S

B
G

S
-p

1

B
IL

U
0

B
IL

U
0-

p1

Laminar 10−3 0.2 26 19 14 11 4 4
Re=20,000 10−1 0.2 456 220 219 113 16 8

∞ 0.2 × × × × 236 20
10−3 0.01 160 90 61 38 12 6
10−1 0.01 × × × 735 80 16
∞ 0.01 × × × × × 35

RANS 10−3 0.2 76 56 33 28 8 7
Re=106 10−1 0.2 × × × × 35 25

∞ 0.2 × × × × 70 18
10−3 0.01 411 231 174 110 14 9
10−1 0.01 × × × × 46 16
∞ 0.01 × × × × 132 28

ILU Parallelization – Domain Decomposition

In parallel, use partition-wise ILUs with MDF ordering

Partition using the weights Cij = ‖A−1
ii Aij‖F

Essentially a “non-overlapping Schwartz preconditioner with

incomplete solutions”

Approaches Jacobi as # partitions→ # elements

Good option for many

problems – GMRES iterations

cheap compared to matrix

creation

Sandia National Laboratories’ Low Re VAWT
Sandia National Labs tow tank experiment from 1979

ILES simulation of vertical axis

wind turbines (VAWT)

[Kanner/Persson, AIAA J., 2015]

θ (deg)

C
T

−90 −45 0 45 90 135 180 225 270
−3

−2

−1

0

1

2

3

4
ILES , C p= 0.33

ILES , (3D), C p= 0.36

CACTUS , C p= - 0.17

CACTUS+DS , C p= - 0.17

DMST , C p= - 0.03

DMST+DS , C p= - 0.16

Ex p r. , C p= 0.34

Optimal Flapping Kinematics

Goal: To design and analyze an effective flapping

wing shape for cruising flight

A multi-fidelity approach with a range of simulation

tools [Willis & Persson 2011, 2014]

N-S lift (green), N-S drag (blue), DLM (dashed)

Outline

1 Introduction and Motivation

2 Numerical Schemes – Discretization and Solvers

The Discontinuous Galerkin Method

The Compact Discontinuous Galerkin (CDG) Method

Preconditioning for Newton-Krylov Solvers

Reducing the cost: The Line-DG Method

3 Methods for Deforming Domains

High-Order ALE Formulation

Unstructured Mesh Space-Time Methods

Computational Cost – DG Jacobian Matrices

1

1

2

2

3

3

4

4

and

and

CDG :

LDG :

BR2 :

Number of non-zeros in Jacobian matrix for

nodal DG (C solution components, T

simplex elements, degree p, dimension D)

Nodes per element S =
(p+D

p

)
= O(pD),

nodes per face s =
(p+D−1

D−1

)
= O(pD−1)

Example: 3-D Navier-Stokes, p = 3,

T = 100, 000:

Quantity Size Example storage

Solution vector SCT 80 MB

Inviscid Jacobian (S2 + (D + 1)s2)C2T 16 GB

CDG Jacobian (S2 + (D + 1)Ss)C2T 24 GB

BR2/IP Jacobian (S2 + (D + 1)(S + s)s)C2T 32 GB

Full block Jacobian (D + 2)S2C2T 40 GB

DG Methods – Stencil comparison

Nodal DG couples all nodes inside

element =⇒ stencil size O(pD)

Schemes with finite-difference type

coupling have stencil size O(Dp)

Line-DG [Persson, JCP 2012]:

Apply 1-D DG for each coordinate

Plots show first-order operator

Assumptions:

SD/DGSEM based on
Gauss-Legendre solution nodes
Nodal-DG consistently integrated

Line-DG maximizes sparsity:

Line-based stencils
Solution nodes on edges

Li
ne

−
D

G

0 20 40 60 80

0

20

40

60

80

nz = 688

N
od

al
 D

G

0 20 40 60 80

0

20

40

60

80

nz = 1408

D
G

S
E

M
 /

S
D

0 20 40 60 80

0

20

40

60

80

nz = 1072

Line-based Discontinuous Galerkin

Map system of conservation law from v to reference element V:

