
High-order Discontinuous Galerkin Simulations

on Moving Domains using an ALE Formulation

and Local Remeshing with Projections

Luming Wang∗ and Per-Olof Persson†

University of California, Berkeley, Berkeley, CA 94720-3840, U.S.A.

I. Introduction

High-order methods such as the Discontinuous Galerkin (DG) method are considered promising alter-
natives for the numerical simulation of turbulent flows with complex vortical structures and non-linear
interactions.1,2 Being based on high-order discretization of conservation laws, the DG methods are able to
obtain stable solutions with low numerical dissipation for compressible flow problems. Since the schemes can
easily be implemented on fully unstructured meshes, DG methods are well-suited for problems on complex
geometries, which is an essential requirement for real-world applications.

Many practical problems involve time-varying geometries, such as rotor-stator flows, flapping flight or
fluid-structure interactions. For these deforming domain problems, a number of solutions have been proposed
such as embedded domain methods,3,4, 5 space-time methods6,7, 8 and the Arbitrary Lagrangian-Eulerian
(ALE) method.9,10,11 The popular ALE method can be viewed as a change of variable using a smooth
mapping from a fixed reference domain to the moving physical domain, which allows the mesh to change in
time and leads to a set of modified equations in the reference domain. The approach is efficient and easy to
implement, and is one of the most widely used techniques in particular for CFD problems discretized using
high-order accurate methods.12

However, a limitation with the ALE method is that in order for the deformation mapping to be smooth,
the mesh topology must be fixed which manes that the initial element connectivities have to be kept un-
changed throughout the time evolution. This restriction can be severe for large or complex deformations,
where remeshing is required to maintain well-shaped elements. In order to transfer the solutions between
the original and the recomputed mesh, careful treatment is needed to obtain accuracy and stability. Many
interpolation techniques have been proposed, including standard L2 projections, but in general the accu-
racy is significantly reduced when frequent remeshing is employed. The projections are straight-forward to
formulate and have many desirable properties, but the implementation is complicated and costly for high
dimensional unstructured meshes, which limits their practical applications.

In this work, we propose a simple combined approach for solving deforming domain problems with large
deformation with high-order accuracy. The method is based on nodal discontinuous Galerkin formulation
and an arbitrary Lagrangian-Eulerian framework. The mesh adjustment during the domain motion fol-
lows a spring-based technique with local element flipping. Since all the topological changes are local, the
corresponding L2 projections are also local and can be precomputed and easily applied in both 2D and 3D.

In this paper, we first demonstrate our framework on a 2D model problem of an inviscid Euler vortex,
where we show that the scheme remains high-order accurate for complex mesh reconfigurations and frequent
edge connectivity changes. We also present a 2D laminar flow problem to show the ability of our method
to deal with complex domain motions. Finally, we carry out a convergence test in 3D based on a similar
Euler-vortex model problem, which again demonstrates the high-order accuracy of the method.

∗Ph.D. Candidate, Department of Mathematics, University of California, Berkeley, Berkeley CA 94720-3840. E-mail:
lwang@math.berkeley.edu. Student AIAA member.
†Associate Professor, Department of Mathematics, University of California, Berkeley, Berkeley CA 94720-3840. E-mail:

persson@berkeley.edu. Senior AIAA member.

1 of 12

Figure 1. The mapping between the reference domain and the physical domain in the ALE framework.

II. Numerical Scheme

II.A. ALE formulation

As illustrated in Fig. 1, we denote the time-varying domain as v(t) ∈ Rn. We consider the compressible
Navier-Stokes equations in v(t) as a system of conservation laws,

∂u

∂t
−∇ · f(u,∇u) = 0 (1)

where u is the vector of conserved variables and f is the flux function. For compressible flow, f can be split
into two parts: the inviscid and viscous contributions, where f(u,∇u) = f inv(u) + fvis(u,∇u) .

