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SUMMARY

The present work predicts the formation of laminar separation bubbles at low Reynolds numbers and
the related transition to turbulence by means of Implicit Large Eddy Simulations with a high-order
Discontinuous Galerkin method. The flow around an SD7003 infinite wing at an angle of attack of
4◦ is considered at Reynolds numbers of 10 000, 22 000, and 60 000 in order to gain insight into the
characteristics of the laminar and turbulent regimes. At the lowest Reynolds number studied, the flow
remains laminar and two dimensional over the wing surface, with a periodic vortex shedding. For higher
Reynolds numbers, the flow is unsteady over the upper wing surface and exhibits a separation bubble
along which the flow transitions to turbulence. Tollmien–Schlichting (TS) waves are observed in the
boundary layer, and transition is found to be caused by unstable TS modes as revealed by the growth of
the stream-wise amplification factor. Copyright � 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Interest in micro-air vehicles (MAVs) has grown considerably in the last decades stimulated by the
miniaturization of technology and the advancements in micro systems. The recent years have also
seen an increasing interest in animal locomotion: fish swimming, bird flying, and insect flapping
have been studied both by engineers and biologists. Animal locomotion is interesting from the point
of view of design of small flying vehicles, and also from a fundamental physics and engineering
perspective. As for MAVs, the flows encountered are in the so-called low Reynolds number regime,
with Reynolds numbers between 103 and 105.

In this regime, the location of transition to turbulence has a significant impact on aerodynamic
performance. Laminar flows have a much greater tendency to undergo detrimental separation than
the essentially turbulent flows encountered at high Reynolds numbers. Furthermore, if the flow
separates, the transition location determines whether the flow reattaches or not, and the impact of
separation on lift and drag. Hence, accurately predicting transition is of crucial importance in the
simulation of low Reynolds number flows.
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In addition, simulating the flows encountered in MAVs and those related to the swimming of
fish or the flapping of bats represents a significant challenge for fluid flow computations. The flows
are highly unstable, with laminar, transitional, and turbulent regions. In the presence of an adverse
pressure gradient, a laminar boundary layer can separate and subsequently reattach, thus forming
a laminar separation bubble (LSB). Separation, transition, and reattachment can take place over a
significantly short distance, and the bubble can fluctuate in size and position.

The present work thus focuses on two important aspects related to the simulation of low Reynolds
number flows, which require further understanding, namely the transition mechanism and related
problem of transition prediction, and the feasibility of numerical simulations to predict the flows
involved. The problem considered here is that of predicting the formation of an LSB and the transi-
tion to turbulence in the three-dimensional flow around an SD7003 infinite wing section at an angle
of attack of 4◦ and Reynolds numbers of 10 000, 22 000, and 60 000. We expand our preliminary
results [1] by considering a more comprehensive set of cases and employing finer meshes.

Several studies have shown that transition to turbulence can be predicted by means of Large
Eddy Simulations (LES) [2–4]. Furthermore, the accurate simulation of transition requires low
numerical dispersion and dissipation. Thus, we have chosen to use a high-order Discontinuous
Galerkin (DG) finite-element method as it combines high accuracy with the geometric flexibility
required for practical applications.

The DG method has only been used for LES by few research groups, mostly for two-dimensional
or periodic simulations: fully developed channel flow [5, 6], two-dimensional channel flow [7],
two-dimensional mixing layer and a back-facing step [8]. To the authors knowledge, the preliminary
results we presented previously [1] together with the present investigation constitute the first attempt
at using a DG method for fully three-dimensional implicit LES.

The DG method provides many of the advantages of finite-element methods while retaining
the main strengths of finite-volume methods for conservation laws. In particular, it relies upon a
strong mathematical foundation and allows for high-order implementations, while being able to
handle complex geometries and grid adaptation with unstructured grids. In addition, it provides
local conservation and a stable discretization of the convective operator.

On the other hand, the DG approach requires significantly more operations per computational
cell than finite differences and finite volumes. This is only partly offset by the use of high-order
representations of the solution—typically third- to fifth-order polynomial representations being
used in practice. There is clearly some work to be done to make DG methods more computationally
efficient, but the advantages of DG and the potential for overcoming some of the limitations of
other methods seem to justify the effort.

2. BACKGROUND

Studies of the transition to turbulence in conjunction with an LSB provide the following scenario: in
the attached flow, the magnitude of Tollmien–Schlichting (TS) waves is amplified, as in the classical
cases of natural transition; in the separated shear layer, Kelvin–Helmholtz (KH) instabilities are
rapidly amplified, leading to the development of three-dimensional vortices and eventually to the
breakdown to turbulence; the now turbulent flow reattaches to the wall, thus closing the separation
bubble [9–11].

Thus, the transition location along a separation bubble determines the bubble’s size: rapid
transition induces rapid reattachment, whereas delayed transition results in a longer separation
bubble. In turn, an airfoil’s aerodynamic characteristics, such as drag, are very sensitive to the
bubble length [12] and hence to the transition location. An LSB can form on the suction side of
airfoils at low Reynolds numbers and large angles of attack, when the stable vortex street observed
at somewhat lower angles or lower Reynolds numbers becomes unstable and causes the separated
boundary layer to reattach.

Low Reynolds number studies of separation bubbles on airfoils and wings often make use of
the SD7003 profile [13, 14] shown in Figure 1, since it exhibits an LSB on the upper surface that
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Figure 1. SD7003 airfoil: 8.51% maximum thickness, 1.46% camber.

is present over a range of Reynolds numbers and angles of attack. The flow around a rectangular
SD7003 wing at Reynolds number 60 000 and 4◦ angle of attack has been studied experimentally
using particle-image velocimetry (PIV) in several facilities, thus providing a good database for
validation. The comparison by Ol et al. [15] focuses on contours of mean velocity and Reynolds
stresses, as well as on separation, transition, and reattachment locations. This same flow was also
studied computationally by several groups. Tang [16] employs several models for RANS simula-
tions, whereas Lian and Shyy [17] make use of the standard k−� RANS model in conjunction
with an eN transition module.

Three-dimensional Implicit Large Eddy Simulations (ILES) were carried out by Visbal and
collaborators using a sixth-order accurate compact difference code [3, 4]. They studied the flow at
different angles of attack ranging between 2 and 14◦ and for Reynolds numbers between 10 000
and 90 000. They observed that the LSB decreases in size and moves closer to the leading-edge
with either increasing angle of attack or increasing Reynolds number. No transition was observed
for Reynolds numbers of and below 40 000, while the size of the turbulent flow structures was
verified to decrease with increasing Reynolds number. In another paper [18], a linear stability
study for the Re=60000 case at 4◦ angle of attack is presented using as base flow the time-
averaged flow of unsteady ILES. The unstable disturbances are found to be confined to the LSB
with maximum magnitude and maximum gradient at the center of the bubble, which is consistent
with the Reynolds stress contours previously presented.