∂u
∂t

+∇ · F(u) = 0

J
∂u
∂t

+∇X · F̃(u) = 0

0

1

0 1
X1

X2

V

si

sj

X00 Xp0

X0p Xpp

Xij N+
1N−

1

N+
2

N−
2

x1

x2

v

x00

xp0

x0p

xpp

xij

n−2 (xi0)

n+
2 (xip)

n−1 (x0j)

n+
1 (xpj)

x = x(X)

where F̃ = (f̃1, f̃2, f̃3) = JG−1F, with G = ∇Xx and J = det(G)

Consider curve xjk(ξ) = x(ξ,Xj,Xk), find rjk(X1) ≈ ∂ f̃1/∂X1 by a 1-D

DG procedure: Find rjk(ξ) ∈ Pp([0, 1])m such that∫ 1

0
rjk(ξ) · v(ξ) dξ =

∫ 1

0

df̃1(ujk(ξ))

dξ
· v(ξ) dξ

=
̂̃f1(u+

jk (1),ujk(1)) · v(1)− ̂̃f1(ujk(0),u−jk (0)) · v(0)−
∫ 1

0
f̃1(ujk(ξ)) ·

dv
dξ

dξ

Line-based Discontinuous Galerkin

Use existing approximate Riemann solver as-is

Find rjk(ξ) by standard finite element procedure

ujk(ξ) =

p∑
i=0

uijkφi(ξ), rjk(ξ) =

p∑
i=0

rijkφi(ξ)

Discrete form Mrjk = b, find rjk by solving m linear systems with

(p + 1)-by-(p + 1) mass matrix M

Repeat along each direction to obtain semi-discrete formulation:

Jijk
duijk

dt
+

3∑
n=1

r(n)
ijk = 0

Observations:
All integrals are one-dimensional
No statement about integration/flux points: Integrals assumed exact
Numerical fluxes only evaluated point-wise

Sparsity patterns

Line-DG SD / DGSEM Standard Nodal DG

connectivities / node (3-D hexahedrals)
Polynomial order p 1 2 3 4 5 6 7 8 9 10

2-
D

Line-DG connectivities 7 9 11 13 15 17 19 21 23 25
DGSEM/SD connectivities 11 17 23 29 35 41 47 53 59 65
Nodal-DG connectivities 8 13 20 29 40 53 68 85 104 125

3-
D

Line-DG connectivities 10 13 16 19 22 25 28 31 34 37
DGSEM/SD connectivities 16 25 34 43 52 61 70 79 88 97
Nodal-DG connectivities 20 45 88 155 252 385 560 783 1060 1397

For p = 3 the Line-DG method is 5.5 times sparser than nodal DG,

and for p = 10 it is almost 40 times sparser

Line-DG – Efficient Block Solver

Block-Jacobi, block-ILU, etc, need efficient block solvers that take

advantage of the sparsity pattern

Direct solvers

No good separators, fill

Point-wise Jacobi, ILU, etc

As before, very poor convergence

FFT

Only for certain operators /
discretizations

Alternating Direction Implicit (ADI)

Highly problem dependent

Tensor product methods

Not exactly tensor products

0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

35

nz = 396

Tensor Product Matrix Diagonalization

[Lynch, Rice, Thomas, 1964]

Suppose the matrix has the form

K = I ⊗ A + B⊗ I
System Kx = f with x = vec(X) and f = vec(F) can then be written

AX + XBT = F
Find eigenvalue decompositions of A and B

A = VAΛAV−1
A , B = VBΛBV−1

B

Plug in, left-multiply by V−1
A , right-multiply by VT

B

ΛA(V−1
A XVT

B) + (V−1
A XVT

B)ΛB = V−1
A FVT

B

or ΛAW + WΛB = G, with solution

Wij =
1

λA,i + λB,j
Gij

Tensor Product Matrix Diagonalization

[Lynch, Rice, Thomas, 1964]

More generally, if

K = A⊗ B + C ⊗ D,

multiply by A−1 ⊗ D−1,

(A−1 ⊗ D−1)K = I ⊗ (D−1B) + (A−1C)⊗ I

and apply the same technique as before

Tensor Product Approximation

Problem: In general the matrix is not in tensor product form

However, it might be close enough to form a preconditioner

[Van Loan, 2000] Find approximation

K ≈ A⊗ B + C ⊗ D

using the Kronecker product SVD:

A =

A11 · · · A1N
...