Following the approach in Ref. 12, our Arbitrary Lagrangian-Eulerian (ALE) formulation chooses a
reference domain as V , which is fixed at all times, and constructs a smoothly differentiable mapping G(X, t) :
V → v(t) from the reference domain to the moving domain, such that every point X ∈ V is mapped to a
point G(X, t) ∈ v(t). We define the deformation gradient G, mapping velocity vX and mapping Jacobian g
as

G = ∇XG, vX =
∂G
∂t
, g = detG (2)

We can then rewrite the conservation law (1) as a new system in the domain D̄,

∂U

∂t
−∇X · F (U ,∇XU) = 0 (3)

where

U = gu, F = gG−1f − uG−1v. (4)

More specifically, the corresponding inviscid and viscous parts can be written as,

F = F inv + F vis, F inv = gG−1f inv − uG−1v, F vis = gG−1fvis (5)

and by the chain rule, we also have,

∇u = (∇X(g−1U))G−T = (g−1∇XU −U∇X(g−1))G−T . (6)

We refer to Ref. 12 for more details on the derivation of this transformation.

2 of 12

II.B. Discontinuous Galerkin Discretization

We apply a standard Discontinuous Galerkin (DG) method to solve the compressible Navier-Stokes equations
(3) in the reference domain. A standard procedure13 is used for the viscous terms, where the system is split
into a first-order system of equations:

∂U

∂t
−∇X · F (U , q) = 0 (7)

∇XU = q. (8)

This system is discretized using a standard Galerkin procedure. We introduce a conforming triangulation
T h = {K} of the computational domain V into elements K. On T h, we define the broken space VhT and ΣhT
as the spaces of functions whose restriction to each element K are polynomial functions of degree at most
p ≥ 1,14

VhT = {v ∈ [L2(D̄)]n | v|K ∈ [Pp(K)]n ∀K ∈ T h}, (9)

ΣhT = {σ ∈ [L2(D̄)]n×m | σ|K ∈ [Pp(K)]n×m ∀K ∈ T h} (10)

where n is the spatial dimension, m is the number of components in solution U , and Pp(K) denotes the
space of polynomials of degree at most p ≥ 1 on K. Then the DG formulation for equations (7) and (8)
becomes: find Uh ∈ VhT and qh ∈ ΣhT such that for each K ∈ T h, we have∫

K

∂Uh

∂t
· vhdx−

∫
K

F inv(Uh) : ∇Xv
h dx+

∮
∂K

(F inv · n) · vh ds

= −
∫
K

F vis(Uh, qh) : ∇Xv
h dx+

∮
∂K

(F vis · n) · vh ds, ∀vh ∈ VhT (11)∫
K

qh : σh dx = −
∫
K

Uh · (∇X · σh) dx+

∮
∂K

(Uh ⊗ n) : σh ds, ∀σh ∈ ΣhT . (12)

For numerical fluxes, we use Roe’s method15 to approximate the inviscid flux and we treat the viscous flux
using the Compact Discontinuous Galerkin (CDG) method proposed by Peraire and Persson,16 which is
a modified LDG method to obtain a compact and sparser stencil with improved stability properties. By
equations (11) and (12), a non-linear semi-discrete system is formulated which we solve using a parallel
high-order diagonally implicit Runge-Kutta (DIRK) solver. The details on this derivation can be found in
Refs. 17,18.

III. Mesh Motion and Edge Flipping

As the physical domain deforms, the mesh has to be moved accordingly. In order to find a well-conditioned
smooth mapping, a couple of local mesh operations are introduced to adjust the mesh topology and maintain
high element qualities. First, we move the boundary nodes rigidly according to the prescribed geometry
motion. This approach is sufficient for our examples, but in general it might be necessary to, for example,
redistribute the boundary nodes if the boundary deformations are large. The element qualities generally
decrease after the boundary nodes are moved, and we improve the mesh by moving the interior mesh nodes
using the DistMesh scheme.19

Figure 2. Force-based smoothing and edge flipping. The left plot shows the net force exerted on one node, and the
right plot gives a 2D example of edge flipping for improving the triangle qualities.

