
Circuit Simulation and Moving Mesh Generation
Gilbert Strang

Department of Mathematics, MIT
gs@math.mit.edu

http://math.mit.edu/˜gs

Per-Olof Persson
Department of Mathematics, MIT

persson@math.mit.edu
http://math.mit.edu/˜persson/mesh

Abstract— This paper outlines two different topics in compu-
tational engineering:

1. Many areas of applied mathematics lead to the same
fundamental problem in numerical linear algebra. We will
identify this problem for a network of resistors. Then we
discuss the nonlinear problems of circuit simulation, and
algorithms for solving them.

2. For partial differential equations (and also for computer
graphics), an essential step is the generation of a well-
spaced mesh. We describe a short, simple, and public code
for unstructured meshes. Then we illustrate recent ideas
in moving the mesh as the region changes.

The third topic in Sapporo was wavelets. For a full exposition
we refer to our textbook Wavelets and Filter Banks (Gilbert Strang
and Truong Nguyen, Wellesley-Cambridge Press, 1996). A two-
part Japanese translation of this book is published by Baifukan.
This book concentrates on the connections to signal processing
and image processing, including the wavelet transforms chosen
for JPEG2000. For recent articles and other works on this active
topic we refer to the Wavelet Digest on the web.

With the space and time that is available, we want to emphasize
the “fundamental problem of applied mathematics” and the new
ideas in mesh generation. Our work on linear algebra (the es-
sential subject!) appears on the course page web.mit.edu/18.06.
Video lectures are also available on MIT’s OpenCourseWare
website ocw.mit.edu under Mathematics. We hope these will
be helpful to the reader.

I. FUNDAMENTAL PROBLEMS OF NETWORKS

We begin with a circuit of m linear resistors connecting
n nodes. The m + n unknowns are the voltages x1, . . . , xn

(the potentials at the nodes) and the currents y1, . . . , ym in
the edges. There can be current sources f1, . . . , fn or voltage
sources b1, . . . , bm (batteries in series with the resistors) or
both.

In this very classical problem, we emphasize the “3-step
framework”, see Fig. 1. The material properties (eventually
they become nonlinear) are in Ohm’s Law y = C(b − Ax).
This involves each conductance ci = (1/resistance) in the
diagonal matrix C. Kirchhoff’s Current Law is ATy = f .
We can combine these equations using a block matrix of size
m + n:

Fundamental
Problem

[

C−1 A
AT 0

] [

y
x

]

=

[

b
f

]

(1)

The question is how to understand (and solve) this linear
system. It appears everywhere in applied mathematics—we
add more examples below. The block matrix has m positive

pivots and eigenvalues (and n negative). We use m pivots in
eliminating y to reach the symmetric matrix ATCA:

[

C−1 A
AT 0

]

→

[

C−1 A
0 −ATCA

]

. (2)

Eliminating y leaves

ATCAx = ATCb− f. (3)

K = ATCA has the great advantage that it is positive definite.
In the finite element method, K is the “stiffness matrix”! Finite
element codes almost always work with this displacement
method, solving first for the unknowns x at the nodes. Then
y = C(b−Ax) gives the currents or edge forces.

We mention Modified Nodal Analysis [12], which simplifies
the treatment of voltage sources (also op-amps and trans-
formers and dependent sources). Variants of MNA are widely
applied in simulation packages like SPICE.

There are three overall approaches to the fundamental
equation (1):

A. Eliminate y and solve Kx = ATCb−f (with boundary
conditions).

B. Solve ATy = f first. The solution is not unique for m >
n. We need a basis v1, . . . , vm−n for the solutions to
ATv = 0. Then y = y0 + any combination

∑

zivi. In
a network the vectors vi come from loops in the graph.
This could be effective if m − n is small compared to
n.

