
A Discontinuous Galerkin Method for

the Navier-Stokes Equations on Deforming Domains

using Unstructured Moving Space-Time Meshes

Luming Wang∗ and Per-Olof Persson†

University of California, Berkeley, Berkeley, CA 94720-3840, U.S.A.

We describe a high-order accurate space-time discontinuous Galerkin (DG) method
for solving compressible flow problems on two-dimensional moving domains with large
deformations. The DG discretization and space-time numerical fluxes are formulated on a
three-dimensional space-time domain. The scheme is implicit, and we solve the resulting
non-linear systems using a parallel Newton-Krylov solver. Instead of remeshing when the
mesh elements are deformed, we use local mesh operations such as node movement and
edge flips to improve the mesh at each time step. We then produce a globally conforming
space-time mesh using an efficient algorithm based on element extrusions between two
consecutive spatial meshes. In this way, no additional nodes are inserted for each space-
time mesh slab except for those on the spatial meshes. We show various numerical examples
with complex domain deformations to illustrate both the accuracy and the capabilities of
our method.

I. Introduction

Discontinuous Galerkin (DG) methods have received much attention during the last decade due to their
ability to produce stable and high-order accurate discretizations of conservation laws on fully unstructured
meshes.1,2 In particular for challenging fluid problems, it is widely believed that the low dissipation of the
DG schemes make them ideal for the simulation of turbulent flows with complex vortical structures and
non-linear interactions.

Many practical applications involve time-varying geometries, such as rotor-stator flows, flapping flight or
fluid-structure interactions. For these deforming domains, a number of solutions have been proposed. The
Arbitrary Lagrangian-Eulerian (ALE) formulation allows for the computational mesh to deform in time and
compensates for this by modifying the equations.3,4, 5 The method is widely used, but when the domain
deformation is large and/or complex it is difficult to deform the mesh without element inversion. Remeshing
is then commonly employed, which introduces errors during the solution transfer between the old and the
new meshes. In addition, special care needs to be taken to ensure the satisfaction of the so-called geometric
conservation law (GCL).

As an alternative, the so-called space-time DG methods are fully consistent discretizations that allow
for arbitrary changes of the domain in both space and time.6,7, 8, 9, 10 The method essentially treats the
time-dependency with the same technique as the spatial terms, but exploiting the causal nature to improve
the efficiency. Much of the previous work on space-time DG methods is based on meshes with structured
prismatic extrusions of the spatial elements (e.g. in refs. 11, 12, 13, 14, 15, 16). These schemes have many
attractive properties, but suffer from similar limitations as the ALE method with element inversion for large
domain deformations. However, the space-time formulations do allow for fully unstructured meshes in both
space and time, and provided that appropriate meshes can be generated this is a competitive approach for
problems with large domain deformations. Some previous work on this include refs. 17, 18, 19, 20, where

∗Ph.D. Candidate, Department of Mathematics, University of California, Berkeley, Berkeley CA 94720-3840. E-mail:
lwang@math.berkeley.edu. AIAA student Member
†Assistant Professor, Department of Mathematics, University of California, Berkeley, Berkeley CA 94720-3840. E-mail:

persson@berkeley.edu. AIAA Member.

1 of 14

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
C

A
L

IF
O

R
N

IA
 (

B
E

R
K

E
L

E
Y

)
on

 O
ct

ob
er

 1
3,

 2
01

7
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

01
3-

28
33

 21st AIAA Computational Fluid Dynamics Conference

 June 24-27, 2013, San Diego, CA

 AIAA 2013-2833

 Copyright © 2013 by Luming Wang, Per-Olof Persson.

 Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

 Fluid Dynamics and Co-located Conferences

http://crossmark.crossref.org/dialog/?doi=10.2514%2F6.2013-2833&domain=pdf&date_stamp=2013-06-22

several unstructured space-time approaches are presented. However, these results largely rely on remeshing
for each spatial domain and an ideal tetrahedral mesh generator. Work based on local mesh modifications
include ref. 21, where an efficient moving-mesh technique based on face swapping was developed, and ref.
22, where a changing-topology finite-volume based ALE schemes was presented.

In this work, we demonstrate a fully unstructured space-time mesh generation procedure and the solution
of the Navier-Stokes equations using an implicit space-time discontinuous Galerkin method. We use the
DistMesh algorithm for the mesh motion and deformation,23 and construct the space-time elements for each
layer of timesteps using a local construction.24 The resulting scheme can essentially handle any type of
domain deformations, even with topological changes. The order of accuracy can be arbitrarily high in both
space and time, provided suitable curved meshes can be generated.

This paper is organized as follows: First, we derive our space-time DG formulation for the compressible
Navier-Stokes equations. Next we introduce our local mesh operations and the combinatorial algorithm for
generation of a globally consistent space-time mesh. In Section IV, three numerical tests are presented. We
first demonstrate our framework on a model 2D problem of an inviscid Euler vortex, where we show that
the scheme remains high-order accurate even for complex mesh reconfigurations. Finally, we present two 2D
laminar flow problems, where we demonstrate the capability of handling complex deformations that cannot
be solved using standard ALE techniques without remeshing.

II. Space-Time Discontinuous Galerkin Scheme

II.A. The Compressible Navier-Stokes Equations and its Space-Time Formulation

Consider the conservation form of the compressible Navier-Stokes equations2 on a time-dependent domain
from time t = 0 to t = T for some fixed time T > 0. Let (x1, x2) be the spatial variables. We define Ωt ∈ R2

as this flow domain at time t and when t1 < t2, Ω[t1, t2] = {(x1, x2, t) | t1 ≤ t ≤ t2, (x1, x2) ∈ Ωt}. Denote
∇X = (∂x1

, ∂x2
) as standard 2D spatial gradient operator and then we write the system as:

∂u

∂t
+∇X · F inv(u) = ∇X · F vis(u,∇Xu), (1)

with some appropriate boundary conditions imposed on the domain boundary ∂Ω[0, T] and initial condition
on Ω0. Here,

u =

ρ

ρu1

ρu2

ρE

 , F inv
1 (u) =

ρu1

ρu2
1 + p

ρu1u2

u1(ρE + p)