3 of 12

As illustrated in Fig. 2 (left), the movement of the interior nodes is driven by repulsive forces from each
attached edge, which depend on the edge length l and an equilibrium length l0:

|F (l)| =

k(l − l0) if l ≥ l0,
0 if l < l0,

(13)

where k is a constant (corresponding to Hooke’s constant for a linear elastic spring). The equilibrium length
l0 has to be set manually. For a uniform mesh it can be a constant, but for more general adaptive meshes
it can be given by a specified mesh size function. In addition, a scaling is applied to ensure that most edges
are under compression.19

For each node p, denote by F (p) the sum of all forces from edges connected to p. Then we iteratively
update the node position by

p(n+1) = p(n) + δF (p(n)) (14)

where δ is an appropriate pseudo time step. The iterations are repeated until an approximate force equilib-
rium is obtained.

When the time-varying domain undergoes large deformations, node movements are usually not sufficient
to obtain high-quality elements and avoid element inversion. For such cases, we perform local connectivity
changes to improve the mesh qualities.20 For a triangular mesh in 2D, this can be done using edge swapping
operations21 as shown in Fig. 2 (right), where two adjacent triangles flip their shared edge and produce two
new triangles sharing the new edge. Note that in 2D, during the process described, the number of nodes,
edges and elements remain unchanged. Furthermore, all elements have the same edge connections except for
the ones involved in edge swapping.

Operation I Operation II

Operation III Operation IV
Figure 3. Change of local element connectivity in 3D. The numbers of old and new elements are shown above the
arrows.

Extending this moving mesh strategy to 3D cases, we use the same force-based smoothing technique
above to update the positions of interior nodes. However, the local connectivity changes need substantially
more complicated operations in order to address the element distortion in 3D. For example, consider a pair of
tetrahedra sharing a common surface. These can be transformed into three new tetrahedra by removing the
shared surface and introducing a new interior edge (Operation I in Fig. 3). Inversely, we can also take a small
group of tetrahedra sharing a common edge and transform them into tetrahedra sharing a common surface
(Operation II, III, IV in Fig. 3). In this work, we use all these four local connectivity operations, which are
shown in Fig. 3. Based on our results, these operations are sufficient to make the 3D mesh movement robust
and keep the tetrahedra well-shaped. Note that although the number of elements might change during this
process, all the connectivity operations are still local and limited to a small group of elements.

4 of 12

IV. L2 Projection

In many ALE simulations, the mesh is moved without connectivity changes for as many steps as possible
and the transformed Navier-Stokes equations are solved in the reference domain based on well-conditioned
smoothly differentiable mappings G(X, t). But for problems involving large domain deformation, the mesh
will eventually become poorly shaped due to the appearance of nearly inverted elements. To address this,
remeshing can be used to replace the old triangulation T h = {K} by a new one T̃ h = {K̃} in the reference
domain V such that the mapping image of the new mesh in the physical domain v(t) maintains high quality.

Consider the broken spaces Vh
T̃

and Σh
T̃

, which are similar to the spaces defined in (9) and (10) but

associated with the triangulation T̃ h. Recall that in the standard DG procedure, the numerical solution Uh

is written as a linear combination of basis functions {φ1, φ2, . . . , φN} on the broken space VhT ,

Uh =

N∑
i=1

Uiφi. (15)

In order to continue the time-stepping after remeshing, a new approximate solution to Uh ∈ VhT is

required. Denote the basis functions of Vh
T̃

by {φ̃1, φ̃2, . . . , φ̃Ñ}, and the L2 projection of Uh onto Vh
T̃

by

Ũh. This projection satisfies the following property: for each K̃ ∈ T̃ h,∫
K̃

(Uh − Ũh)φ̃idx = 0, i = 1, . . . , Ñ . (16)