C. Solve the block system directly, usually by a direct
elimination up to n = 104 or 105. A Krylov subspace
iteration with preconditioner is faster with less storage
for very large n. (The mixed method in finite elements,
approximating both stresses y and displacements x,
needs an “inf-sup” or “Babuska-Brezzi” condition to
ensure that the block matrix is uniformly invertible.)

Figure 2 shows the same framework in other applications.
The last figure for nonlinear materials applies to transistors

and diodes. The matrices for circuit simulation become unsym-
metric and very large! Nevertheless they are extremely sparse.
If ordered properly, their LU factors also remain remarkably
sparse. We report here what we learned from very helpful
discussion with Tim Davis.

The key is in reordering the rows to achieve two goals.
First, it is useful to have a nearly zero-free diagonal (this is
a maximal matching graph problem). Then the good feature
of circuit matrices is that a permutation of rows and columns

Linear Networks

voltage drops e = b−Ax

voltages x

currents y = Ce

balance law ATy = f

Difference matrix A Incidence matrix AT

Ohm’s Law

Fig. 1. The “3-step framework” for circuit simulation.

Springs and Masses

displacements x

?

A

spring stretching e -Hooke’s Law
spring forces y = Ce

6
AT

force balance ATy = f

Ideal Flow

Laplacian −div(grad)u

potential u(x, y)

?

A = gradient

potential gradient - fluid velocity

6
AT = −divergence

−div v = source term

Constrained Optimization

or Nonlinear Materials

Lagrange multipliers x

?

A

dual variables e = Ax - primal variables y = C(e)

6
AT

constraint eqns ATy = f

Fig. 2. The framework in other applications, leading to AT C(Ax) = f .

produces a nearly block triangular form. This is important.
Within each block, an approximate minimum degree (AMD)
algorithm orders the rows to reduce fill-in for LU factorization.

In circuit simulation problems, fill-in often multiplies the
original number of nonzero entries by less than 4. Then direct
methods are very successful beyond n = 106. We are concen-
trating here on computing the DC operating point for analog
circuits. (The full problem is a differential-algebraic equation,
and the code moves from the DC point to compute transients.)
Parasitic elements from capacitance between closely placed
wires will harm the block triangular form and increase fill-in.

For modeling transistors with many parameters, parallel ma-
chines are valuable. The sparse “KLU” solution algorithm de-
veloped by Davis and Stanley (cise.ufl.edu/˜davis) runs well
on serial machines. For very large n, Sandia has developed the
Xyce parallel circuit simulator, which adds preconditioning by
incomplete (ILU) factorization. It includes hypergraph parti-
tioning to scale up to distributed memory platforms. Please
see the abstracts on www.us.sandia.gov/nacdm.

II. THE GENERATION OF MOVING MESHES

In [5] we presented a new iterative mesh generation tech-
nique for implicit geometry representations. The inputs to our
algorithm are the signed distance function d(x) to the bound-
ary (negative inside and positive outside), and a mesh size
function h(x) which gives the desired size of the elements.
Assuming a piecewise linear force-displacement relationship
in the mesh edges, we find an equilibrium position for the
nodes. The mesh points that leave the domain during an update
are projected back using the distance function. We showed how
to implement the algorithm in a few dozen lines of MATLAB
code, and the procedure tends to produce high quality meshes.

Here, we describe how to use our algorithm to mesh
geometries that change with time (“moving meshes”). The
iterative formulation is particularly useful for moving meshes
since a good initial configuration is given at each step by
the mesh from the previous step. Typically we only need a
few additional iterations per step to obtain very good meshes.
Also, since our mesh generator is based on distance functions
we can use the level set method to propagate the geometry

 1: Distribute points 2: Triangulate 3: Force equilibrium

Fig. 3. The generation of a non-uniform triangular mesh, by force equilibrium at each node.

according to a given velocity field. In this way we get the
benefits of the level set method (robust interface propagation,
entropy solutions, topology changes, easy extension to higher
dimensions) combined with the flexibility of general purpose
finite element calculations on unstructured meshes.