Hain et al. focused on the transition mechanism in an experimental investigation of the 66 000
Reynolds number flow around an SD7003 rectangular wing using time-resolved PIV [11]. They
show that transition is dominated by KH instabilities in the separated shear layer, which, in
some cases, have almost the same unstable frequency than the TS instabilities developing before
separation. They thus conclude that the TS waves trigger the amplification of the KH waves, which
explains why the size of the separation bubble is affected by the magnitude of the TS waves at
separation.

3. COMPUTATIONAL METHODOLOGY

3.1. Governing equations

The motion of a compressible Newtonian fluid is governed by the Navier–Stokes equations, which
express the conservation of mass, momentum, and energy as

��

�t
+ �

�xi
(�ui ) = 0, (1)

�
�t

(�ui )+ �
�x j

(�ui u j ) = − �p

�xi
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where the viscous stress tensor, �ij, and the heat flux, qi , are given by, respectively,

�ij ≡�

[(
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�x j
+ �u j

�xi

)
− 2

3

�uk

�xk
�ij

]
, (4)

q j ≡− �

Pr

�
�x j

(
E + p

�
− 1

2
ukuk

)
. (5)

In the above equations, � denotes the fluid density, ui the velocity component in the direction xi ,
p the static pressure, E the total energy per unit mass, � the dynamic viscosity coefficient, and Pr
the flow Prandtl number assumed to be constant. The system is closed with the ideal gas equation
of state written in the form

p= (�−1)�
(

E − 1
2 ukuk

)
. (6)

For all the flows considered in the present work, the specific heat ratio is set to �=1.4 and
the Prandtl number to Pr =0.72. Moreover, the kinematic viscosity, �=�/�, is assumed to be
constant since only low Mach number flows are considered.

3.2. Turbulence modeling

In the present work, the ILES approach is followed and the unresolved small eddies are accounted
for by means of numerical dissipation. Thus, no subgrid-scale (SGS) model is employed and
the full (unfiltered) compressible Navier–Stokes equations are solved. This approach has been
successfully used by Visbal and collaborators using a compact difference method to simulate the
flow around an SD7003 airfoil [3, 4].

In an LES, the large-scale motions are resolved whereas the small scales are modeled. The
principle behind LES is justified by the fact that the larger scales, because of their size and strength,
carry most of the flow energy while being responsible for most of the transport, and therefore
should be simulated precisely (i.e. resolved). On the other hand, the small scales have relatively
little influence on the mean flow and thus can be approximated (i.e. modeled). Furthermore, they
tend to be more homogeneous and isotropic and hence are easier to model than the large scales.

Owing to the non-linear nature of the Navier–Stokes equations, all turbulent scales are dynam-
ically coupled. Hence, for the resolved scales to be dynamically accurate, the effect of the SGSs
needs to be taken into account, either with an SGS model in the standard (explicit) LES approach,
or via numerical dissipation in ILES. Much effort was put for a number of years on deriving
better SGS models in particular in the 1990s [19, 20], but eventually Spalart’s conclusion that
‘there is little to gain by refining the SGS models’ [21] became shared by more and more authors,
e.g. [22].

An alternative is to use the numerical dissipation of the solution scheme to account for the
dissipation that would take place in the unresolved scales. The first ILES approach was thus
introduced in 1990 by Boris and his collaborators at the Naval Research Laboratory [23]. The
truncation errors that stem from the numerical procedure amount to an implicit SGS model; this
can be shown through qualitative, physical considerations, or by making use of modified equation
analysis to quantify the errors of the numerical algorithm. It is possible to show that a numerical
method solves a certain differential equation more accurately than the original equation, and that
for certain methods ‘leading-order truncation error terms introduced provide implicit SGS models
similar in form to those of the conventional mixed SGS models’ [24] (see also [25–29]).

The ILES development and success has emphasized the importance of choosing numerical
methods that are built upon the physics of the flow rather than simply considering them as
approximations [30]. The absence of an explicit SGS model equation also makes this approach
easy to implement and decreases the computational cost. Since an LES shows more structures
and provides a more accurate answer as the grid is refined, one seems to be better off paying a
computational cost to increase the resolution than to solve an extra equation [23].
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3.3. Discontinuous Galerkin method

The modeling Equations (1)–(6) are solved using a high-order DG finite-element method
implemented in the computational code 3DG. This framework solves time-dependent systems of
conservation laws of the form

�u

�t
+∇ ·Fi (u)−∇ ·Fv(u,q)=S(u,q),

q−∇u=0,

(7)

in a domain �, with conserved state variables u, inviscid flux function Fi , viscous flux function
Fv , and source term S.

We consider a triangulation Th of the spatial domain � and introduce the spaces

Vh = {v∈ [L2(�)]m |v|K ∈ [Pp(K )]m, ∀K ∈Th},

�h = {r∈ [L2(�)]dm|r|K ∈ [Pp(K )]dm, ∀K ∈Th},
where Pp(K ) is the space of polynomial functions of degree at most p�0 on element K , m is the
dimension of u (i.e. number of independent flow variables or states), and d is the spatial dimension.
The DG formulation is then: find uh ∈Vh and qh ∈�h such that for all K ∈Th ,∫

K
qh ·rdx =−

∫
K

uh∇ ·rdx +
∫

�K
ûr ·nds ∀r∈ [Pp(K )]dm,

∫
K

�uh

�t
vdx −

∫
K

[Fi (uh)−Fv(uh,qh)] ·∇vdx

=
∫

K
S(uh,qh)vdx −

∫
�K

[F̂i −F̂v] ·nvds ∀v∈ [Pp(K )]m .

Here, the numerical fluxes F̂i , F̂v , and û are approximations to Fi , Fv , and u, respectively, on
the boundary �K of element K . The DG formulation is complete once these numerical fluxes are
specified in terms of qh and uh , and the boundary conditions are enforced.

The inviscid flux F̂i is determined with Roe’s scheme [31] and provides the numerical dissipation
needed for ILES. The viscous flux F̂i is calculated using the Compact Discontinuous Galerkin
(CDG) method introduced by Peraire and Persson [32]: by choosing the numerical flux û to be
a function of uh and not qh , the degrees of freedom associated with qh can be eliminated after
discretization at the element level, which results in a system involving only the degrees of freedom
corresponding to the conserved variables uh . The final result is a system of coupled ordinary
differential equations of the form

Mu̇=R(u), (8)

where u is a vector containing the degrees of freedom associated with uh , and u̇ denotes its time
derivative. Here, M is the mass matrix and R is the residual vector which is a non-linear function
of u. Nodal basis expansions are used to represent uh inside each element.

The non-linear system of equations is linearized using Newton’s method, and the resulting
linear system solved with Conjugate Gradient Squared (CGS) preconditioned with incomplete
factorizations (ILU) following the work by Persson and Peraire [33]. The code is parallelized using
a domain decomposition approach with partition-wise ILU factorizations, the details of which can
be found in the paper by Persson [34].

3.4. Time stepping scheme and averaging procedure

Time stepping is performed with a two stage, A-stable, third-order accurate diagonal implicit
Runge–Kutta (DIRK) method [35]. This allows to take large time steps, and hence the time step
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is chosen only based on physical time resolution considerations and not on numerical stability.
Unless otherwise specified, the simulations are performed with a non-dimensional times step of
dt∗ =dt ×U∞/c=0.01, and the solution is saved every five steps for computing statistics and
other post-processing (�t∗ =0.05).