More precisely, if

Ũh =

Ñ∑
i=1

Ũiφ̃i, (17)

then

Ñ∑
i=1

∫
K̃

Ũiφ̃iφ̃jdx =

N∑
i=1

∫
K̃

Uiφiφ̃jdx =

N∑
i=1

∑
K∈T h

∫
K̃∩K

Uiφiφ̃jdx, j = 1, . . . , Ñ . (18)

The equations (18) result in a linear system,

MŨh = PUh (19)

where

Mj,i =

∫
K̃

φ̃iφ̃jdx, Pj,i =
∑
K∈T h

∫
K̃∩K

φiφ̃jdx. (20)

Equation 20 can be solved for Ũh and used as the transferred solution to resume the time-stepping
process on the new mesh.

However, since both φi and φ̃i are discontinuous element-wise polynomials, the second equal sign of
equation (18) indicates that each new element K̃ must be split into a collection of disjoint intersections
K̃ ∩K for some K ∈ T h. Dealing with these projections for two arbitrary meshes poses several difficulties.
First, an efficient and robust cut-cell algorithm is required to split the elements, which is a fairly involved
procedure for 3D tetrahedral meshes; second, the intersections of simplex elements can have many possible
shapes, and a sophisticated quadrature technique for arbitrary polygons or polyhedra must be incorporated
for the evaluation of the volume integrals. In our proposed method, by taking advantage of our mesh
moving techniques with local mesh operators and discontinuous element-wise polynomial solutions of the
DG method, we can use a simpler and more efficient algorithm to handle the large deformation using local
L2 projections.

5 of 12

Phase I Phase II Phase III Phase IV
Figure 4. An illustration of the process in algorithm 1. Phase I: Select blue nodes to move; Phase II: Update interior
nodes by force-based smoothing; Phase III: Select pairs of elements in red for flipping; Phase IV: Change the local
connectivity within each pair of red elements.

V. ALE Method with Local L2 Projections

The details of our method are described in algorithm 1. Recall that our mesh improvement strategy has
two stages. The first stage only moves the nodes without any mesh topology changes. Therefore, it allows
us to construct a smooth map and solve for one time step using a standard ALE method. Next, if needed,
the second stage is to change the connectivity locally. In this stage, all the node positions are fixed before
and after the connectivity change, so we can conduct our local L2 Projections within each group of flipped
elements and transfer the solution very efficiently. The algorithm repeats the two stages above and evolves
the solution throughout the whole time period.

In 2D cases, it is clear that each local flipping operator replaces two old elements by two new elements,
as shown in Fig. 5. In other words, the old pair {K1,K2} and the new pair {K̃1, K̃2} share the same group
of vertices, so 4 sub-triangles {K̃1∩K1, K̃1∩K2, K̃2∩K1, K̃2∩K2} are always formed as their intersections.
The integrals in equation (18) are straightforward to evaluate based on these four sub-triangles and thus
the components of solution Uh within two old elements are transferred into those of the new solution Ũh

with respect to the two new elements. Except for the pairs of flipped elements, all other components of Uh

and Ũh are unchanged. A 2D example is shown in Fig. 4 to demonstrate how one step of our algorithm
performs.

In 3D, similarly to the 2D cases, we also need to split old and new tetrahedra into sub-tetrahedra at the
second stage and then implement the local L2 projections by evaluating the integrals of equation (18) in
each of the sub-tetrahedra. This tetrahedral splitting is significantly more complicated that in 2D. However,
since the connectivity changes are limited to a small group of tetrahedra, it is straightforward to analyze the
resulting geometric structures and to consider all possible cases of splitting for each operation.

From Fig. 3, we can see that for any 3D operation, the old and the new groups of elements provide two
different triangulations of a polyhedron with a special structure, which has a polygon (triangle, quadrilateral
or pentagon) in the middle with one node on each side (top and bottom in the figure). By connecting
these top and bottom nodes, we can find an intersection between the middle polygon and the connecting
line (marked with a red cross in each plot of Fig. 6). We can then consider the splitting of each group
of tetrahedra into sub-tetrahedra case by case, and the resulting triangulation gives all the sub-tetrahedra
needed for computing the integrals in equation (18).