. . .
...

AM1 · · · AMN

 =
MN∑
k=1

σkBk ⊗ Ck

Keep first 2 terms to minimize

‖K − A⊗ B− C ⊗ D‖F

Compute efficiently using block power iterations / Arnoldi

Numerical Results – Single Block

Consider convection problem

∇ ·
(

a(x, y)

b(x, y)

)
= 0

on a single square block with p = 5

GMRES iterations for Jacobi:

Problem Tensor product Full block

a(x, y) = const, b(x, y) = const 1 1

a(x, y) = a(x), b(x, y) = b(y) 1 1

a(x, y) = 1 + y, b(x, y) = 1 + x 7 1

a(x, y) = (1 + x2)(1 + y) + 1, b(x, y) = 4x + y + 2 7 1

Numerical Results – Multiple Elements

Consider convection problem

∇ ·
(

a(x, y)

b(x, y)

)
= 0

on a 10-by-10 grid of elements with p = 5

GMRES iterations for Jacobi:

Problem Tensor product Full block

a(x, y) = const, b(x, y) = const 19 19

a(x, y) = a(x), b(x, y) = b(y) 19 19

a(x, y) = 1 + y, b(x, y) = 1 + x 21 20

a(x, y) = (1 + x2)(1 + y) + 1, b(x, y) = 4x + y + 2 21 20

Numerical Results – Convection-Diffusion

Consider convection-diffusion problem

∇ ·
(

a(x, y)

b(x, y)

)
−∇ · (ε∇u) = 0

on a 10-by-10 grid of elements with p = 5

GMRES iterations for Jacobi:

Problem Tensor product Full block

a(x, y) = general, b(x, y) = general, ε = 10−3 28 28

a(x, y) = general, b(x, y) = general, ε = 10−1 137 137

Numerical Results – Euler equations

Consider the Euler equations (compressible gas dynamics)

System of 4 coupled variables – diagonalize each component

separately and solve 4-by-4 system

Non-linear but well approximated by tensor products

0 10 20 30 40 50 60 70
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Iterations

R
e

s
.

n
o

rm

Full block

Approximate

Extensions

3-D

Unclear how to approximate

K ≈ A1 ⊗ B1 ⊗ C1 + A2 ⊗ B2 ⊗ C2 + A3 ⊗ B3 ⊗ C3

using KP-SVD
Unclear how to solve this using matrix diagonalization
(in the general case)

Incomplete LU

Additional terms from the LU updates of the diagonal blocks

Outline

1 Introduction and Motivation

2 Numerical Schemes – Discretization and Solvers

The Discontinuous Galerkin Method

The Compact Discontinuous Galerkin (CDG) Method

Preconditioning for Newton-Krylov Solvers

Reducing the cost: The Line-DG Method

3 Methods for Deforming Domains

High-Order ALE Formulation

Unstructured Mesh Space-Time Methods

Methods for Deforming Domains

Arbitrary Lagrangian-Eulerian (ALE) methods:
Body-fitted mesh motion based on a time-varying mapping
Remeshing techniques needed for large deformations,
which often reduce the accuracy
Special treatment for satisfaction of the geometric conservation law

Space-time methods:
Fully consistent discretization in both space and time
Allow for arbitrary domain deformations and topology changes
Need for robust and efficient 3D/4D mesh generators

Here we present a number of solutions for large deformations,
all based on a mesh moving technique with entirely localized
operations: [Wang/Persson 2013, 2015; Wang Ph.D. thesis 2015]

1 A space-time DG discretization for any order and space dimension
2 A fully unstructured space-time mesh generator for 2D/3D + time
3 A combined implicit ALE / L2-projection approach

Outline

1 Introduction and Motivation

2 Numerical Schemes – Discretization and Solvers

The Discontinuous Galerkin Method

The Compact Discontinuous Galerkin (CDG) Method

Preconditioning for Newton-Krylov Solvers

Reducing the cost: The Line-DG Method

3 Methods for Deforming Domains

High-Order ALE Formulation

Unstructured Mesh Space-Time Methods

ALE Formulation for Deforming Domains

Use mapping-based ALE formulation for moving domains

[Visbal,Gaitonde 2002], [Persson,Bonet,Peraire 2009]