For all the cases considered, the initial transient is over by t∗ =15 as estimated from the forces
on the wing. Hence, unless otherwise specified, the average fields, turbulence correlations, and
statistics are computed by averaging the solution over a non-dimensional time interval of 10 (that
is over 200 solutions for t∗ = [15,25]) and then performing a spatial average over 20 span-wise
planes.

3.5. Computational domain and grids

The flow around a rectangular wing with an SD7003 airfoil profile at an angle of attack of 4◦ and
free-stream Mach number of 0.2 is considered. Unless otherwise specified, the wing span-to-chord
ratio is set to 0.2 following the findings of Galbraith and Visbal [3]. The axes are set up with x
being the chord-wise direction and z the span-wise direction, such that the leading-edge is located
along the line x =0, y =0.

From the wing’s leading-edge line, the domain extends 4.3 chord lengths upstream, 7.4 chord
lengths downstream, 5.9 chord lengths above, and 6.0 chord lengths below. Thus, if we denote
by c the chord length, the domain has the range [−4.3c,7.4c]×[−6.0c,5.9c]×[0,0.2c] along the
chord-wise, vertical, and span-wise directions, respectively.

The computational domain has periodic boundary conditions along the span-wise direction in
order to simulate an infinite wing. The wing’s surface is represented by a non-slip, adiabatic,
boundary condition, while a free-stream-type boundary condition employing Roe’s approximate
Riemann solver is imposed at the outer edges (far-field) of the computational domain.

The grids are constructed by extruding a two-dimensional structured C-mesh around the profile
that is generated from a rectangular grid by conformal transformations. To obtain curved elements
that are aligned with the geometry boundaries and do not intersect, a fine structured grid is
generated and the high-order nodes of the computational mesh are placed at the mesh points of
this fine grid. Note that this fine grid is such that the number of subdivisions in each direction
is compatible with the number of high-order nodes required for a given polynomial order. The
tetrahedral connectivities of the computational mesh are then obtained directly from the cartesian
topology of the fine structured grid. The boundaries are thus represented accurately and a high-order
mesh appropriate for DG computations is obtained.

We use the term high-order nodes to refer to all the nodes used in the numerical procedure at
which the variable states are computed, so as to differentiate them from the nodes at the corners
of each tetrahedral element.

In order to investigate how much spatial resolution is needed to capture the transition to turbu-
lence that occurs in the separation bubble, three computational grids are considered: a coarse
grid (hereafter referred to as grid 1) with 21 504 tetrahedral elements, a medium grid (grid 2)
with 52 800 elements, and a fine grid (grid 3) with 85 500 elements. Figures 2 and 3 show the
computational grids 1 and 2 on a planar cut along the span-wise direction.

Figure 2. Span-wise plane of the coarse grid (grid 1): (left) domain, (right) closer view on foil; 21 504
tetrahedral elements and 430 080 high-order nodes at p=3.
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Figure 3. Span-wise plane of the medium grid (grid 2): (left) domain, (right) closer view on foil; 52 800
tetrahedral elements; 1 056 000 high-order nodes at p=3 and 1 848 000 nodes at p=4.

Table I. Characteristics of the computational grids employed.

Name Number of Polynomial Number of
elements order high-order nodes

Grid 1, p=3 21 504 3 430 080
Grid 2, p=3 52 800 3 1 056 000
Grid 2, p=4 4 1 848 000
Grid 3, p=4 85 500 4 2 992 500

Table I summarizes the spatial resolution characteristics of the different grids employed. For
grid 1, third-order polynomials (p=3) are employed for a fourth-order accurate method in space,
thus giving 430 080 high-order nodes. For grid 2, both third-order and fourth-order (p=4) poly-
nomials are used, resulting in two refinement levels: one with 1 056 000 high-order nodes and the
other one with 1 848 000. In the span-wise direction, both grids 1 and 2 have four elements, thus
providing 13 and 17 unique nodes along the span at p=3 and p=4, respectively. Grid 3 has 15%
more points than grid 2 in each direction (around the foil, radially, and along the span), and we
use it with p=4 for a total of 2 992 500 high-order nodes. Note that the factor of 1.15 in grid
spacing h corresponds to a factor of 2 in the convergence rate h p+1 of the DG method for smooth
problems with p=4.

Throughout this paper, p=3 is used whenever no polynomial order is specified.

3.6. Angle of attack for XFOIL comparisons

XFOIL [36] is a two-dimensional, steady, potential flow solver with an interactive boundary layer
coupling and an eN envelope method for transition prediction [12]. It was developed for the design
and analysis of subsonic airfoils, and has been extensively validated.

The Navier–Stokes methods apply the specified free-stream angle 	=4◦ at the domain’s outer
inflow boundary. The missing vortex upwash at the inlet due to the airfoil’s presence gives a
decrease in the effective angle of attack seen by the airfoil by the amount, in radians,

�	=− CL

4
r/c
,

where CL is the airfoil lift coefficient and r/c is the distance-to-chord ratio between the inlet
boundary and the wing’s lift centroid such that the higher-order y-doublet far-field term is exactly
zero. The distance between the airfoil’s leading-edge and the center of lift can be approximated as

xL

c
= 1

4
− CM

CL
,

which is a function of the moment coefficient CM. The domain extends 4.3c upstream of the
leading-edge, and hence r/c=4.3+xL/c. Note that the �	 correction is only significant when the
domain inflow boundary is close to the foil as in the present work.
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Table II. Angle of attack correction, �	, and angle of attack for XFOIL computations, 	XFOIL, for the
three Reynolds numbers considered.

Reynolds number CL(4◦) CM(4◦) xL/c �	 (◦) 	XFOIL (◦)

10 000 0.2842 −0.0167 0.3088 −0.2812 3.72
22 000 0.4083 −0.0466 0.3641 −0.3991 3.60
60 000 0.6370 −0.0347 0.3045 −0.6308 3.37

Since XFOIL fully accounts for the farfield vortex, it has been run at the smaller angle of attack
	XFOIL =	+�	 in order to give a more correct comparison to the Navier–Stokes results. As an
approximation, the lift and moment coefficients for computing �	 are obtained from XFOIL at
the nominal 4◦ angle of attack. Table II gives the angle of attack correction and effective angle of
attack for the different Reynolds numbers considered in the present work. Furthermore, the critical
amplification factor in XFOIL is set to Ncrit =7.

3.7. Q-criterion

A way of identifying vortical coherent structures in a flow is to use the q-criterion proposed by
Dubeif and Delcayre [37] and defined as

q ≡ 1
2

(
�ij�ij −SijSij

)
, (9)

where �ij and Sij are the anti-symmetric and symmetric parts of the velocity gradient, respectively,
that is

�ij ≡ 1

2

(
�ui

�x j
− �u j

�xi

)
and Sij ≡ 1

2

(
�ui

�x j
+ �u j

�xi

)
.