Our moving algorithm uses a signed distance function φ(x)
discretized on a Cartesian grid to represent the geometry, and
bilinear interpolation to evaluate φ(x) for general x. The
geometry boundary is given by φ(x) = 0, and φ(x) ≤ 0 inside
the geometry. The initial distance function can be computed by
explicit distance calculations close to the geometry boundary
and the fast marching method for the rest of the domain. For
simple initial geometries, φ(x) might also be available in a
closed form expression.

The geometry boundary is then evolved in time according
to a velocity field v(x) or a normal velocity field T (x). These
typically depend on the current (and the previous) geometries.
In two-phase flow, the velocities are obtained by solving the
Navier-Stokes equation using the distribution of the two fluids
that is given by φ(x). The actual propagation of the boundary
is done using the level set method, which solves hyperbolic
PDEs on the Cartesian grid using entropy satisfying numerical
schemes. For a velocity field v = (vx, vy) it solves the
convection equation

φt +∇φ · v = 0 (4)

and for a normal field T it solves the level set equation

φt + T |∇φ| = 0 (5)

(both v and T may depend on space and time). These
equations are solved using numerical discretizations, see [6]
and [2] for details. After evolving φ, it does not in general
remain a signed distance function. We reinitialize in the same
way as we compute the initial distance function, by explicit
updates of the distances close to the boundary φ(x) = 0 and
the fast marching method.

We now turn to the generation of unstructured meshes for
the sequence of discretized distance functions. At each step,
our meshing algorithm needs an initial guess for the location
of the mesh points. In [5] we used a random technique based
on the rejection method to obtain a point density according

to the size function h(x) (Fig. 3, left). The mesh elements
(the connectivity) is then found using the Delaunay algorithm
(Fig. 3, center). We have also implemented a routine based
on local refinements of an initial coarse mesh, which gives
more stable results than the randomized method for complex
geometries. For our moving meshes, this only needs to be done
for the initial geometry. For all the other meshes, a fast start
is obtained by displacing the mesh points a distance v(p)∆t
for each mesh point p.

To improve this initial mesh, we assign forces in the mesh
edges and solve for force equilibrium at the nodes. The force
in an edge depends on the length ` of the edge and on its
unstretched length `0 (which we set proportional to the desired
mesh size h(x) evaluated at the edge midpoint). We use a
linear spring model to push nodes outward:

f(`, `0) =

{

k(`0 − `) if ` < `0,

0 if ` ≥ `0.
(6)

By summing the forces at all mesh positions p (for each co-
ordinate direction) we obtain a nonlinear system of equations
F (p) = 0. We find the positions as a steady-state of

dp

dt
= F (p), t ≥ 0 (7)

using forward Euler. Note that this artificial time-dependence
is unrelated to the (real) time evolution of the geometry as
given by φ(x). After each Euler step we apply normal bound-
ary forces, by projecting boundary points back orthogonally
to the boundary using the distance function:

p← p− φ(p)∇φ(p). (8)

These normal forces may be seen as Lagrange multipliers
which keep the nodes exactly along the boundary. This ex-
pression can be modified to allow general implicit functions
instead of distance functions, either by solving a system of
nonlinear equations for each point (see [5]) or by approximate
first- and second order projections.

During the iterations, we always maintain a good connec-
tivity by updating the triangulation. In the simple MATLAB
code of [5] this was done by recomputing the Delaunay
triangulation, but we have implemented more efficient and

Fig. 4. Example of moving mesh, shown at two different times. The point
density control is used to keep the mesh size uniform when the area changes.

robust versions based on local topology updates (such as edge
flips). When the mesh quality is sufficiently high we terminate,
and the mesh elements tend to form a mesh of high quality
(Fig. 3, right).