Map from reference domain V to physical deformable domain v(t)

Introduce the mapping deformation gradient G = ∇XG and the

mapping velocity vX = ∂G
∂t

∣∣
X, and set g = det(G)

For numerically computed grid motions, compute stage consistent

velocities by imposing

xi = x0 + ∆t
s∑

j=1

aijνj =⇒ νi =

s∑
j=1

(A−1)ij
xj − x0

∆t
, i = 1, . . . , s,

where A is the implicit Runge-Kutta Butcher tableaux

[Froehle & Persson, 2014]

Transform equations to account for the motion

Transformed Equations

The system of conservation laws in the physical domain v(t)

∂Ux

∂t

∣∣∣∣
x

+ ∇x · Fx(Ux,∇xUx) = 0

can be written in the reference configuration V as

∂UX

∂t

∣∣∣∣
X

+ ∇X · FX(UX,∇XUX) = 0

where

UX = gUx , FX = gG−1Fx − UXG−1vX

and

∇xUx = ∇X(g−1UX)G−T = (g−1∇XUX − UX∇X(g−1))G−T

Details in [Persson,Bonet,Peraire 2009], including how to satisfy the

so-called Geometric Conservation Law (GCL)

ALE Formulation for Deforming Domains

Mapping-based formulation

gives arbitrarily high-order

accuracy in space and time

10
−1

10
0

10
−8

10
−6

10
−4

10
−2

10
0

Element size h

L 2−
er

ro
r

p=1

p=2

p=3

p=4

p=5

1
2

1

6

Mapped
Unmapped

Nonlinear Elasticity for Deforming Domains

Non-linear solid mechanics approach: [Persson & Peraire 2009]

An initial reference mesh corresponds to an undeformed solid
External forces come from the true moving boundary constraints
Solving for a force equilibrium gives the deformed (curved)
boundary conforming mesh

High-order ALE methods require a smooth mapping G(X, t) such

that the elements are aligned with the moving boundaries

G(X, t)

Example: HO Workshop Moving Domain Problem

Deforming domain problem of a NACA 0012

airfoil undergoing a flapping-type motion

Freestream Mach = 0.2, Re = 1000

Steady-state solution as initial condition
h(t)

θ(t)

c
c/3

Maximize energy the fluids exerts on the airfoil during the motion:

maximize
h(t),θ(t)

∫ T

0

∫
Γ

f · v dS dt

subject to h(0) = h′(0) = h′(T) = 0, h(T) = 1

θ(0) = θ′(0) = θ(T) = θ′(T) = 0

∂U
∂t

+∇ · F(U,∇U) = 0

h(t), θ(t) discretized via clamped cubic splines

Fully discrete time-adjoints for DIRK-DG schemes

Discrete adjoints for sensitivities of a time-integrated system

Simple derivation, true derivatives (incl. discretization errors)
Consider a diagonally implicit Runge-Kutta (DIRK) scheme:

u(n) = u(n−1) +

s∑
i=1

bik(n)
i , Mk(n)

i = ∆tnr

u(n−1) +

i∑
j=1

aijk(n)
j , µ, tn−1 + ci∆tn

We form the fully-discrete, time-dependent PDE-constrained
optimization problem:

minimize
u(i)∈RNu ,k(1)

1 ∈R
Nu ,µ∈RNµ

J(u(0), . . . , u(Nt), k(1)
1 , . . . , k(Nt)

s , µ)

subject to u(0) = u0(µ), u(n) = u(n−1) +
s∑

i=1

bik(n)
i

Mk(n)
i = ∆tnr

u(n−1) +

i∑
j=1

aijk(n)
j , µ, tn−1 + ci∆tn

Fully discrete time-adjoints for DIRK-DG schemes

The corresponding first-order optimality conditions give the

fully-discrete adjoint evolution equations

These have the natural form of an evolution backwards in time,

and the stages are solved in reverse order

Using the primal and dual solutions, we can obtain the gradient

dJ/dµ of the discretized output functional with respect to the

parameters using a straight-forward application of the chain rule

Also apply for gradient of general PDE-dependent constraints

Optimize using the L-BFGS-B algorithm

Optimization Results

Initial guess (): h0(t) = (1− cos(πt/T))/2, θ0(t) = 0

Optimization 1 (): h0(t) = (1− cos(πt/T))/2, θ(t) parametrized

Optimization 2 (): h(t), θ(t) parametrized

0 1 2
0

0.5

1

t

h(
t)