 , F vis
1 (u,∇Xu) =

0

τ11

τ12

τ11u1 + τ12u2 −Θ1

F inv
2 (u) =

ρu2

ρu1u2

ρu2
2 + p

u2(ρE + p)

 , F vis
2 (u,∇Xu) =

0

τ21

τ22

τ21u1 + τ22u2 −Θ2

 , (2)

where the viscous stress tensor τij and heat flux Θi are given by:

τij = µ(
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij(

∂u1

∂x1
+
∂u2

∂x2
)) (3)

and

Θi = − µ

Pr

∂

∂xi
(E +

p

ρ
− 1

2
(u2

1 + u2
2)) (4)

where δij is the Kronecker delta, µ is the viscosity coefficient and Pr = 0.72 is the Prandtl number.
In the solution u, ρ is the fluid mass density, E is the total energy, u1 and u2 are components of velocity

along x1 and x2 direction, respectively. The quantity p is the pressure which has the form

p = (γ − 1)ρ(E − 1

2
(u2

1 + u2
2)) (5)

2 of 14

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
C

A
L

IF
O

R
N

IA
 (

B
E

R
K

E
L

E
Y

)
on

 O
ct

ob
er

 1
3,

 2
01

7
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

01
3-

28
33

where γ is the adiabatic gas constant.
We next define the space-time formulation of equation (1) by treating the temporal dimension as an

additional spatial dimension. In this way, the time-dependent problem on a 2D domain Ωt from t = 0 to
t = T is then transformed into a time-independent problem on 3D space-time domain Ω[0, T]. We introduce
a new space-time gradient operator ∇XT = (∂x1

, ∂x2
, ∂t) and rewrite the Navier-Stokes equations in Ω[0, T]

as

∇XT · F̃ inv(u) = ∇X · F vis(u,∇Xu), (6)

where

F̃ inv
1 (u) = F inv

1 (u) , F̃ inv
2 (u) = F inv

2 (u) , F̃ inv
3 (u) = u. (7)

For equations (6), the boundary conditions on ∂Ω[0, T] are exactly the same as those of original equations
(1); the boundary conditions on Ω0 are the initial condition of equations (1); on the boundary ΩT of Ω[0, T],
no boundary conditions are needed for the space-time formulation, since the characteristics move in the
positive time-direction.

II.B. Discontinuous Galerkin Discretization

Next we describe the discontinuous Galerkin discretization of equations (6). An LDG-type approach25 is
applied to the second-order terms , where the system (6) is split into a new first-order system of equations.

∇XT · F̃ inv(u) = ∇X · F vis(u, q), (8)

∇Xu = q (9)

We introduce discontinuous Galerkin (DG) broken spaces Vh
T and Σh

T associated a triangulation T h
[0,T] =

{K} of 3D space-time domain Ω[0, T] as the spaces of functions whose restriction to each element K are
polynomial functions of degree at most p ≥ 1:26

Vh
T = {v ∈ [L2(Ω[0, T])]4 | v|K ∈ [Pp(K)]4 ∀K ∈ T h

[0,T]}, (10)

Σh
T = {σ ∈ [L2(Ω[0, T])]4×2 | σ|K ∈ [Pp(K)]4×2 ∀K ∈ T h

[0.T]}, (11)

where Pp(K) denotes the space of polynomials of degree at most p ≥ 1 on K. Then our space-time DG
formulation of equation (6) becomes: find uh ∈ Vh

T and qh ∈ Σh
T such that for each K ∈ T h

[0,T], we have

−
∫
K

F̃ inv(uh) : ∇XT v
h dx+

∮
∂K

(˜̂F inv · n) · vh ds

= −
∫
K

F vis(uh, qh) : ∇Xv
h dx+

∮
∂K

(̂F vis · ns) · vh ds, ∀vh ∈ Vh
T (12)∫

K

qh : σh dx = −
∫
K

uh · (∇X · σh) dx+

∮
∂K

(ûh ⊗ ns) : σh ds, ∀σh ∈ Σh
T . (13)

Here, for the space-time domain Ω[0, T], n = (n1, n1, n3) is the outward unit normal to the boundary ∂K,

and the numerical fluxes ˜̂F inv·n, ̂F vis · ns and ûh are the approximations to F̃ inv·n, F vis · ns and u on
the face of element K, respectively, which are specified in terms of uh on two sides of the face of element
K, and boundary conditions. More precisely, if we define ns = (n1, n2) and F̃ inv

s = (F̃ inv
1 , F̃ inv

2), and
normalize ñs = ns/|ns| and ñ3 = n3/|n3|, we then decompose the numerical fluxes as

˜̂F inv · n = |ns|
[

̂F̃ inv
s · ñs

]
+ |n3|

[
̂̃F inv
3 ñ3

]
= |ns|Fs + |n3|F t. (14)

̂F vis · ns = |ns|
[

̂F vis · ñs

]
(15)

For the inviscid numerical flux, we define the spatial numerical flux Fs = ̂F̃ inv
s · ñs as the standard ap-

proximate Riemann solver proposed by Roe,27 and the temporal numerical flux F t = ̂̃F inv
3 ñ3 by standard

upwinding of the corresponding linear time-derivative term ut in equations (8).

3 of 14

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
C

A
L

IF
O

R
N

IA
 (

B
E

R
K

E
L

E
Y

)
on

 O
ct

ob
er

 1
3,

 2
01

7
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

01
3-

28
33

Since the viscous terms in equations (8) as well as all of equations (9) only involve derivatives with

respect to the two spatial variables, x1 and x2, we can approximate ̂F vis · ñs and ûh using standard schemes
without modification. Here, we choose these numerical fluxes according to the Compact Discontinuous
Galerkin (CDG) method proposed by Peraire and Persson.28

Note that on the boundaries Ω0 and ΩT , the boundary conditions are indirectly incorporated by the
temporal numerical fluxes Ft. In particular, since these are defined by upwinding, the initial conditions of
equations (1) are used on Ω0 and the interior solutions on ΩT . This property makes it possible to advance
the solution for a single interval ∆t at a time, without connecting the entire space-time solution domain. In
this sense, the space-time DG formulation is similar to a standard implicit method of lines formulation.