• For Operation I and II, connect the intersection to each vertex of the middle triangle, and connect all
the middle nodes to the top and the bottom nodes.

• For Operation III, triangulate the middle quadrilateral by assigning a diagonal. The intersection of the
connecting line is then located in one of the two resultant triangles. Connect this intersection point to
each vertex of the middle quadrilateral, and finally connect all the middle nodes to the top and to the
bottom nodes.

• For Operation IV, triangulate the middle pentagon by assigning two diagonals. The intersection of
the connecting line is then in the middle triangle or in one of the two side triangles. Connect this
intersection point to each vertex of the middle quadrilateral, and for the latter case, add one additional
line to complete a valid triangulation of the pentagon. Finally connect all the middle nodes to the top
and the bottom nodes.

6 of 12

Algorithm 1 Discontinuous Galerkin ALE Method with Local L2 Projections

Require: Triangulation T h on D̄ and initial solution Uh,t0 at t0
Require: Time step ∆t and mesh quality threshold δ
Ensure: Solution Uh,ti for each time step ti until time T
while t0 < ti ≤ T do

Move the mesh by the DistMesh algorithm19

Compute deformation gradient G, mapping velocity v and mapping Jacobian g
Solve Uh,ti by the DG method with ALE framework
if min quality of K ∈ T h < δ then

Create T̃ h by local element flipping
Solve for Ũh,ti by local L2 projections
T h ← T̃ h
Uh,ti ← Ũh,ti

end if
end while

The old pair The new pair Sub-triangles
Figure 5. Local element splitting in 2D.

Figure 6. Tetrahedral splitting for 3D operations. In each plot, the triangulation of the middle polygon is on the left
and the corresponding 3D triangulation is on the right. The red cross is the intersection between the middle polygon
and the connecting line between the top and the bottom nodes. Note that in the last case, one additional edge is needed
in addition to the diagonals and edges connecting intersection and vertices, in order to complete a valid triangulation
of the middle polygon.

7 of 12

VI. Numerical Test

VI.A. Euler Vortex

In our first numerical experiment, we solve for a propagating compressible Euler vortex in a 20-by-20 square
domain and make a convergence test to demonstrate the high order accuracy of our local ALE approach
with frequent local L2 projections in 2D.

The vortex is initially centered at (x0, y0) = (−4, 4) and moves with the free-stream at an angle θ = π/4
with respect to the x-axis. The analytical solution at (x, y, t) is given by

u = u∞(cos θ − ε((y − y0)− v̄t)
2πrc

exp(
f(x, y, t)

2
)) (21)

v = u∞(sin θ +
ε((x− x0)− ūt)

2πrc
exp(

f(x, y, t)

2
)) (22)

ρ = ρ∞(1− ε2(γ − 1)M2
∞

8π2
exp(f(x, y, t)))

1
γ−1 (23)

p = p∞(1− ε2(γ − 1)M2
∞

8π2
exp(f(x, y, t)))

γ
γ−1 (24)

where f(x, y, t) = (1− ((x−x0)− ūt)2− ((y− y0)− v̄t)2)/r2c , M∞ = 0.5 is the Mach number, γ = cp/cv, and
u∞, p∞, ρ∞ are free-stream velocity, pressure and density, respectively. Moreover, ū and v̄ are the Cartesian
components of the free-stream velocity with ū = u∞ cos θ and v̄ = u∞ sin θ. The parameter ε = 3 is the
strength of the vortex and rc = 1.5 is its size.