0 1 2
0

0.5

1

t

θ(
t)

0 20 40
−2

−1

0

1

iteration
∫ f
·v

dt

Partitioned FSI using IMEX schemes

[Froehle & Persson 2013, 2014]

IMEX schemes can be used to derive accurate partitioning

methods for fully coupled FSI problems

Treat a predicted traction t̃ explicitly and everything else implicitly:

r =

[
rf (uf ; x(us))

rs(us; t(uf))

]
=

[
rf (uf ; x(us))

rs(us; t̃)

]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

implicit

+

[
rfs(t(uf)− t̃)

]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

explicit

Use Runge-Kutta based predictor [Van Zuijlen & Bijl 2005]

t̃n,i =

i−1∑
j=1

âij − aij

aii
tn,j

The remaining structure and fluid components obtained by

back-solving of the block upper-triangular system

Consistent forces, no subiterations required

Verification: Benchmark Pitching Airfoil System

Simple FSI benchmark problem for studying the high-order

accuracy of the IMEX scheme

Rigid pitching/heaving NACA 0012 airfoil, torsional spring

Up to 5th order of accuracy, similar to solving fully coupled system

0.0 0.5 1.0 1.5 2.0
T

0.00

0.01

0.02

0.03

0.04

0.05

0.06

th
et

a

nofluid
2e-1
1e-1
4e-2
2e-2
2e-3
2e-4

Angle θ(t) vs time t

Entropy 10-2 10-1 100

Time step ∆t

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

R
e
la

ti
v
e
 e

rr
o
r

in
 θ

(t
)

1
1

1

3

1

4

1

5
Weak Coupling

ARK3

FC-ARK3

ARK4

FC-ARK4

ARK5

FC-ARK5

Verification: Cantilever System

Standard FSI benchmark problem. [Wall & Ramm 1998]

Flow around elastic cantilever behind a square bluff body

5.5 14.0

12.0
1.0

1.0
4.0

0.06

Tip frequency: f = 3.14 Hz (Literature: 2.98 – 3.25 Hz)

Tip displacement: dmax = 1.09 cm (Literature: 0.95 – 1.25 cm)

Flow around Membrane, 3-D

Angle of attack 22.6◦, Reynolds number 2000.

Flexible structure reduces leading edge separation.

Fluid: 108k degree 3 tetrahedra (11M DOF)

Solid: 1k degree 3 tetrahedra

Mesh Flow field

Outline

1 Introduction and Motivation

2 Numerical Schemes – Discretization and Solvers

The Discontinuous Galerkin Method

The Compact Discontinuous Galerkin (CDG) Method

Preconditioning for Newton-Krylov Solvers

Reducing the cost: The Line-DG Method

3 Methods for Deforming Domains

High-Order ALE Formulation

Unstructured Mesh Space-Time Methods

Domains with Large Deformations

For large deformations, it is in general not possible to deform the

meshes smoothly – remeshing required

For efficient numerical schemes, use local mesh operations

Radial basis functions

Nonlinear elasticity

The DistMesh Mesh Generator

High quality meshes obtained using the DistMesh algorithm
[Persson, Ph.D. thesis, ’05]

1. Start with any topologically correct initial mesh
2. Move nodes to find force equilibrium in edges

Project boundary nodes using implicit geometry φ(x)

Update element connectivities with Delaunay

Excellent properties:

Very simple (1 page of MATLAB)
Implicit geometries→ No CAD required
Very high element qualities
Moving meshes/deforming domains

Widely used:

Numerous books and courses
Rewritten in C, C++, C#, Fortran 77/90,
Python, Mathematica, Octave