The discretization above results in a final formulation without time evolution which we solve using
Newton’s method and a block-ILU(0) preconditioned GMRES method.29

III. Moving Space-Time Mesh Generation

We present our space-time mesh generator based on the DistMesh algorithm,23 which iteratively im-
proves a triangular mesh using only node movements and element connectivity updates.21 To reduce the
computational cost, tetrahedral space-time meshes for each slab Ω[t, t + ∆t] are generated separately, see
figure 1. More specifically, given an unstructured mesh of Ωt ∈ R2 at time t, we first generate a unstructured
mesh of Ωt+∆t as the time-dependent flow domain is deforming, using only node movements and local edge
flips. Based on the resulting two layers of triangular meshes, we apply an efficient combinatorial tetrahedral
triangulation method to generate the space-time mesh of Ω[t, t+∆t]. We then solve the compressible Navier-
Stokes equations in this space-time mesh using the DG scheme described in the previous section, and repeat
the procedure for the next space-time slab Ω[t + ∆t, t + 2∆t], etc. The domains Ωt are never re-meshed
from scratch, instead only one initial mesh generation of Ω0 is needed which is improved at each subsequent
time step. More importantly, all the mesh improvement techniques are performed on the 2D mesh, and the
tetrahedral triangulation is entirely based on local combinatorial connections. This simplifies the process
considerably, and is likely the preferred way to generalize our scheme to generate 4-dimensional space-time
simplex meshes.

Figure 1. Space-Time Mesh Generation. The left figure illustrates two 2D-mesh layers at time t and t + ∆t, and the
right figure shows the corresponding slab of the 3D space-time mesh generated based on the left two mesh layers. The
blue faces show the cross-sections.

III.A. Mesh Motion and Edge Flipping

As a starting point, an initial triangulation T h
0 of Ω0 is generated using any standard spatial mesh generation

technique. At the next time step ∆t, as the domain deforms, the triangulation T h
∆t of Ω∆t is obtained by

performing local update operations on the previous triangulation T h
0 . First, the boundary nodes are moved

rigidly according to the prescribed geometry movement. The element qualities generally decrease after the
boundary nodes are moved, so next we improve the mesh using the DistMesh scheme23 and optimize the
locations of the interior nodes.

As illustrated in figure 2, the movement of interior nodes is driven by repulsive forces from each attached
edge, which depends on the edge length l and an equilibrium length l0:

|F (l)| =

{
k(l − l0) if l ≥ l0
0 if l < l0

(16)

4 of 14

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
C

A
L

IF
O

R
N

IA
 (

B
E

R
K

E
L

E
Y

)
on

 O
ct

ob
er

 1
3,

 2
01

7
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

01
3-

28
33

Figure 2. Force-based Smoothing and Edge Flipping. The left plot shows the net force exerted on one node, and the
right one gives an example of edge flipping to improve the triangle qualities.

where k is a constant (corresponding to Hooke’s constant for a linear elastic spring). The equilibrium length
l0 has to be set manually. For a uniform mesh it can be a constant, but for more general adaptive meshes
it can be given by a specified mesh size function. In addition, a scaling is applied to ensure that most edges
are under compression.23

For each node p, denote F (p) as sum of forces of all the edges connecting to p. Then we iteratively
update its position by

p(n+1) = p(n) + δF (p(n)) (17)

where δ is an appropriate pseudo time step. The iterations are repeated until an approximate force equilib-
rium is obtained.

With large deformations of the time-dependent domain, node movements are usually not sufficient to
produce high-quality elements and avoid element inversion, which is also the main drawback of ALE-based
techniques for deformable domain problems.5 For our space-time meshes, however, we can perform local
connectivity changes to improve the mesh qualities.21 For a triangular mesh, this can be done simply by
edge swapping operations30 as shown in figure 2, where two adjacent triangles flip their shared edge and
produce two new triangles sharing the new flipped edge. Finally, to simplify the tetrahedra triangulation
algorithm, we require that each element can be flipped at most once during each time step. Therefore, based
on this restriction, all the flipped elements come in pairs.

Note that during the process above, the number of nodes, edges and elements remain unchanged. In fact,
all elements have the same edge connections from T h

0 to T h
∆t except those involved in the edge swapping.

If we improve the mesh at each time step, a sequence of 2D meshes {T h
0 , T h

∆t, T h
2∆t, . . . , T h

T } is created only
using the local mesh operations.

III.B. Tetrahedra Triangulation of Space-Time Domain Ω[t, t+ ∆t]

The next step is to efficiently generate a space-time mesh Ω[t, t+ ∆t] for each time step based on the initial
mesh of the spatial domain Ωt and the deformed and improved mesh of Ωt+∆t. Recall that our mesh moving
and edge flipping algorithm is able to keep the same number of nodes on Ωt+∆t as that of Ωt, so we can
simply connect each node of Ωt with its corresponding node of Ωt+∆t, as the first step of our space-time mesh
generation. This point-wise connection will ensure that the space-time mesh respects the moving boundary,
due to the rigid motion of boundary nodes from Ωt to Ωt+∆t.

Figure 3. Tetrahedra Triangulation. The left plot illustrates a valid triangulation for a non-edge-flipped element, and
the right plots shows a triangulation for a pair of elements with a flipped edge

As a result shown in figure 3, each element of Ωt without edge flipping is extruded to Ωt+∆t and form
an irregular triangular prism, where ‘irregular’ means that the edge on the bottom face is not necessarily

5 of 14

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
C

A
L

IF
O

R
N

IA
 (

B
E

R
K

E
L

E
Y

)
on

 O
ct

ob
er

 1
3,

 2
01

7
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

01
3-

28
33

parallel to its corresponding edge on the top face (due to different node displacements during the force-based
smoothing procedure); for those elements involved in an edge flip during period [t, t + ∆t], each can be
extruded together with the paired element it flipped edge with, and then locally form a quadrangular prism
with two reverse diagonals on the top and bottom faces. Again, similar to the unflipped case, the edges at
Ωt are not necessarily parallel to those at Ωt+∆t. Nevertheless, for convenience in our notation, we will still
refer to these vertically skew quadrilaterals as ‘lateral faces’ of prisms. Finally, it is clear that the amount
of node displacement during a time step must be limited to ensure sufficiently high element qualities. We
control this dynamically by adjusting the size of the time step ∆t and the pseudo time step δ in order to
avoid inverted prisms and reverse orientation of vertices.