For an incompressible fluid, the above can be written using the flow vorticity � as

q = 1

4

(
�2 −2SijSij

)
= 1

2

∇2 p

�
. (10)

The q-criterion thus represents the balance between the rate of vorticity �2 =�ij�ij and the rate
of strain S2 = SijSij. In the core of a vortex, q>0 since vorticity increases as the center of the vortex
is approached. Thus, regions of positive q-criterion correspond to vortical structures. In the present
work, iso-surfaces of positive q computed from (9) are used to visualize these structures.

3.8. Boundary layer parameters

In order to study the boundary layer, it is useful to consider the pseudo-velocity profile based on
the flow vorticity 	� and defined by

	u∗(x,n)≡
∫ n

0
	�× n̂ dn. (11)

Here n̂ is the local unit vector that is normal to the wing’s surface at the location considered, and
n the local coordinate along the direction of n̂, with the wall at n =0. The reason for using this
pseudo-velocity profile is that it always asymptotes to a constant value outside the boundary layer
where the vorticity becomes zero. This is so even in flows with strong curvature, thus making the
edge of the boundary layer a well-defined quantity.

The edge, ne, of the boundary layer is then taken to be the location where both the magnitudes
of vorticity, | 	�|, and of vorticity variation along the normal, |�	�/�n|, are below a certain threshold
relative to the pseudo-velocity magnitude |	u∗|, namely

| 	�|n < �1|	u∗|,∣∣∣∣�	�
�n

∣∣∣∣ n2 < �2|	u∗|.
(12)

Copyright � 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 87:232–261
DOI: 10.1002/nme



240 A. URANGA ET AL.

The edge velocity is then 	u∗
e = 	u∗(ne), with magnitude ue =|	u∗

e |. The values �1 =0.01 and
�2 =0.1 were found to allow for a robust and systematic detection of the boundary layer edge for
the simulations reported in the present work.

Local stream-wise and cross-flow unit vectors are defined as, respectively,

ŝ1 ≡ 	ue/ue and ŝ2 ≡ ŝ1 × n̂. (13)

Thus, the stream-wise and cross-flow velocity profiles are, respectively, given by

u1(x,n)= 	u∗(x,n) · ŝ1 and u2(x,n)= 	u∗(x,n) · ŝ2. (14)

The boundary layer stream-wise displacement and momentum thicknesses are then

�∗
1 =

∫ ne

0

(
1− u1

ue

)
dn, (15)

�11 =
∫ ne

0

(
1− u1

ue

)
u1

ue
dn, (16)

with the shape factor

H11 = �∗
1

�11
. (17)

3.9. Transition mechanism

Since we want to identify which mechanism is responsible for transition to turbulence, we compute
the fluctuating stream-wise pseudo-velocity

u′
1(	x, t)=u1(	x, t)−u1(x),

where the overline denotes a temporal average. The increase in perturbation amplitude of distur-
bances along the chord-wise direction is then quantified by computing the amplification A1 of
stream-wise perturbations at any location x along the chord, that is

A1(x)= 1

ue(x)
√

ne(x)

√∫ ne

0
u

′2
1 dn. (18)

The amplification factor N1 of the stream-wise perturbations is then

N1(x)= ln

(
A1(x)

A10

)
, (19)

in which A10 is the amplification at the onset of transition, or equivalently

eN1 = A1(x)

A10

.

4. LAMINAR REGIME: Re=10000

The first case considered is the flow at a Reynolds number of 10 000 (Table III). In this regime,
the flow is found to be fundamentally two-dimensional with little variation along the span-wise
direction and periodic vortex shedding. Comparison is made with a two-dimensional simulation
performed on a grid with the same resolution than a span-wise plane of the three-dimensional grid
2. While the instantaneous forces of Figure 4 differ slightly in magnitude, with slightly smaller
amplitudes for the 3D case due to 3D alleviation, the shedding period and average values are
essentially the same. The average lift coefficient is 0.3743, the average drag coefficient is 0.04967,
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Table III. Average flow results at Reynolds 10 000.

Separation Transition Reattachment
CL CDSource xsep/c xtr/c xr/c

XFOIL at 3.72◦, Ncrit =7 0.3543 — — 0.2711 0.04578

Grid 1 0.3658 0.9371 — 0.3824 0.04999
Difference with grid 2 (%) 2.8 −0.1 — 2.2 0.64

Grid 2, 2D 0.3451 0.9384 — 0.3755 0.04978
Difference with grid 2 (%) −3.0 0 — 0.32 0.22

Grid 2 0.3557 0.9384 — 0.3743 0.04967
Difference with XFOIL (%) 0.39 — — 38 8.5

Figure 4. Time variation of lift (left) and drag (right) coefficients at Re=10000 on grid
2: comparison of 2D and 3D simulations.

whereas the average span-wise force coefficient is of the order of 10−6. The difference in lift and
drag coefficients of the two-dimensional simulation relative to the three-dimensional run is less
than 0.32 and 0.23%, respectively. Furthermore, the 2D and 3D curves for average pressure and
stream-wise skin friction coefficients are undistinguishable.

Note that the force coefficients are those of the time-averaged flow, and not exactly equal to the
average of the force time variations; that is, the flow time average is computed first and then the
forces of that time-averaged flow are evaluated. The difference in values between these two ways
of obtaining force averages is usually insignificant (a couple of percents or less).

The effect of grid resolution is assessed by comparing the results obtained on grids 1 and 2.
No significant difference is observed on average quantities, and the pressure and skin friction
coefficient plots for the two grids fall on top of each other, whereas the average lift and drag
coefficients for grid 1 differ by only 2.2 and 0.64%, respectively, from those for grid 2. On the other
hand, there is a small but appreciable difference in the time history of the forces of Figure 5. Thus,
grid 2 has sufficient resolution to capture the mean flow characteristics at Re=10000 although
the time-varying features are not fully accounted for.

Furthermore, considering a spatial average over 10 span-wise planes instead of over 20 gives
undistinguishable pressure and skin friction curves at this Reynolds number. The same is true when
averages are computed over 100 solutions instead of over 200. The statistics obtained with 200
solutions and 20 span-wise planes at this regime are thus properly converged.

Figures 6 shows the average pressure and stream-wise skin friction coefficients, together with
the results predicted by XFOIL [36] at an angle of attack of 3.72◦ as justified in Section 3.6. The
similarity with XFOIL provides a good check for the present simulations, but the two approaches
may not correspond to precisely the same far-field conditions. First, the angle of attack correction is
only an approximation. Furthermore, the critical amplification factor, Ncrit, at which transition is set
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Figure 5. Time variation of lift (left) and drag (right) coefficients at Re=10000: comparison between
grids 1 and 2. The dotted horizontal line indicates the average value for grid 2.

Figure 6. Average pressure coefficient (left) and stream-wise skin friction coefficient (right) at Re=10000
on grid 2. The dashed lines give XFOIL predictions at 3.72◦ angle of attack, Ncrit =7.

to occur (a user-defined parameter in XFOIL) is correlated to the level of free-stream disturbances,
and it is unclear what the value for a simulation should be. In the present case, setting Ncrit to 4.6
in XFOIL results in a match in transition location.