The mesh size function h(x) is important for generation of
good meshes. It should specify smaller elements at boundaries
of high curvature, regions of small feature size, or any other
size constraints given by a numerical adaptive solver. In
addition, the mesh size should not differ too much between
neighboring elements, which corresponds to a limit on the
gradient |∇h(x)|. We have developed techniques for automatic
generation of mesh size functions from discretized distance
functions. We compute boundary curvatures directly from
φ(x), feature sizes by detecting the medial axis, and we limit
|∇h| by solving the gradient limiting equation [4]:

∂h

∂t
+ |∇h| = min(|∇h|, g), h(t = 0) = h0(x). (9)

In the examples below, we use uniform size functions (h(x) =
constant) for simplicity. During the evolution of the geometry
boundary, it is sometimes necessary to add or remove mesh
points since d(x) and/or h(x) change with time. We do this
by performing a density control at each time step, where we
split an edge if it is too long compared to the desired value,
and merge neighboring nodes if the edge is too short.

Moving meshes are best visualized as animations. Please
visit math.mit.edu/˜persson/mesh to view our movies. For
the illustrations here, we show meshes at a few different times.
As a simple example of a moving mesh, we study a geometry
consisting of a square having a circular hole with a radius
that changes with time, see Fig. 4. This geometry is easily
written explicitly for all times, and we do not need to evolve
the curve using the level set method. Note how the density
control ensures that the element sizes are approximately equal
even though the geometry area changes drastically.

One benefit of the algorithm is that mesh elements far away
from the moving interface are left essentially unmodified.
This gives several benefits, such as easier and more accurate
solution transfer between the meshes and better opportunities
for mesh compression. We also take advantage of this fact
to improve the performance of our algorithm. We assign
a stiffness to each mesh edge (the constant k in (6)) that
increases with the distance from the moving interface. A
few mesh elements away we set k to infinity, which means

Time t1

Time t2

Time t3

Fig. 5. Only mesh points close to the moving interface are allowed to move.
This improves the performance dramatically and provides easier solution
transfer between the old and new grids.

these nodes do not move at all. We can then ignore them
when solving for force equilibrium, and this gives a dramatic
performance improvement. The technique is illustrated by the
example in Fig. 5, where we mesh a circular hole moving
through a rectangle. Only a thin layer of elements close to
the circle are allowed to move at each step, but the element
qualities remain very high.

We now show examples that use discretized distance func-
tions and the level set method to represent the moving geome-
tries. There are many application areas and here we will focus
on two shape optimization calculations. The first example
comes from structural vibration control, and it was solved
by Osher and Santosa using level set techniques on Cartesian
grids [3]. We consider the eigenvalue problem

−∆u = λρ(x)u, x ∈ Ω (10)

u = 0, x ∈ ∂Ω (11)

Initial Distribution
Density ρ

Minimize λ1

Density ρ

0 50 100
8.8

8.85

8.9

8.95

9

9.05

9.1

λ
1

Iteration

Minimize λ2

Density ρ

0 50 100

18

19

20

21

22

λ
2

Iteration

Fig. 6. Finding an optimal distribution of two different densities (light gray
indicates low density) to minimize eigenvalues.

with

ρ(x) =

{

ρ1 for x /∈ S

ρ2 for x ∈ S,
(12)

and we minimize λ1 or λ2 subject to ‖S‖ = K.
We represent the boundary of S by a signed distance

function on a Cartesian grid. To find the optimal distribution
ρ(x), we mesh the region (both inside and outside), solve the
eigenvalue problem using finite elements on our unstructured
mesh, and propagate the interface in the descent direction
δφ = −v(x)|∇φ| calculated using the current solution λi, ui.
To satisfy the area constraint we find a Lagrange multiplier
using Newton’s method.