The point-wise connection strategy described above produces a mesh of triangular and quadrangular
prisms. Next we will consider how to split these into a conforming mesh of tetrahedra, by first describing
how to perform a local triangulation of a prism, and second how to globally ensure that two adjacent prisms
respect the same diagonal on their shared lateral face.

III.B.1. Local Triangulation of Prisms

We will study local triangulations that are entirely based on the nodes in the given spatial meshes, that is,
no additional nodes are inserted. First of all, we locally index the nodes of each prism in a counterclockwise
order. For each prism V between Ωt and Ωt+∆t, if V a triangular prism, we locally number the vertices on
the bottom face as {pV,t1 , pV,t2 , pV,t3 } and the vertices on its top face as {pV,t+∆t

1 , pV,t+∆t
2 , pV,t+∆t

3 }. Similarly,

vertices of a quadrangular prism V on the bottom and top face are locally numbered as {pV,t1 , pV,t2 , pV,t3 , pV,t4 }
and {pV,t+∆t

1 , pV,t+∆t
2 , pV,t+∆t

3 , pV,t+∆t
4 }, respectively. In addition, without loss of generality, we require that

the original shared edge on Ωt is the line segment pV,t2 pV,t4 and the new shared edge on Ωt+∆t is the line

segment pV,t+∆t
1 pV,t+∆t

3 . We will denote by FV
i the lateral face with vertices at pV,ti , pV,t+∆t

i , pV,tj and pV,t+∆t
j ,

where j = (i mod n) + 1, n is the number of lateral faces of V , and 1 ≤ i ≤ n.
For each lateral face FV

i , there are two possible face diagonals which we define using a sign function

SV
i (pV,ti , pV,t+∆t

i , pV,tj , pV,t+∆t
j) for each FV

i according to

SV
i (pV,ti , pV,t+∆t

i , pV,tj , pV,t+∆t
j) =

−1 if the diagonal edge is pV,ti pV,t+∆t
j

+1 if the diagonal edge is pV,t+∆t
i pV,tj

(18)

for 1 ≤ i ≤ n.
Now, a triangulation of a triangular prism V is completely determined by the values of its 3 sign functions

SV
1 , SV

2 and SV
3 . Combinatorially, it is easy to see that there are 23 = 8 different combinations, but only

6 of these give valid triangulations. Note that the two uniform cases {SV
1 = +1, SV

2 = +1, SV
3 = +1} and

{SV
1 = −1, SV

2 = −1, SV
3 = −1} cannot be used for valid triangulations.

For the quadrangular case, we first make the following definition:

Definition 1 For a quadrangular prism V , we define the standard value of the sign function SV
i as +1 if i

is odd while −1 if i is even.

Since a quadrangular prism V has 4 lateral faces, a triangulation is defined by the values of the 4
corresponding sign functions SV

1 , SV
2 , SV

3 and SV
4 , for a total of 24 = 16 different combinations. However,

in order allow for a valid triangulation of V , a combination of sign functions must satisfy the following
condition:

Condition 1 There are two consecutive sign functions SV
i and SV

mod(i,4)+1 which are set to their standard
values.

To meet the condition above, there is a total of 9 possible combinations of SV
1 , SV

2 , SV
3 and SV

4 that
correspond to valid triangulations of V .

III.B.2. Algorithms for the Global Space-Time Mesh Generation

The last step is to obtain a global tetrahedral triangulation based on local triangulations of prisms. These
prism triangulations are not independent since each prism should match the diagonals at shared lateral

6 of 14

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
C

A
L

IF
O

R
N

IA
 (

B
E

R
K

E
L

E
Y

)
on

 O
ct

ob
er

 1
3,

 2
01

7
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

01
3-

28
33

faces with their neighbor prisms. With this restriction, we next introduce a depth-first algorithm which can
efficiently find a global triangulation of Ω[t, t+ ∆t].

Before describing the algorithm, we introduce the following definitions:

Definition 2 For a prism V , let V ∗ be the adjacent prism of V with FV ∗

i∗ = FV
i for an index i∗. We say

FV
i is a wall if the values of SV

i and SV ∗

i∗ are both set and SV
i = SV ∗

i∗ . We say FV
i is accessible if the values

of SV
i and SV ∗

i∗ are both unset.

With this definition, we now introduce the algorithm by its three main operations.

Operation 1: Optimal Local Triangulation of Prisms
Throughout the algorithm, if V has not been triangulated, we optimize the local triangulation of V by

arg max
T V

min
K∈T V

Q(K) (19)

where T V denotes the set of all the possible valid triangulations of V , whose sign functions respect the ones
prescribed on the walls. Q(K) represents the quality of each tetrahedron K of T V , which is calculated by
the following formula proposed by Field31

Q(K) = 72
√

3
Vol(K)

(
∑6

i=1 li(K)2)3/2
(20)

where Vol(K) is the volume of K and li is the length of each edge i = 1, . . . , 6.

Operation 2: Sign Function Synchronization of Neighbor Prisms
Once a prism V is triangulated by operation 1, in operation 2, we start from each accessible FV

i , and update
the sign functions of the corresponding neighbor prisms to make FV

i a wall. For instance, suppose FV
i was

accessible before the local triangulation of V , and V ∗ is the adjacent prism with FV ∗

i∗ = FV
i for some index

i∗. There are 4 different possible cases for V ∗:

Case 1 If V ∗ is triangular with all faces accessible, we simply set SV ∗

i∗ = SV
i , which makes FV

i and FV ∗

i∗

walls;

Case 2 If V ∗ is quadrangular with all faces accessible, we set SV ′

i∗ = SV
i and SV ∗

mod(i∗+1,4)+1 to their standard

values. If V ∗∗ is the adjacent prism of V ∗ with shared face FV ∗

mod(i∗+1,4)+1, then we continue to update sign
functions of V ∗∗ recursively using operation 2;