The DistMesh Mesh Generator

Spring-based non-linear compressive
force analogy for mesh motion

p(n+1) = p(n) + δ
∑

i

Fi

|Fi(l)| =

k(l− l0) if l ≥ l0,

0 if l < l0,

Perform topological transformations

(“edge flips”) to improve element

connectivities

The DistMesh Mesh Generator on Surfaces

Element flips and DistMesh in 3D

Local element flips for 3D tetrahedra:

Restricts the topology changes to a small number of elements

Moving Meshes

In addition to generating high-quality initial meshes, the DistMesh

algorithm is excellent for iterative generation of moving meshes

The resulting mesh sequence involves two types of operations:
1 Smooth node movements
2 Localized element topology updates

This allows for integration with efficient numerical schemes

Space-time Mesh Generation

Local mesh operations significantly simplify the process of

space-time slab mesh generation

Each local prism triangulation depends on the choice of the

diagonals on the lateral faces

A depth-first algorithm for the global assignment of diagonals

Local Triangulation of Prisms

Local Triangulation of Prisms

Index the vertices of each prism
Define a sign function for each lateral face as

Si(pt
i, p

t+∆t
i , pt

j, p
t+∆t
j) =

−1 if the diagonal edge is pt
ip

t+∆t
j

+1 if the diagonal edge is pt+∆t
i pt

j

, 1 ≤ i ≤ n

where j = (i mod n) + 1 and n is the total number of lateral faces

Global Space-Time Mesh Generation

Generate a global Space-Time unstructured mesh by assigning
one diagonal for each lateral face of each prism:

For each prism, the diagonals of lateral faces can give a valid
triangulation.
Each prism should match the diagonals of shared lateral faces with
their neighbor prisms.

Equivalently, consider a 2D mesh with

triangles and quadrilaterals. Assign

−1 or +1 to each edge:

We use a depth-first search algorithm

for sign assignment.

Examples of Diagonal Matching

Efficient algorithm for generation of globally consistent space-time

mesh (see paper for details)

Edge collapsing and Edge splitting

Two more local mesh operations for adding and removing nodes:

Space-Time Discontinuous Galerkin Formulation

Fully unstructured space-time DG method:
Fully consistent discretization in both space and time
Allows for arbitrary mesh deformations and topology changes

Define the broken DG spaces Vh
T and Σh

T associated with a
triangulation T h

[0,T] = {K} of the space-time domain Ω[0,T] as:

Vh
T = {v ∈ [L2(Ω[0, T])]5 | v|K ∈ [Pp(K)]5 ∀K ∈ T h

[0,T]},

Σh
T = {σ ∈ [L2(Ω[0, T])]5×3 | σ|K ∈ [Pp(K)]5×3 ∀K ∈ T h

[0.T]},

Discretize the first-order system using a standard DG formulation
on the space-time domain Ω[t1, t2].

−
∫

K
F̃inv(uh) : ∇XTvh dx +

∮
∂K

(˜̂Finv · n) · vh ds

= −
∫

K
Fvis(uh, qh) : ∇Xvh dx +

∮
∂K

(F̂vis · ns) · vh ds, ∀vh ∈ Vh
T∫

K
qh : σh dx = −

∫
K

uh · (∇X · σh) dx +

∮
∂K

(ûh ⊗ ns) : σh ds, ∀σh ∈ Σh
T .

Example: Euler Vortex, Convergence

Propagate an Euler Vortex on a

fixed domain but moving mesh

Optimal order of convergence

O(hp+1) for fixed and moving

mesh.
10

−0.6
10

−0.4
10

−0.2
10

0
10

0.2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Typical element size h

L
2
 e

rr
o
r

p=1

p=2

p=3

1

2

1

3

1

4

Fixed Mesh

Moving mesh

Example: Spinning Cross

Flow around a spinning cross with

ω = 1, Reynolds number 3000, Mach

0.2, polynomial degree p=2.

Graded mesh around cross moves

rigidly with geometry movement

Mesh improvement techniques

applied to the remaining elements

Example: Tandem Foils

Two foils are placed very close and rotated based on

θ = A sin(−2πft) with A = π/6 and f = 0.05. Reynolds number

3000, Mach 0.2, polynomial degree p=2.