Figure 6 shows the minimization of the first and the second
eigenvalue. Note how the dark region is split into two sep-
arate regions in minimizing λ2. This automatic treatment of
topology changes is one of the main benefits of the level set
method. By using unstructured meshes and the finite element
method we achieve the following additional benefits:

• The material discontinuity is handled with high accuracy
since the mesh fits to the interface between the two

Initial Geometry

Optimal Geometry

Fig. 7. Structural optimization for minimum of compliance. The structure is
clamped at the left edge and loaded vertically at the right edge midpoint. Note
how the initial topology is modified by the algorithm.

densities.
• We handle arbitrary outer geometries, again with high

accuracy. Normally the level set method is used only on
rectangular grids.

• We could have used graded meshes for more efficient
simulations.

Our last example comes from structural design improve-
ment. The geometry in Fig. 7 is clamped at the left edge,
and a vertical force is applied at the midpoint of the right
edge. We solve a linear elastostatic problem and minimize the
compliance

∫

∂Ω

g · u ds =

∫

Ω

Aε(u) · ε(u) dx (13)

subject to the area constraint

‖Ω‖ = K. (14)

Sethian and Wiegmann solved this problem using level set
techniques together with the immersed interface method [7].
Allaire, Jouve, and Toader used a similar technique but

solved the linear elastostatic problem using an Ersatz material
approach [1]. Since we have our high-quality unstructured
meshes at each iteration, we can solve the physical problem
using the finite element method. The optimal structure is
shown in the bottom plot of Fig. 7.

Again we see advantages with our general meshes. The
Neumann conditions at most of the boundaries are handled
easily and accurately with the finite element method. We could
again have used graded meshes to resolve fine details better.
Finally, the finite element method is better developed than
finite difference methods for advanced elasticity calculations,
providing specialized elements.

We are currently studying several application areas for
our technique. Other shape optimization problems appear in
photonics, where again we believe the unstructured meshes
will be of great importance. We study physical simulation
with free boundaries, such as multi-phase fluid flow and linear
elastic rearrangement instabilities. We are also extending the
technique to three dimensional problems, something we be-
lieve will be easy since both the level set method and our mesh
generation method generalize naturally to any dimension.

REFERENCES

[1] G. Allaire, F. Jouve, and A.-M. Toader. A level-set method for shape
optimization. C.R. Acad. Sci. Paris, Ser. I, 334:1125–1130, 2002.

[2] S. Osher and R. Fedkiw. Level Set Methods and Dynamic Implicit
Surfaces. Springer-Verlag, 2002.

[3] S. Osher and F. Santosa. Level set methods for optimization problems
involving geometry and constraints I. Frequencies of a two-density
inhomogeneous drum. J. Comput. Phys., 171:272–288, 2001.

[4] P.-O. Persson. PDE-based gradient limiting for mesh size functions. In
Proc. of 13th Int. Meshing Roundtable. Sandia Nat. Lab., September
2004.

[5] P.-O. Persson and G. Strang. A simple mesh generator in matlab. SIAM
Review, 46(2):329–345, June 2004.

[6] J. Sethian. Level Set Methods and Fast Marching Methods: Evolving
Interfaces in Computational Geometry. Cambridge University Press,
1999.

[7] J. Sethian and A. Wiegmann. Structural boundary design via level set
and immersed interface methods. J. Comput. Phys., 163:489–528, 2000.

[8] G. Strang. Introduction to Applied Mathematics. Wellesley-Cambridge
Press, 1986.

[9] G. Strang. Linear Algebra and Its Applications. Academic Press (now
Brooks/Cole), 1988. Japanese translation.

[10] G. Strang and G. Fix. An Analysis of the Finite Element Method.
Wellesley-Cambridge Press, 1973; Baifukan, 1977.

[11] G. Strang and T. Nguyen. Wavelets and Filter Banks. Wellesley-
Cambridge Press, 1996; Baifukan, 2002.

[12] L. M. Wedepohl and L. Jackson. Modified nodal analysis: an essential
addition to electrical circuit theory and analysis. Eng. Science and
Education Journal, 11(3):84–92, 2002.