Case 3 Suppose V ∗ is triangular resulting from Case 1, then it has a wall FV ∗

j∗ for some j∗ 6= i∗. For
this case, we use operation 1 to triangulate V ∗ immediately under the restrictions imposed by the prescribed
values of SV ∗

j∗ and SV ∗

i∗ = SV
i . Let k∗ be the third index other than i∗ and j∗ and V ∗∗ be the adjacent prism

of V ∗ with shared face FV ∗

k∗ . We continue updating sign functions of V ∗∗ recursively using operation 2;

Case 4 Suppose V ∗ is quadrangular resulting from Case 2, then it has a pair of opposite walls, say, SV ∗

j∗ and

SV ∗

k∗ (where i∗ 6= j∗ and i∗ 6= k∗ since SV ∗

i∗ has not been a wall). Let l∗ be the fourth index other than i∗, j∗

and k∗. Again, we use operation 1 to triangulate V ∗, under the restrictions imposed by the prescribed values
of SV ∗

j∗ and SV ∗

k∗ , as well as SV ∗

i∗ = SV
i . Finally, similarly to the previous case, if V ∗∗ is the adjacent prism

of V ∗ with the shared face FV ∗

l∗ , we continue to update sign functions of V ∗∗ recursively using operation 2.

Operation 3: Triangulation Adjustment of Root Prism
As shown in figure 4, if we triangulate a prism V by operation 1 and repeatedly encounter the cases 2 − 4
when synchronizing sign functions of neighbors by operation 2, then a path will be made which we will refer
to as an ‘updating path’. In fact, every updating path will eventually end with one of three possibilities:
1. a prism belonging to Case 1 (figure 4, right); 2. a domain boundary; 3. back to the root prism V from
a face which is not yet a wall (figure 4, left). The third case is the only potentially difficult one, since the
last prism of an updating path is a neighbor of the root prism V , but they may have inconsistent values
of the sign functions corresponding to their shared face. Suppose the last prism is V ′ with the shared face

7 of 14

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
C

A
L

IF
O

R
N

IA
 (

B
E

R
K

E
L

E
Y

)
on

 O
ct

ob
er

 1
3,

 2
01

7
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

01
3-

28
33

Figure 4. An example of a triangulation path. Each triangle represents a triangular prism and each quadrilateral
represents a quadrangular prism. The green element is the root prism V , yellow ones are untriangulated prisms and
gray ones are already triangulated. The purple elements denote an updating path directed by the black arrows. The
corresponding case number that each purple element belongs to is also shown. The example path on the left ends when
it returns to V , and the example path on the right ends with a triangular prism belonging to Case 1.

FV ′

i′ = FV
i but SV ′

i′ 6= SV
i . Operation 3 is to change the value of SV

i to that of SV ′

i′ and thus make both

FV ′

i′ and FV
i into walls.

It is clear from the local triangulations derived in Section III.B.1 that changing values of SV
i might result

in a new combination of sign functions the does not correspond to a valid local triangulation of the root
prism V . However, with a further investigation, we found out that this situation can be avoided by arranging
the order by which new updating paths are launched.

Based on the three operations described above, the full algorithm is summarized in algorithm 1. In
summary, the global tetrahedral triangulation is complete if and only if for all prisms, all their faces become
walls. For more details and analysis of the algorithm, see ref. 24.

Algorithm 1 Space-Time Mesh Generation

Input: A spatial mesh MESH1 of Ωt and MESH2 of Ωt+∆t

Output: A space-time mesh STMESH of Ω[t, t + ∆t]
Create prisms by extruding elements from MESH1 to MESH2 and make a list of those prisms called PList
Initialize an empty list STMESH for storing the elements of the space-time mesh
while PList is non-empty do

Pop a prism V from PList
if V has not been triangulated then

Triangulate V by operation 1
Make a list of FV

i which has not been a wall, called FList
Sort FList by the order of launching updating paths mentioned for operation 3
for FV

i in FList do

Find the neighbor prism NBPrism adjacent to V by FV
i . Initialization of an updating path

while NBPrism exists (not exist if encountering domain boundary) and is not V do
Synchronize sign functions of NBPrism by operation 2
if NBPrism belongs to Case 2-4 then

Update NBPrism by operation 2 and continue the updating path
else

Break . The updating path ends with a NBPrism of Case 1
end if

end while
if NBPrism is V then . The updating path back to the root prism

Adjust the values of sign functions of V by operation 3 if necessary
end if

end for
end if
Push all the elements from the resulting triangulation of V into STMESH

end while
return STMESH

8 of 14

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
C

A
L

IF
O

R
N

IA
 (

B
E

R
K

E
L

E
Y

)
on

 O
ct

ob
er

 1
3,

 2
01

7
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

01
3-

28
33

IV. Numerical Results

IV.A. Euler Vortex

First, we solve the Euler equations for a model problem of a compressible vortex in a 20-by-20 square domain
and make a convergence test to demonstrate the high order accuracy of our space-time discontinuous Galerkin
Method.

The vortex is initially centered at (x0, y0) = (8, 8) and moves with the free-stream at an angle θ = π/4
with respect to the x-axis. The analytic solution at (x, y, t) is as follows

u = u∞(cos θ − ε((y − y0)− v̄t)
2πrc

exp(
f(x, y, t)

2
)) (21)

v = u∞(sin θ +
ε((x− x0)− ūt)

2πrc
exp(

f(x, y, t)

2
)) (22)

ρ = ρ∞(1− ε2(γ − 1)M2
∞

8π2
exp(f(x, y, t)))

1
γ−1 (23)

p = p∞(1− ε2(γ − 1)M2
∞

8π2
exp(f(x, y, t)))

γ
γ−1 (24)

where f(x, y, t) = (1 − ((x − x0) − ūt)2 − ((y − y0) − v̄t)2)/r2
c , M∞ = 0.5 is the Mach number, γ = cp/cv,

and u∞,p∞,ρ∞ are free-stream velocity, pressure and density. Moreover, ū and v̄ are Cartesian components
of the free-stream velocity with ū = u∞ cos θ and v̄ = u∞ sin θ. The parameter ε = 3 is the strength of the
vortex and rc = 1.5 is its size.