As shown in Fig. 7, we choose a centered area of an unstructured mesh (colored in yellow) and rotate this
part with a constant angular velocity ω = π

6 . As the outside green part stays unchanged all the time, the
central rotation induces large mesh deformations so that the global unstructured mesh has to be adjusted
by flipping some of the elements in the layer of mesh (colored blue) between the fixed and the moving mesh.

We solve the Euler equations using our proposed algorithm on this moving mesh until time T = 10 with
timestep ∆t = 0.01. Then we compare the numerical results with the given analytical solutions. Note that
∆t is chosen much smaller than the spatial discretization size h to ensure that the temporal numerical errors
are negligible.

We carry out the convergence test for a range of spatial mesh sizes h and polynomial degrees p, and
compute inf-norms of the errors. From the resulting convergence plot it is clear that the optimal O(hp+1)
orders of convergence are obtained.

VI.B. Pitching Tandem Airfoils

Next, we consider a compressible Navier-Stokes simulation similar to the one studied in Ref.8 It consists of
two pitching NACA0012 airfoils with chord length c = 1 in a rectangular domain. As shown in Fig. 8, at
the initial time t = 0 the two foils have a zero pitching angle and are aligned on the horizontal axis close to
each other. The distance between the trailing edge of the first foil and the leading edge of the second foil is
d = 0.1. The two foils are both treated as rigid bodies and rotated around the points p = c/3 to the right
of their leading edges. The rotation follows a prescribed harmonic function as

θ = A sin(−2πft) (25)

where A = π/6 and f = 0.05. The flow has Mach number 0.2 and Reynolds number 3000.
As the two foils are placed very close and rotated based on the same harmonic function, the mesh quality

decays very rapidly if only the position of the nodes are updated. However, using our simple L2 projection
strategy, the moving mesh remain well shaped and avoids inverted elements. We implement our high-order
DG ALE method with polynomial degree p = 2 and linear element geometries. A couple of sample entropy
plots are shown in Fig. 9, and a plot of the drag and the lift forces is shown in Fig. 9.

VI.C. Euler Vortex in 3D

The last example is used to demonstrate the ability of our moving mesh strategy to adjust the mesh quality
in 3D and achieve high-order accuracy. Similar to the first example, we propagate an Euler vortex cylinder

8 of 12

Moving Mesh at t = 0 Moving Mesh of t = 1.5 Sample pressure plot of Euler Vortex

10
0

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

p=1

p=2

p=3

1

2

1

3

1

4

Typical element size h

D
is

cr
et

e
L2

 e
rr

or

Convergence Plot
Figure 7. Convergence Test for the Euler Vortex Problem. The upper left and middle plots are two sample meshes
at t = 0 and t = 1.5. All the connectivity changes happen in the blue layer of triangles; A sample entropy plot of this
Euler vortex problem is on the upper right.

0.1

!

c/3

!

c/3

c=1 c=1

! θ θ
!

Foil A Foil B

Figure 8. Schematics of the pitching tandem airfoil problem.

9 of 12

Entropy Plot at t = 4.0 Entropy Plot at t = 8.0

Entropy Plot at t = 12.0 Entropy Plot at t = 16.0

0 2 4 6 8 10 12 14 16 18 20
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time

D
ra

g
F

or
ce

Foil A
Foil B

0 2 4 6 8 10 12 14 16 18 20
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time

Li
ft

F
or

ce

Foil A
Foil B

Figure 9. Numerical results for tandem foils. On the top, there are solution fields for the pitching tandem airfoils
problem (entropy of the flow at 4 time instances). The drag and lift forces on the pitching tandem NACA0012 airfoils
as a function of time are shown at the bottom.

10 of 12

in a 10 × 10 × 10 cube (as shown in Fig. 10). The analytical solutions at (x, y, z, t) are the same as in
equations (21)-(24) except that we set (x0, y0) = (−2,−2).