The iso-surfaces of q-criterion of Figure 8 show that coherent vortical structures are not present
upstream of the trailing edge but only in the wake. Furthermore, the instantaneous iso-surfaces
have a straight cylindrical shape with no variation along the span-wise direction, thus indicating
that the wake structures remain two-dimensional.

At this Reynolds number, the boundary layer separates at around 36% of the chord from the
leading-edge, and does not reattach. This can be seen on the friction coefficient distribution of
Figure 6, on the instantaneous and average span-wise vorticity contours as shown in Figure 7, and
on the average streamlines shown in Figure 9. Furthermore, the flow structures are all relatively
large with only pairs of well-defined vortices being shed (see Figure 7).

The curves of stream-wise displacement thickness, �∗
1, momentum thickness, �11, and shape

factor, H11 =�∗
1/�11, of Figure 10 confirm that transition to turbulence occurs only at 94% of the

chord. Furthermore, the curves for two-dimensional simulations and for grid 1 are undistinguishable
from those of grid 2. The main difference between the boundary layer evolution as predicted by
XFOIL (dashed lines in the figures) and the one resulting from the present ILES is that the latter
predicts a transition to turbulence just upstream of the trailing edge as evidenced by the peak in
shape factor, whereas the former does not.

Copyright � 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 87:232–261
DOI: 10.1002/nme



ILES OF TRANSITIONAL FLOWS 243

Figure 7. Span-wise vorticity at Re=10000 with grid 2: instantaneous span-wise average (top)
and average (bottom) contours.

Figure 8. Instantaneous (left) and time average (right) iso-surfaces of
q-criterion at Re=10000 with grid 2.

Figure 9. Average steamlines at Re=10000 with grid 2, and contours of velocity magnitude.
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Figure 10. Boundary layer average stream-wise displacement and momentum thicknesses (left), and shape
factor (right) evolution along the chord-wise direction at Re=10000 with grid 2. The dashed lines give

XFOIL predictions at 3.72◦ angle of attack, Ncrit =7.

5. LOW TRANSITIONAL REGIME: Re=22000

Next a flow at a Reynolds number of 22 000 is considered. As previously, the three-dimensionality
and the effects of grid resolution are studied.

5.1. Three-dimensionality

The flow at this Reynolds number transitions to turbulence, and since turbulence is a fundamentally
three-dimensional phenomena, we expect that a two-dimensional simulation would not be able to
capture the important flow features. This is confirmed by comparing the three-dimensional results
obtained on grid 2 with a two-dimensional simulation using, as previously, a grid with the same
resolution as a span-wise plane.

With respect to the instantaneous force coefficients of Figure 11, it can be noted that the lift
and drag force coefficients for the two-dimensional case have significantly larger magnitudes (by
close to a factor of three) than those of the three-dimensional case. This is of course due to
three-dimensional alleviating effects.

The pressure and skin friction profiles of Figure 12 also confirm the significance of three-
dimensional effects, with the friction being more sensitive than the pressure, whereas the largest
discrepancies occur near transition (x/c≈0.7). However, a two-dimensional flow approximation
yields separation, transition, and reattachment locations, as well as lift and drag coefficients, which
are relatively close (less than 10% off) to the three-dimensional solution values as indicated by
the numbers in Table IV.

5.2. Spatial resolution: grid comparisons

In order to assess how much spatial resolution is needed at Re=22000, the flow is computed
on three different resolution levels: grid 1 with p=3, grid 2 with p=3, and grid 2 with p=4.
The curves of average pressure coefficient and average skin friction coefficient profiles for the
three levels are undistinguishable; the common profiles can be seen, for instance, in Figure 12.
On the other hand, the instantaneous force histories of Figure 13 differ but have approximately
the same magnitudes. They depict a turbulent signal and indicate an a-periodic vortex shedding
with various scale sizes and frequencies. Furthermore, the span-wise force coefficient, while small
(of the order of 10−4), reveals the presence of span-wise flow motions. The average separation,
transition, and reattachment locations, as well as the lift and drag coefficients of the mean flow
are given in Table IV. The separation location has a relatively large uncertainty (Cf curve is flat
there) so the 6.6% difference between grid 2, p=3 and p=4 is not significant.
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Figure 11. Time variation of lift (left) and drag (right) coefficients at Re=22000 on grid 2: comparison
of 2D and 3D simulations.

Figure 12. Average pressure coefficient (left) and stream-wise skin friction coefficient (right) at Re=22000
on grid 2: comparison of 2D and 3D simulations.

Table IV. Average flow results at Reynolds 22 000.

Separation Transition Reattachment Bubble
CL CDSource xsep/c xtr/c xr/c length

XFOIL at 3.60◦, Ncrit =7 0.2489 0.7784 0.9494 0.7005c 0.5193 0.03772

Grid 1 0.2744 0.6853 — — 0.6359 0.04309
Difference with grid 2 (%) 15 0.60 −1.5 0.87

Grid 2, 2D 0.2144 0.6602 0.9554 0.7410c 0.6707 0.04510
Difference with grid 2 (%) −10 −3.1 1.9 6.0 3.9 5.6

Grid 2 0.2386 0.6812 0.9379 0.6993c 0.6456 0.04272
Difference with grid 2, p=4 (%) 6.6 0.95 0.011 −2.0 −0.031 −0.37

Grid 2, p=4 0.2239 0.6748 0.9378 0.7139c 0.6458 0.04288
Difference with XFOIL (%) −10 −13 −1.2 1.9 24 14

Furthermore, the boundary layer chord-wise variation of stream-wise displacement thickness
and momentum thickness are not significantly different. On the other hand, the shape factor does
show a discrepancy but only in the separation region (H11>4) and not in the transition location
as can be seen in Figure 14. Thus, the results obtained on grid 2 with p=3 can be considered to
be grid-converged with respect to global average quantities, and this mesh is characteristic of the
spatial resolution needed to resolve the mean flow features at Re=22000.
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Figure 13. Time variation of lift (left), drag (center), and span-wise (right) force coefficients
at Re=22000: comparison of results with different spatial resolutions. The dotted horizontal

line indicates the average value for grid 2, p=4.

Figure 14. Boundary layer average stream-wise displacement and momentum thicknesses (left),
and shape factor (right) evolution along the chord-wise direction at Re=22000: comparison of

results with different spatial resolutions.

Figure 15. Average pressure coefficient (left) and stream-wise skin friction coefficient (right) at Re=22000
on grid 2. The dashed lines give XFOIL predictions at 3.60◦ angle of attack, Ncrit =7.

5.3. Results with grid 2, p=3

At this Reynolds number of 22 000, the separation bubble is clearly visible on the Cp profile of
Figure 15 with the characteristic plateau. From the skin friction coefficient, separation is located at
around 23% of the chord. Transition takes place after separation, at around 68% as measured from
the peak in the boundary layer shape factor of Figure 20; this is also made visible by the velocity
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Figure 16. Span-wise vorticity at Re=22000 with grid 3, p=4: instantaneous span-wise
average (top) and average (bottom) contours.