As a starting point, an unstructured mesh of the domain is created with element size h by DistMesh.23

In practice, in order to show the high-order accuracy of this method even with large mesh deformation,
at each time step we rotate some of the vertices (the blue nodes showed in figure 5) about the center of
the domain with angular velocity ω = 2

3π, such that large mesh deformations are generated immediately.
To avoid inverted and low-quality elements, we continue to improve the mesh by our mesh moving and
element flipping techniques. Then we use our space-time DG method to solve the Euler equations based on
this moving mesh until time T =

√
42 + 42 and compare the numerical results with the analytical solutions

above. Note that the time step ∆t (i.e. the thickness of each space-time mesh) is chosen as ∆t << h to
ensure that truncation errors are dominated by the part introduced from the spatial discretization of h. We
give the convergence test for a variety of spatial mesh sizes h and polynomial orders p. As a benchmark, we
also apply our space-time DG method for the same convergence test but based on the fixed mesh, where no
vertices are rotated and thus the initial unstructured mesh remains unchanged for all time steps.

In figure 5, three sample space-time meshes and solutions of the pressure field are given, and the bottom
plot compares the errors in the discrete L2-norm of our space-time DG method for the moving and the fixed
mesh, respectively. It can be seen that unlike the ALE method, the solutions from our moving meshes have
essentially the same accuracy as those from the fixed mesh. This is expected because although the mesh is
moving in the spatial domain, in the space-time framework, no mapping is employed and the tetrahedral
mesh is fixed for each space-time domain Ω[t, t + ∆t]. This avoids large variations in the resolution of the
solution that would have been introduced by the ALE mapping. From the convergence plot, the results
clearly show that the orders of convergence are approximately O(hp+1).

IV.B. Pitching Tandem Airfoils

We next consider a Navier-Stokes simulation similar to the one studied in ref. 32. It consists of two pitching
NACA 0012 airfoils with chord length c = 1 in a 6 × 2 rectangular domain. As shown in figure 6, at the
initial time t = 0 the two foils have a zero pitching angle and are aligned on the horizontal axis close to
each other. The distance between the trailing edge of the first foil and the leading edge of the second foil is
d = 0.1. The two foils are both treated as rigid bodies and rotated around the points p = c/3 to the right
of their leading edges. The rotation follows a prescribed harmonic function as

θ = A sin(−2πft) (25)

where A = π/6 and f = 0.05. The flow has Mach number 0.2 and Reynolds number 3000.

9 of 14

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
C

A
L

IF
O

R
N

IA
 (

B
E

R
K

E
L

E
Y

)
on

 O
ct

ob
er

 1
3,

 2
01

7
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

01
3-

28
33

Space-Time Mesh of Ω[0,∆t] Space-Time Mesh of Ω[2.5, 2.5 + ∆t] Space-Time Mesh of Ω[5, 5 + ∆t]

Pressure Field at t = 0 Pressure Field at t = 2.5 Pressure Field at t = 5.0

10
−0.6

10
−0.4

10
−0.2

10
0

10
0.2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Typical element size h

D
is

c
re

te
 L

2
 e

rr
o
r

p=1

p=2

p=3

1

2

1

3

1

4

Fixed Mesh

Moving mesh

Figure 5. Convergence Test for the Euler Vortex Problem. The top three plots are samples of space-time meshes of
Ω[0,∆t], Ω[2.5, 2.5 + ∆t] and Ω[5, 5 + ∆t] with ∆t = 5 × 10−3, h = 1.25 and p = 3. In these plots, the thickness of each
space-time mesh is rescaled to 1.25 to better illustrate the mesh structure. The seven blues nodes are rotated about
the center of the domain in rigid manner, which induces other vertex movements and local element flipping. Below
each mesh, the sample solutions of pressure field are given at t = 0, t = 2.5 and t = 5.0. The bottom plot shows the
convergence results for p = 1, 2 and 3.

Figure 6. The pitching tandem airfoil model.

10 of 14

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
C

A
L

IF
O

R
N

IA
 (

B
E

R
K

E
L

E
Y

)
on

 O
ct

ob
er

 1
3,

 2
01

7
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

01
3-

28
33

As the two foils are placed very close and rotated based on the same harmonic function, an ALE method
would have a hard time to solve this deformable domain problem since finding a smooth mapping on the
small gap between two foils is difficult. Instead, our space-time formulation only requires an unstructured
two-dimensional mesh of the initial domain Ω0 and is able to improve the mesh automatically by local mesh
operations. To better resolve the solution field, we implement our space-time DG method with polynomial
order p = 2 but with linear element geometries (future work includes the generation of appropriate curved
space-time meshes). Three sample meshes and the corresponding entropy plots are given in figure 7, and
plots of drag and lift coefficients are shown in figure 8.

Entropy Plot at t = 5.0 Unstructured Mesh of the spatial domain at t = 5.0

Entropy Plot at t = 10.0 Unstructured Mesh of the spatial domain at t = 10.0

Entropy Plot at t = 15.0 Unstructured Mesh of the spatial domain at t = 15.0

Figure 7. Compressible Navier-Stokes flow around two pitching tandem airfoils, entropy of the solutions (left) and the
spatial meshes (right) at 3 time instances.

0 2 4 6 8 10 12 14 16 18 20
−1

−0.5

0

0.5

1

1.5

Time

D
ra

g
 C

o
e
ff
ic

ie
n
ts

 C
D

Foil A

Foil B

0 2 4 6 8 10 12 14 16 18 20
−4

−3

−2

−1

0

1

2

3

Time

L
if
t
C

o
e
ff
ic

ie
n
ts

 C
L

Foil A

Foil B

Figure 8. Drag and lift coefficients around the pitching tandem NACA0012 airfoils as a function of time.