The mesh of the cube is initially generated as a 3D Cartesian grid. To show the effectiveness of our
moving mesh approach, we induce large mesh deformations by rigidly rotating a set of interior mesh nodes
with respect to the y-axis, which are showed in red in Fig. 10. These red nodes are chosen as all the mesh
nodes of the initial grid with x ∈ [−2.5, 2.5], y ∈ [−2.5, 2.5] and z = 0. The Euler vortex travels from t = 0
to t = T =

√
32 + 32 and the set of red nodes are rotated about 30 degree throughout the time interval [0, T].

With these rigid motions, the mesh quality decays rapidly and will eventually be unacceptable without mesh
adjustments. On the contrary, when our moving mesh is employed, the mesh quality can be retained by
smoothing mesh nodes and locally flipping the tetrahedra. In Fig. 10, we can clearly see that the initially
structured mesh quickly becomes fully unstructured and that it respects the motion of red nodes. All element
qualities remain acceptably high throughout the process.

Finally, we solve the 3D Euler vortex cylinder problem with different spatial mesh sizes h and degrees
of polynomial p. As a benchmark, the same test is also carried out with the initial mesh fixed for all time
steps. The convergence plot in Fig. 10 illustrates that the test with moving meshes achieves the same optimal
O(hp+1) order of accuracy as that with fixed mesh, even with frequent elements flipping in 3D.

Moving Mesh at t = 0 Moving Mesh of t = T Sample solution plot of Euler Vortex

10
−0.7

10
−0.5

10
−0.3

10
−0.1

10
0.1

10
−4

10
−3

10
−2

10
−1

Typical element size h

D
is

c
re

te
 L

2
 e

rr
o

r

p=1

p=2

p=3

1

2

1

3

1

4

Fixed mesh

Moving mesh

Convergence Plot
Figure 10. Convergence Test for the 3D Euler Vortex Problem. The upper left and middle plots are two sample meshes
at the initial and the final time, respectively. These meshes are generated on a 10× 10× 10 cube. The blue faces show
a cross-section of the tetrahedral mesh and the green faces are the outside surfaces of the cube. The red nodes are
rotated rigidly. The right plot shows some sample pressure isosurfaces.

11 of 12

VII. Conclusions

We have presented a high-order Discontinuous Galerkin Method for solving compressible flows in deform-
ing domain using an arbitrary Lagrangian-Eulerian framework. The techniques focus on large deformation
problem, where a moving mesh is adjusted by local mesh operations. A local L2 projection is introduced to
transfer the solution between the meshes, which is efficient and easy to implement due to its local character.
Several numerical tests are included to show the effectiveness of the method. Our future work will mostly
be focused on using the proposed method for practical simulations, in particular for 3D applications.

References

1Cockburn, B. and Shu, C.-W., “Runge-Kutta discontinuous Galerkin methods for convection-dominated problems,” J.
Sci. Comput., Vol. 16, No. 3, 2001, pp. 173–261.

2Peraire, J. and Persson, P.-O., Adaptive High-Order Methods in Computational Fluid Dynamics, Vol. 2 of Advances in
CFD , chap. 5 – High-Order Discontinuous Galerkin Methods for CFD, World Scientific Publishing Co., 2011.

3Colella, P., Graves, D. T., Keen, B. J., and Modiano, D., “A Cartesian grid embedded boundary method for hyperbolic
conservation laws,” J. Comput. Phys., Vol. 211, No. 1, 2006, pp. 347–366.

4Aftosmis, M. J., Berger, M. J., and Adomavicius, G., “A Parallel Multilevel Method for Adaptively Refined Cartesian
Grids with Embedded Boundaries,” 38th AIAA Aerospace Sciences Meeting and Exhibit , 2000, AIAA-2000-0808.

5Aftosmis, M. J., Berger, M. J., and Melton, J. E., “Robust and Efficient Cartesian Mesh Generation for Component-Based
Geometry,” 35th AIAA Aerospace Sciences Meeting and Exhibit , 1997, AIAA-97-0196.