Figure 17. Non-dimensional streamwise-transverse velocity correlations u′
su′

t/U 2∞ at
Re=22000 with grid 3, p=4.

correlations of Figure 17, which show significant velocity fluctuations on the downstream part of
the foil. Finally, the flow reattaches at around 94% of the chord, thus forming a long separation
bubble that encompasses more than 70% of the wing’s chord. This LSB is made visible by the
average streamlines of Figure 19.

Contrarily to what was observed at Re=10000, the instantaneous vorticity contours of Figure 16
contain a significant amount of small, high-frequency structures, and the flow is not anymore
restricted to pairs of shed vortices. As already pointed out, the flow at this Reynolds number
is three-dimensional and contains structures that vary in the span-wise direction. This can be
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Figure 18. Instantaneous (left) and average (right) iso-surfaces of q-criterion (top) and span-wise vorticity
(bottom) at Re=22000 with grid 3, p=4.

Figure 19. Average steamlines at Re=22000 with grid 3, p=4 and contours of velocity magnitude.

seen in the instantaneous iso-surfaces of q-criterion and of span-wise vorticity of Figure 18: the
iso-surfaces are not cylindrical and reveal significant span-wise variations.

The comparison with XFOIL’s predictions show some disagreement—see the pressure and
friction profiles of Figure 15 and the boundary layer integral thickness evolutions of Figure 20—
but the same remarks made for the Re=10000 case hold here, and the comparisons provide
merely a consistency check. Transition, for instance, can be made to match by setting a critical
amplification factor of Ncrit =5.2 in XFOIL. Furthermore, the flow at this Reynolds number is
three-dimensional and is beyond the modeling capabilities of XFOIL.

5.4. Transition mechanism

A close look at the boundary layer of the average flow provides insight into the transition process.
From the shape factor of Figure 20, the transition location is clearly identified by the peak,
whereas the separated flow can be identified as the region where H11 is larger than 4. The left
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Figure 20. Boundary layer average stream-wise displacement and momentum thicknesses (left), and shape
factor (right) evolution along the chord-wise direction at Re=22000 with grid 2. The dashed lines give

XFOIL predictions at 3.60◦ angle of attack, Ncrit =7.

Figure 21. Boundary layer average profiles of stream-wise pseudo-velocity u1/ue (left)

and fluctuating stream-wise pseudo-velocity u
′2
1 /u2

e (right), at different chord-wise
locations x/c∈ [0.1,0.3] at Re=22000 with grid 2.

plot of Figure 21 shows average profiles of stream-wise pseudo-velocity at several chord-wise
locations x/c∈ [0.1,0.3], which resemble the profiles over a flat plate by the construction of the
pseudo-velocity through Equation (11).

As explained in Section 3.9, the transition mechanism can be determined by considering the

profiles of fluctuating stream-wise pseudo-velocity, u
′2
1 /u2

e , of Figure 21. Each profile’s shape is
consistent with the superposition of TS waves whose amplitude increases along the chord-wise
direction. Note also that the maximum moves away from the wall as it is convected downstream.
The amplitude increase is quantified through the stream-wise amplification factor N1 of Figure 38.
This analysis clearly proves that transition is the result of the growth of TS waves, and hence that
we are in the presence of a natural transition—not a bypass transition.

The chord-wise transition location determined previously from the shape factor (xtr/c=0.68)
can be used to observe that, according to the N1(x/c) curve, transition takes place at a critical
amplification of N1 =4.6. This is close to the value of 5.2 required for XFOIL at 3.60◦ angle of
attack to give agreement with respect to the transition location.

Note that the fluctuations observed in N1 for x/c>0.5 indicate that temporal average needs
to be carried out over a larger number of time steps due to separation and transition, this lack
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Figure 22. Amplification factor N1 of stream-wise pseudo-velocity perturbations
for the flow at Re=22000 with grid 2.

of statistical convergence being only evident for boundary layer considerations and hence only
observed in Figures 20 and 22.

6. HIGH TRANSITIONAL REGIME: Re=60000

As mentioned in the background section, the flow around the SD7003 at 4◦ angle of attack and
Reynolds number of 60 000 has been studied by several groups. This case is considered in detail
here, in particular the three-dimensional effects, the required resolution for ILES with DG, and
the influence of span length and of time step. The transition mechanism is also established.

6.1. Three-dimensionality

As expected, at Re=60000 the flow cannot be approximated by a two-dimensional simulation. The
magnitude of forces in Figure 23 from a two-dimensional simulation is about a factor of 9 times
larger than the three-dimensional results: three-dimensional alleviation is even more significant than
at Re=22000. Furthermore, while at a Reynolds number of 22 000 a two-dimensional simulation
was able to capture the separation bubble, at Re=60000 no bubble is present in two-dimensional
runs as made evident in the pressure and skin friction profiles of Figure 24: there is no plateau in
average Cp but only a close to linear pressure rise along most of the upper surface (Table V).

6.2. Spatial resolution: grid comparisons

The required spatial resolution is assessed by comparing the results with several grids. We use
grids 1 and 2 with polynomials of order 3 (p=3), as well as grids 2 and 3 with p=4. The distance
between the wall and the first high-order node along the upper surface of the foil on grid 2, p=3,
is approximately �y ≈4×10−4c. At x/c=0.1 where Cf ≈0.01, this corresponds to approximately
�y+ ≈2 wall units, with the usual definition y+ =u�y/� for u� =√

�w/�=√
Cf/2U∞.

The comparison of force histories and of average pressure and skin friction coefficients on
the airfoil obtained with the different spatial resolution levels can be seen in Figures 25 and 26.
Grid 1 is unable to properly capture the separation bubble and associated transition to turbulence,
giving only a short LSB and forces that are too small. With p=3, grid 2 provides a relatively
accurate average flow but forces that are still too low, a delayed separation, and too rapid transition
thus resulting again in an under-predicted bubble length. Finally, the magnitude of the temporal
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Figure 23. Time variation of lift (left) and drag (right) coefficients at Re=60000 on
grid 2: comparison of 2D and 3D simulations.

Figure 24. Average pressure coefficient (left) and stream-wise skin friction coefficient (right) at Re=60000
on grid 2: comparison of 2D and 3D simulations.

Table V. Average flow results at Reynolds 60 000.