IV.C. Airfoil with a Deploying Spoiler

As an example of more complicated domain deformation, we solve for the flow around a NACA0012 airfoil
with chord length 1, in a 6 × 2 rectangular domain. As illustrated in figure 10, the foil is located between
x = 0 to x = 1 with axis of symmetry y = 0. We then remove a right triangle with curved hypotenuse from
x = 0.6383 to x = 0.7534 and replace it by a thin spoiler of length 0.1. To avoid topology changes, we keep
a horizontal gap of width 2 × 10−3 between the foil and the spoiler, which are only connected at the point
(0.6383, 0.0422). An adaptive mesh is applied with refined elements around the spoiler. When the spoiler
is deployed, it rotates about the connecting point with the foil with angular velocity 0.1, which generates a

11 of 14

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
C

A
L

IF
O

R
N

IA
 (

B
E

R
K

E
L

E
Y

)
on

 O
ct

ob
er

 1
3,

 2
01

7
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

01
3-

28
33

large domain deformation around the spoiler. To address this, we update the adaptive mesh size function at
each timestep and improve the mesh quality by our local mesh operations.

The numerical simulation starts with a steady flow around the flat foil with a closed spoiler, at Mach
number 0.2 and Reynolds number 5000, based on the airfoil chord length 1 and the free-stream velocity 1.
Next, we fix the foil but raise the spoiler gradually up to a 90 degrees angle, which results in massive flow
separation behind the foil. We keep the spoiler at the vertical state for a short time period, and then close it
again by reversing the motion. During this entire process, we use our space-time DG method to solve for the
compressible viscous flow during the raising and closing part, and a regular two-dimensional method-of-lines
DG method for the time period when the spoiler position is fixed. Again, as in the previous test, we use
polynomial orders p = 2 with linear element geometries, in order to better resolve the solution fields.

In figure 10, some mesh plots are given to show how our local mesh operations improve the spatial mesh
as the spoiler is raised, and three samples of entropy plots are shown in figure 9. In the zoom-in plots,
we can confirm that our space-time DG method retains the high quality of the solutions even for the large
deformation between the foil and the spoiler. Finally, the lift and the drag coefficients during the entire
process are shown in figure 11.

Entropy Plot at t = 12.0 Zoom-in Entropy Plot around spoiler at t = 12.0

Entropy Plot at t = 28.0 Zoom-in Entropy Plot around spoiler at t = 28.0

Entropy Plot at t = 44.0 Zoom-in Entropy Plot around spoiler at t = 44.0

Figure 9. Compressible Navier-Stokes flow around an airfoil with a deploying spoiler .

V. Conclusions

We have presented a fully unstructured space-time mesh generator and a high-order accurate discontin-
uous Galerkin discretization of the space-time Navier-Stokes equations. Using local mesh operations, we
generate simplex elements for each layer of timesteps separately and use implicit solvers to advance the
solution in time. Unlike the ALE schemes, our method can handle complex domain changes and mesh re-
configurations, without reduced accuracy or conservation problems. We demonstrated the scheme on model
test problems as well as applications involving complex mesh motions. Future work includes the extension
of the space-time mesh generation procedure to three spatial dimensions plus time, and the generation of
curved high-order space-time elements.

12 of 14

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
C

A
L

IF
O

R
N

IA
 (

B
E

R
K

E
L

E
Y

)
on

 O
ct

ob
er

 1
3,

 2
01

7
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

01
3-

28
33

The initial spatial mesh at t = 0.0

Zoom-in spatial mesh around spoiler at t = 0.0 Zoom-in spatial mesh around spoiler at t = 6.0

Zoom-in spatial mesh around spoiler at t = 12.0 Zoom-in spatial mesh around spoiler at t = 18.0

Figure 10. Spatial Meshes of Airfoil with a Deploying Spoiler.

0 5 10 15 20 25 30 35 40 45
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Time

D
ra

g
 C

o
e

ff
ic

ie
n

ts
 C

D

0 5 10 15 20 25 30 35 40 45
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

Time

L
if
t

C
o

e
ff

ic
ie

n
ts

 C
L

Figure 11. Drag and lift coefficients around the NACA0012 airfoil with a deploying spoiler as a function of time.

13 of 14

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
C

A
L

IF
O

R
N

IA
 (

B
E

R
K

E
L

E
Y

)
on

 O
ct

ob
er

 1
3,

 2
01

7
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

01
3-

28
33

References

1Cockburn, B. and Shu, C.-W., “Runge-Kutta discontinuous Galerkin methods for convection-dominated problems,” J.
Sci. Comput., Vol. 16, No. 3, 2001, pp. 173–261.

2Peraire, J. and Persson, P.-O., Adaptive High-Order Methods in Computational Fluid Dynamics, Vol. 2 of Advances in
CFD , chap. 5 – High-Order Discontinuous Galerkin Methods for CFD, World Scientific Publishing Co., 2011.

3Donea, J., “Arbitrary Lagrangian-Eulerian finite element methods,” Computational methods for transient analysis(A
84-29160 12-64). Amsterdam, North-Holland, 1983,, 1983, pp. 473–516.

4Farhat, C. and Geuzaine, P., “Design and analysis of robust ALE time-integrators for the solution of unsteady flow
problems on moving grids,” Comput. Methods Appl. Mech. Engrg., Vol. 193, No. 39-41, 2004, pp. 4073–4095.

5Persson, P.-O., Bonet, J., and Peraire, J., “Discontinuous Galerkin Solution of the Navier-Stokes Equations on Deformable
Domains,” Comp. meth. in Appl. Mech and Engnr., to appear , 2009.

6Hughes, T. J. and Hulbert, G. M., “Space-time finite element methods for elastodynamics: formulations and error
estimates,” Computer methods in applied mechanics and engineering, Vol. 66, No. 3, 1988, pp. 339–363.

7Hulbert, G. M. and Hughes, T. J., “Space-time finite element methods for second-order hyperbolic equations,” Computer
Methods in Applied Mechanics and Engineering, Vol. 84, No. 3, 1990, pp. 327–348.

8Johnson, C., “Discontinuous Galerkin finite element methods for second order hyperbolic problems,” Computer Methods
in Applied Mechanics and Engineering, Vol. 107, No. 1, 1993, pp. 117–129.

9Lowrie, R. B., Roe, P. L., and Van Leer, B., “Space-time methods for hyperbolic conservation laws,” Barriers and
Challenges in Computational Fluid Dynamics, Springer, 1998, pp. 79–98.