6Hughes, T. J. and Hulbert, G. M., “Space-time finite element methods for elastodynamics: formulations and error
estimates,” Computer methods in applied mechanics and engineering, Vol. 66, No. 3, 1988, pp. 339–363.

7Hulbert, G. M. and Hughes, T. J., “Space-time finite element methods for second-order hyperbolic equations,” Computer
Methods in Applied Mechanics and Engineering, Vol. 84, No. 3, 1990, pp. 327–348.

8Wang, L. and Persson, P.-O., “A High-Order Discontinuous Galerkin Method with Unstructured Space-Time Meshes for
Domains with Large Deformations,” Comput. & Fluids, to appear.

9Donea, J., “Arbitrary Lagrangian-Eulerian finite element methods,” Computational methods for transient analysis(A
84-29160 12-64). Amsterdam, North-Holland, 1983,, 1983, pp. 473–516.

10Farhat, C. and Geuzaine, P., “Design and analysis of robust ALE time-integrators for the solution of unsteady flow
problems on moving grids,” Comput. Methods Appl. Mech. Engrg., Vol. 193, No. 39-41, 2004, pp. 4073–4095.

11Lomtev, I., Kirby, R. M., and Karniadakis, G. E., “A discontinuous Galerkin ALE method for compressible viscous flows
in moving domains,” J. Comput. Phys., Vol. 155, No. 1, 1999, pp. 128–159.

12Persson, P.-O., Bonet, J., and Peraire, J., “Discontinuous Galerkin solution of the Navier-Stokes equations on deformable
domains,” Comput. Methods Appl. Mech. Engrg., Vol. 198, 2009, pp. 1585–1595.

13Arnold, D. N., Brezzi, F., Cockburn, B., and Marini, L. D., “Unified analysis of discontinuous Galerkin methods for
elliptic problems,” SIAM J. Numer. Anal., Vol. 39, No. 5, 2001/02, pp. 1749–1779.

14Hesthaven, J. S. and Warburton, T., Nodal discontinuous Galerkin methods, Vol. 54 of Texts in Applied Mathematics,
Springer, New York, 2008, Algorithms, analysis, and applications.

15Roe, P. L., “Approximate Riemann solvers, parameter vectors, and difference schemes,” J. Comput. Phys., Vol. 43, No. 2,
1981, pp. 357–372.

16Peraire, J. and Persson, P.-O., “The compact discontinuous Galerkin (CDG) method for elliptic problems,” SIAM J. Sci.
Comput., Vol. 30, No. 4, 2008, pp. 1806–1824.

17Persson, P.-O. and Peraire, J., “Newton-GMRES preconditioning for discontinuous Galerkin discretizations of the Navier-
Stokes equations,” SIAM J. Sci. Comput., Vol. 30, No. 6, 2008, pp. 2709–2733.

18Persson, P.-O., “Scalable Parallel Newton-Krylov Solvers for Discontinuous Galerkin Discretizations,” 47th AIAA
Aerospace Sciences Meeting and Exhibit, Orlando, Florida, 2009, AIAA-2009-606.

19Persson, P.-O. and Strang, G., “A Simple Mesh Generator in MATLAB,” SIAM Review , Vol. 46, 2004.
20Alauzet, F., “Efficient moving mesh technique using generalized swapping,” Proceedings of the 21th International Meshing

Roundtable, Sandia Nat. Lab., 2012, pp. 17–37.
21Lahiri, S. K., Bonet, J., and Peraire, J., “A variationally consistent mesh adaptation method for triangular elements in

explicit Lagrangian dynamics,” Internat. J. Numer. Methods Engrg., Vol. 82, No. 9, 2010, pp. 1073–1113.

12 of 12

	Introduction
	Numerical Scheme
	ALE formulation
	Discontinuous Galerkin Discretization

	Mesh Motion and Edge Flipping
	L2 Projection
	ALE Method with Local L2 Projections
	Numerical Test
	Euler Vortex
	Pitching Tandem Airfoils
	Euler Vortex in 3D

	Conclusions