Separation Transition Reattachment Bubble
CL CDSource xsep/c xtr/c xr/c length

Grid 1 0.2907 0.4119 0.5396 0.2489c 0.5997 0.02058
Difference with grid 2 (%) 19 −20 −9.6 29 0.51 −6.4

Grid 2, 2D 0.2589 0.4295 0.6213 0.3624c 0.5730 0.02097
Difference with grid 2 (%) 6.1 −16.5 4.1 2.7 −4.9 −4.6

Grid 2 0.2440 0.5145 0.5967 0.3527c 0.6028 0.02198
Difference with grid 2, p=4 (%) 18 −3.6 −10 −23 −1.5 −8.7

Grid 2, span 0.3c 0.2306 0.5146 0.6233 0.3927c 0.6021 0.02196
Difference with grid 2 (%) −5.5 0.019 4.5 11 −0.12 −0.091

Grid 2, �t∗1 0.2424 0.5146 0.6124 0.3700c 0.6033 0.02200
Difference with grid 2 (%) −0.66 0.019 2.6 4.9 0.083 0.091

Grid 2, p=4, 2D 0.2544 0.4930 0.5811 0.3267c 0.5458 0.02142
Difference with grid 2, p=4 (%) 23 −7.6 −13 −29 −11 −11

Grid 2, p=4 0.2069 0.5335 0.6658 0.4589c 0.6122 0.02407
Difference with grid 3, p=4 (%) −0.34 −1.1 −0.48 −0.54 0.39 0.042

Grid 3, p=4 0.2076 0.5397 0.6690 0.4614c 0.6098 0.02406
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Figure 25. Time variation of lift (left), drag (center), and span-wise (right) force coeffi-
cients at Re=60000: comparison of results with different spatial resolutions. The dotted

horizontal line indicates the average value for grid 3, p=4.

Figure 26. Average pressure coefficient (left) and stream-wise skin friction coefficient (right) at Re=60000:
comparison of results with different spatial resolutions.

evolution of forces, the average flow, and boundary layer integral thicknesses obtained on grid 2
with p=4 and on grid 3 with p=4 agree. Thus, grid 2 is able to provide the required spatial
resolution when polynomials of order p=4 are employed.

6.3. Effect of domain span length

In order to investigate what domain span length is required to simulate an infinite wing with a
span-wise periodic boundary condition while properly capturing all the mean flow structures, a
domain with a span of 0.3 chords was considered in addition to the 0.2 span used in all other
simulations, with a grid identical to grid 2, p=3, except in the span-wise direction. To preserve the
span-wise resolution, 3

2 times more nodes are used along the span: thus, this grid has six elements
in the span-wise direction for 19 unique high-order nodes along the span, while grid 2 has four
elements and 13 unique nodes span-wise. In this way, we ensure that comparing results with those
on grid 2 reveals the effect of span length only, and is not related to resolution.

The time evolution of forces of Figure 27 show similar amplitudes and shapes for the two
spans considered, although the exact curves do not overlap, as expected for a turbulent flow and
just as is observed when comparing different grids. Furthermore, the curves of average pressure
coefficient and skin friction coefficient profiles are undistinguishable between the two span lengths
considered. However, small differences are observed in the boundary layer profiles as can be seen
in Figure 28, but the separation, transition, and reattachment locations are essentially unchanged.
A domain span of 0.2c is thus appropriate to capture the main flow features in the simulation of
an infinite wing as observed by Galbraith and Visbal [3].
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Figure 27. Time variation of lift (left), drag (center), and span-wise (right) force coefficients at Re=60000
on grid 2: comparison of grids with two different span lengths.

Figure 28. Boundary layer average stream-wise displacement and momentum thicknesses (left), and shape
factor (right) evolution along the chord-wise direction at Re=60000 with grid 2: comparison of grids

with two different span lengths.

6.4. Temporal resolution

The use of an implicit time stepping procedure allows for the choice of large time steps irrespective
of stability considerations. However, one should still ensure that the time resolution is sufficient
to obtain accurate average quantities—although the instantaneous fields are of course dependent
on the particular time resolution to capture certain frequencies.

A simulation on grid 2 with solutions saved every �t∗1 =0.02 is performed in order to assess
whether the chosen value of �t∗0 =0.05 can appropriately capture the mean flow features. Note
that the actual time step in the DIRK time stepping method is set to dt∗ =0.01 for both, but the
solutions are saved either every five or every two steps for �t∗0 and �t∗1 , respectively. Note also
that we have not chosen a multiple of the original time step �t∗0 in order to avoid any possible
sub-harmonic locking. When using the smaller time step �t∗1 , statistics are computed over 500
steps (whereas 200 steps are used for �t∗0 ) in order to span the same time t∗ ∈ [15,25]; this also
provides for a sense of the degree of convergence of the time-averaged fields and fluctuating
quantities, which are now determined based on more steps.

As expected, the average pressure and friction profiles are not sensitive to the temporal reso-
lution change, and the curves of Cp(x/c) and Cf(x/c) overlap. Furthermore, while the boundary
layer thicknesses and shape factor evolution do not perfectly match between the runs at the two
time steps, they are however very close and the time history of forces are similar (Figure 30).
As can be seen in Figure 29, the shape factor curves are almost identical (maximum difference
of 5% at transition), and the displacement and momentum thicknesses do overlap before transi-
tion with a maximum difference of 18 and 21% for displacement and momentum, respectively.
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Figure 29. Boundary layer average stream-wise displacement and momentum thicknesses (left), and
shape factor (right) evolution along the chord-wise direction at Re=60000 with grid 2: comparison for
simulations saved every five time steps (�t∗ =0.05) and every two time steps (�t∗ =0.02). The time

averages are carried out over 200 and over 500 instantaneous solutions, respectively.

Figure 30. Time variation of lift (left), drag (center), and span-wise (right) force
coefficients at Re=60000 on grid 2: comparison of simulations saved every five time

steps (�t∗0 =0.05) and every two time steps (�t∗1 =0.02).

In spite of this, separation, transition, and reattachment locations are unaffected. Thus, we deem
the temporal resolution of �t∗0 =0.05 sufficient with respect to average statistics, although the
small (high-frequency) structures in the boundary layer would require more resolution to be fully
accounted for.

6.5. Effect of averaging

In order to verify that turbulence statistics are properly converged, we compared the results obtained
by performing averages over 100 time steps (instantaneous solutions) and over 200 steps. The
average pressure and skin friction coefficients over the wing are undistinguishable, whereas there
is a small difference in boundary layer thicknesses and shape factor, comparable to that observed
in Figure 29 when considering different temporal resolutions.

As mentioned in the methodology section, the average quantities are obtained by computing a
time average followed by a spatial span-wise average. For the latter, the solution is first interpo-
lated (to an order compatible with the polynomial order being used so as to avoid interpolation
errors) at 20 different planes perpendicular to the span-wise direction, and these 20 interpolated
solutions are then averaged. The use of only 10 planes was tested and again provided results that
compared with the use of 20 planes in a manner similar to how the use of 100 steps compares
with 200.
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Figure 31. Instantaneous (left) and average (right) iso-surfaces of q-criterion (top) and span-wise vorticity
(bottom) at Re=60000 with grid 2, p=4.

Thus, in order to obtain proper averages, the use of 200 solutions and 20 span-wise planes is
deemed sufficient, in spite of the small fluctuations observed in the average boundary layer integral
lengths after transition. Only for the amplification factor chord-wise evolution these statistics seem
inadequate, but still allowed us to observe the TS waves (see Section 6.7).