Example: Tandem Foils

0 2 4 6 8 10 12 14 16 18 20
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time

L
if
t
F

o
rc

e

Foil A

Foil B

0 2 4 6 8 10 12 14 16 18 20
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time

D
ra

g
 F

o
rc

e

Foil A

Foil B

Fully unstructured 4D space-time mesh generation

4D is difficult to visualize, and we extend concepts such as

‘Prisms’ and ‘Lateral Faces’ using combinatorial notions

2D ‘Prism’ 3D Prism 4D ‘Prism’

2D Prism 3D Prism 4D Prism

Geometry of Bottom/Top Face Line Segment Triangle Tetrahedra

Geometry of Lateral Faces Line Segment Rectangle Triangular prism

Number of Lateral Faces 2 3 4

Number of Diagonals
(2

2

) (3
2

) (4
2

)

Fully unstructured 4D space-time mesh generation

The following result can be shown for obtaining valid simplex
triangulations of a simple 4D prism:

Theorem

If the 4D prism mesh is constructed purely by simple 4D-prisms, the indexing
approach can always triangulate the prism mesh into a valid simplex mesh.
More precisely, in each simple 4D-prism, if we have the ordered vertices
{pV,t

(1), p
V,t
(2), p

V,t
(3), p

V,t
(4)} with I(1) < I(2) < I(3) < I(4), the simple 4D-prism is

triangulated by the following four 4D-simplices with vertex sets

T1 = {pV,t
(1), p

V,t+∆t
(1) , pV,t+∆t

(2) , pV,t+∆t
(3) , pV,t+∆t

(4) },

T2 = {pV,t
(1), p

V,t
(2), p

V,t+∆t
(2) , pV,t+∆t

(3) , pV,t+∆t
(4) },

T3 = {pV,t
(1), p

V,t
(2), p

V,t
(3), p

V,t+∆t
(3) , pV,t+∆t

(4) },

T4 = {pV,t
(1), p

V,t
(2), p

V,t
(3), p

V,t
(4), p

V,t+∆t
(4) }

Fully unstructured 4D space-time mesh generation

Obtain a global 4D simplex mesh by appropriate choices of lateral

face orientations

This allows for an optimal space-time mesh (no additional nodes)

for all elements not involved in topology changes

For tetrahedra involved in flips, resort to a “point insertion

technique” which is compatible with any face configuration

Small additional number of nodes, since flips are unusual

Quadrangular Case Pentagonal Case Hexagonal Case

Simplex point insertion

Need to determine position of the additional node

For simplicity, consider the cross-section polygon at half-height

Find the node location that produces non-inverted elements and

maximizes the element qualities

min
xe

∑
K∈T h

1
Q(K)4

s.t. Axe ≤ b

where the inequality constraints

express the visibility conditions

Only apply to elements involved in

flips – few additional nodes/elements
Inverted elements

Extruded 3D Euler vortex convergence test

Initial mesh at t = 0 Moving mesh at t = T

Sample solution

10
−0.7

10
−0.5

10
−0.3

10
−0.1

10
0.1

10
−4

10
−3

10
−2

10
−1

Typical element size h

D
is

c
re

te
 L

2
 e

rr
o
r

p=1

p=2

p=3

1

2

1

3

1

4

Fixed mesh

Moving mesh

Convergence Plot

Summary

DG and related high-order methods are getting sufficiently mature

to handle realistic problems

For moving domains with large deformations, novel mesh

generation techniques and numerical schemes are required

Constructive methods for generation of unstructured space-time

3D/4D simplex meshes

Applications in DNS/LES/DDES flow problems, flapping flight,

wind turbine simulations, etc

	Introduction and Motivation
	Numerical Schemes – Discretization and Solvers
	The Discontinuous Galerkin Method
	The Compact Discontinuous Galerkin (CDG) Method
	Preconditioning for Newton-Krylov Solvers
	Reducing the cost: The Line-DG Method

	Methods for Deforming Domains
	High-Order ALE Formulation
	Unstructured Mesh Space-Time Methods