10Aliabadi, S. and Tezduyar, T., “Space-time finite element computation of compressible flows involving moving boundaries
and interfaces,” Computer Methods in Applied Mechanics and Engineering, Vol. 107, No. 1, 1993, pp. 209–223.

11Klaij, C. M., van der Vegt, J. J. W., and van der Ven, H., “Space-time discontinuous Galerkin method for the compressible
Navier-Stokes equations,” J. Comput. Phys., Vol. 217, No. 2, 2006, pp. 589–611.

12Sudirham, J., van der Vegt, J., and van Damme, R., “Space–time discontinuous Galerkin method for advection–diffusion
problems on time-dependent domains,” Applied numerical mathematics, Vol. 56, No. 12, 2006, pp. 1491–1518.

13van der Vegt, J. J. W. and van der Ven, H., “Space-time discontinuous Galerkin finite element method with dynamic
grid motion for inviscid compressible flows. I. General formulation,” J. Comput. Phys., Vol. 182, No. 2, 2002, pp. 546–585.

14Rhebergen, S. and Cockburn, B., “A space-time hybridizable discontinuous Galerkin method for incompressible flows on
deforming domains,” J. Comput. Phys., Vol. 231, No. 11, 2012, pp. 4185–4204.

15Rhebergen, S., Cockburn, B., and van der Vegt, J. J. W., “A space-time discontinuous Galerkin method for the incom-
pressible Navier-Stokes equations,” J. Comput. Phys., Vol. 233, 2013, pp. 339–358.

16Mani, K. and Mavriplis, D., “Efficient Solutions of the Euler Equations in a Time-Adaptive Space-Time Framework,”
49th AIAA Aerospace Sciences Meeting and Exhibit , 2011, AIAA-2011-774.

17Rendall, T. C. S., Allen, C. B., and Power, E. D. C., “Conservative unsteady aerodynamic simulation of arbitrary
boundary motion using structured and unstructured meshes in time,” Internat. J. Numer. Methods Fluids, Vol. 70, No. 12,
2012, pp. 1518–1542.

18Üngör, A. and Sheffer, A., “Tent-Pitcher: A Meshing Algorithm For Space-Time Discontinuous Galerkin Methods,”
Proceedings of the 9th International Meshing Roundtable, Sandia Nat. Lab., 2000, pp. 111–122.

19Abedi, R., Chung, S.-H., Erickson, J., Fan, Y., Haber, R., Sullivan, J., Thite, S., and Zhou, Y., “Spacetime meshing with
adaptive coarsening and refinement,” 4th Symposium on Trends in Unstructured Mesh Generation, 7th US National Congress
on Computational Mechanics, Citeseer, 2003.

20Behr, M., “Simplex space–time meshes in finite element simulations,” International journal for numerical methods in
fluids, Vol. 57, No. 9, 2008, pp. 1421–1434.

21Alauzet, F., “Efficient moving mesh technique using generalized swapping,” Proceedings of the 21th International Meshing
Roundtable, Sandia Nat. Lab., 2012, pp. 17–37.

22Olivier, G. and Alauzet, F., “A new changing-topology ALE scheme for moving mesh unsteady simulations,” 49th AIAA
Aerospace Sciences Meeting, AIAA Paper , Vol. 474, 2011, pp. 252–271.

23Persson, P.-O. and Strang, G., “A Simple Mesh Generator in MATLAB,” SIAM Review , Vol. 46, 2004.
24Wang, L. and Persson, P.-O., “A High-Order Discontinuous Galerkin Method with Unstructured Space-Time Meshes for

Domains with Large Deformations,” in review.
25Cockburn, B. and Shu, C.-W., “The local discontinuous Galerkin method for time-dependent convection-diffusion sys-

tems,” SIAM J. Numer. Anal., Vol. 35, No. 6, 1998, pp. 2440–2463.
26Hesthaven, J. S. and Warburton, T., Nodal discontinuous Galerkin methods, Vol. 54 of Texts in Applied Mathematics,

Springer, New York, 2008, Algorithms, analysis, and applications.
27Roe, P. L., “Approximate Riemann solvers, parameter vectors, and difference schemes,” J. Comput. Phys., Vol. 43, No. 2,

1981, pp. 357–372.
28Peraire, J. and Persson, P.-O., “The compact discontinuous Galerkin (CDG) method for elliptic problems,” SIAM J. Sci.

Comput., Vol. 30, No. 4, 2008, pp. 1806–1824.
29Persson, P.-O. and Peraire, J., “Newton-GMRES preconditioning for discontinuous Galerkin discretizations of the Navier-

Stokes equations,” SIAM J. Sci. Comput., Vol. 30, No. 6, 2008, pp. 2709–2733.
30Lahiri, S. K., Bonet, J., and Peraire, J., “A variationally consistent mesh adaptation method for triangular elements in

explicit Lagrangian dynamics,” Internat. J. Numer. Methods Engrg., Vol. 82, No. 9, 2010, pp. 1073–1113.
31Field, D. A., “Qualitative measures for initial meshes,” Internat. J. Numer. Methods Engrg., Vol. 47, 2000, pp. 887–906.
32Shirsath, R. A. and Mukherjee, R., “Unsteady Aerodynamics of Tandem Airfoils Pitching in Phase,” 2nd International

Conference on Mechanical, Production and Automobile Engineering (ICMPAE’2012), 2012.

14 of 14

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
C

A
L

IF
O

R
N

IA
 (

B
E

R
K

E
L

E
Y

)
on

 O
ct

ob
er

 1
3,

 2
01

7
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

01
3-

28
33

	Introduction
	Space-Time Discontinuous Galerkin Scheme
	The Compressible Navier-Stokes Equations and its Space-Time Formulation
	Discontinuous Galerkin Discretization

	Moving Space-Time Mesh Generation
	Mesh Motion and Edge Flipping
	Tetrahedra Triangulation of Space-Time Domain [t,t+t]
	Local Triangulation of Prisms
	Algorithms for the Global Space-Time Mesh Generation

	Numerical Results
	Euler Vortex
	Pitching Tandem Airfoils
	Airfoil with a Deploying Spoiler

	Conclusions