6.6. Results with grid 2, p=4

At Re=60000, three-dimensional structures are present as made visible by the iso-surfaces of
q-criterion and span-wise vorticity of Figure 31. With a fifth-order method, a relatively coarse
mesh (grid 2, p=4) with 1.8 million high-order nodes is able to accurately capture the average
locations of separation, transition, and reattachment, as well as the average pressure and skin friction
coefficient profiles along the foil which can be seen in Figure 32—together with comparison curves
for the data from XFOIL [36] and by Visbal and coworkers [3, 4] who employ a well-resolved
grid with about 4.8 million nodes. The separation bubble is clearly visible in these profiles, with
separation occurring on average at 21% of the chord and reattachment at 67% in the present
simulations. As expected, the length of the LSB is significantly shorter (0.46c compared to 0.72c)
than at Re=22000 due to a more rapid transition.

Table VI gives a comparison with previously published results, as well as the transition location
and the mean lift and drag coefficients, while Table VII provides the results at the three Reynolds
numbers considered. TU-BS corresponds to the PIV experiments at the Technical University of
Braunschweig Low-Noise Wind Tunnel [38], whereas HFWT is from the PIV experiments at the
Air Force Research Laboratory Horizontal Free-Surface Water Tunnel [15]. The present results are
well within variations between previously published works.

Contours of instantaneous and average span-wise vorticity are shown in Figure 33, and reveal
a large number of small structures created by turbulent motions past the mid-chord. The laminar
separation bubble is clearly visible from the average streamlines in Figure 35. Average non-
dimensional velocity correlations can be seen in Figure 34 and illustrate the presence of transition
to turbulence. This is verified by looking at the displacement thickness, momentum thickness, and
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Figure 32. Average pressure coefficient (left) and stream-wise skin friction coefficient (right) at Re=60000
on grid 2, p=4. The dashed lines give XFOIL predictions at 3.37◦, Ncrit =7. The dot-dashed lines show

the ILES data of Visbal et al. [3, 4].

Table VI. Comparison of results at Reynolds 60 000 with grid 2, p=4. The XFOIL data is for 3.37◦ angle
of attack; TU-BS [38] and HFWT [15] correspond to PIV experiments; Visbal et al. [3, 4] is an ILES.

Freestream Separation Transition Reattachment Bubble
CL CDSource turbulence xsep/c xtr/c xr/c length

TU-BS [38] 0.08 % 0.30 0.53 0.62 0.32c — —
HFWT [15] ∼0.1% 0.18 0.47 0.58 0.40c — —
Visbal [3, 4] 0 0.23 0.55 0.65 0.42c — —
XFOIL (Ncrit =7) 0.28 0.58 0.61 0.34c 0.5624 0.0176
present ILES 0 0.21 0.53 0.67 0.46c 0.6122 0.0241

Table VII. Summary of results at the three Reynolds numbers considered with: grid 1, p=3 for Re=10000;
grid 2, p=3 for Re=22,000; grid 2, p=4 for Re=60000.

Separation Transition Reattachment Bubble
CL CDReynolds number xsep/c xtr/c xr/c length

10 000 0.3557 0.9384 — — 0.3743 0.04967
22 000 0.2386 0.6812 0.9379 0.6993c 0.6456 0.04272
60 000 0.2069 0.5335 0.6658 0.4589c 0.6122 0.02407

shape factor of the pseudo-velocity profile (Figure 36). A sharp peak in shape factor reveals that
transition to turbulence occurs on average at 53% of the chord.

6.7. Transition mechanism

The profiles of fluctuating stream-wise pseudo-velocity, u
′2
1 /u2

e , can be seen on Figure 37,
for chord-wise stations x/c∈ [0.1,0.3]. As for the Re=22000 flow, each profile is consistent
with TS modes, and we observe an increase in perturbation amplitude along the chord-wise
direction. The average stream-wise pseudo-velocity profiles look similar to those at Re=22000
in Figure 21.

The growth of the stream-wise amplification factor along the chord-wise direction can be seen
in Figure 38. As mentioned previously, the fluctuations observed from the separation location on
(x/c�0.24) indicate that the temporal averages need to be carried out over a longer period of time.
The dotted line shows the amplification factor of the single most energetic wave as predicted by
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Figure 33. Span-wise vorticity at Re=60000 with grid 2, p=4: instantaneous span-wise
average (top) and average (bottom) contours.

Figure 34. Non-dimensional streamwise-transverse velocity correlations u′
su′

t/U 2∞ at
Re=60000 with grid 2, p=4.

XFOIL, while the solid line for the present simulation is the result of the integration (18) and
hence corresponds to the compounded energy of all the waves; this explains why the XFOIL line
gives a smaller amplification factor at any given location. However, the slopes of the lines for both
cases are very similar, which confirms that the unstable modes are properly captured even with
the relatively coarse grid used.

Again, both the shape of the fluctuating stream-wise pseudo-velocity profiles and the spatial
growth of the amplification factor indicate that the mechanism of transition along the LSB for
these low Reynolds number flows is a TS natural transition.
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Figure 35. Average streamlines at Re=60000 with grid 2, p=4, and contours of velocity magnitude.

Figure 36. Boundary layer average stream-wise displacement and momentum thicknesses (left), and shape
factor (right) evolution along the chord-wise direction at Re=60000 with grid 2, p=4. The dashed lines

give XFOIL predictions at 3.37◦ angle of attack, Ncrit =7.

Figure 37. Boundary layer average fluctuating stream-wise pseudo-velocity profiles u
′2
1 /u2

e at different
chord-wise locations x/c∈ [0.1,0.3] at Re=60000 with grid 2, p=4.
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Figure 38. Amplification factor N1 of stream-wise pseudo-velocity perturbations for the
flow at Re=60000 with grid 2, p=4.

7. CONCLUSIONS

This paper shows how the formation and related transition to turbulence of an LSB on an SD7003
infinite wing at 4◦ angle of attack and low Reynolds numbers can be predicted by means of
an ILES using a DG method with relatively coarse grids. Attention is given to the boundary
layer characteristics that had not yet been previously studied using numerical simulations of this
problem.

At Re=10000, the flow is found to be two-dimensional with no closed LSB formation (no reat-
tachment) and a periodic shedding of pairs of counter-rotating vortices. For this flow, computations
with 430 080 high-order nodes and polynomials of order p=3 are sufficient, and two-dimensional
simulations provide a good estimate.

At the higher Reynolds numbers of 22 000 and 60 000, significant three-dimensional effects are
present and an LSB is observed on the upper surface. In order to capture the main flow features,
close to 1 million high-order nodes are required with p=3 at Re=22000, whereas at Re=60000
about 1.8 million nodes and p=4 are necessary. The study of transition that takes place along the
LSB, through the boundary layer stream-wise fluctuating pseudo-velocity profiles and the spatial
growth of the amplification factor, shows that the transition taking place is due to unstable TS
waves and hence a natural transition. This observation of TS waves through numerical simulations
has not been evidenced in other works.

Further work focuses on swept wings with cross-flow and on a pitching and/or heaving infinite
wing at low Reynolds numbers as required for the design of MAVs. The question of how well
the numerical dissipation in a DG method functions as an implicit SGS model for ILES is still
unclear, and the present work being the first to use DG for ILES provides only a limited insight;
contributing to the understanding of this matter will also be the purpose of future investigations.
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