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Abstract

We present a high-order accurate space-time discontinuous Galerkin method for solving two-dimensional

compressible flow with fully unstructured space-time meshes. The discretization is based on a nodal for-

mulation, with appropriate numerical fluxes for the first and the second-order terms, respectively. The

scheme is implicit, and we solve the resulting non-linear systems using a parallel Newton-Krylov solver. The

meshes are produced by a mesh moving technique with element connectivity updates, and the corresponding

space-time elements are produced directly based on these local operations. To obtain globally conforming

tetrahedral meshes, we first derive the required conditions on a prism boundary mesh to allow for a valid

local triangulation. Next, we present an efficient algorithm for finding a global mesh that satisfies these

conditions. We also show how to add and remove mesh nodes, again using local constructs for the space-

time mesh. Our method is demonstrated on a number of test problems, showing the high-order accuracy

for model problems, and the ability to solve flow problems on domains with complex large deformations.

Keywords: discontinuous Galerkin, space-time, high-order accuracy, deformable domains, Navier-Stokes

1. Introduction

Discontinuous Galerkin (DG) methods have received much attention during the last decade due to their

ability to produce stable and high-order accurate discretizations of conservation laws on fully unstructured

meshes [1, 2]. In particular for challenging fluid problems, it is widely believed that the low dissipation of

the DG schemes make them ideal for the simulation of turbulent flows with complex vortical structures and

non-linear interactions.

Many practical applications involve time-varying geometries, such as rotor-stator flows, flapping flight or

fluid-structure interactions. For these deforming domains, various solutions have been proposed. A number
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of methods are based on computational meshes that do not necessarily align with the domain boundary (often

Cartesian grids), and impose the boundary conditions using approaches such as the embedded boundary/cut-

cell methods [3–5], the immersed boundary method [6, 7], and the fictitious domain methods [8, 9]. These

popular schemes are often simple and highly efficient, but somewhat difficult to modify for high-order

accuracy close to the boundaries and for thin boundary layers.

Another widely used technique is the Arbitrary Lagrangian-Eulerian (ALE) method [10–12]. These

formulations are based on a time-varying mapping or a deforming grid that conforms to the domain boundary,

which is compensated for by a modification of the equations. Because of this body-fitted grid motion, the

method can produce high-order accurate solutions to a wide range of problems, and DG formulations have

been developed for fully unstructured meshes in [12–15]. The main drawback with the ALE approach is that

when the domain deformation is large and/or complex, it is difficult to deform the mesh without inverting

the elements. Remeshing is then commonly employed, which introduces errors during the solution transfer

between the old and the new meshes. Some topology-change strategies are introduced in [16–20], but so

far it appears that satisfactory high-order accurate ALE methods for large boundary deformations have not

yet been developed. In addition, the ALE formulations require special care to ensure the satisfaction of the

so-called geometric conservation law (GCL) [13].

As an alternative, the so-called space-time framework are fully consistent discretizations that allow

for arbitrary changes of the domain in both space and time [21]. The method essentially treats the time-

dependency with the same technique as the spatial terms, but exploiting the causal nature of the equations to

improve the efficiency. Some of the early work on space-time methods include [22, 23], where a Galerkin/least

square finite element method was introduced for solving classical elastodynamics problems. Extensions to

flow problems on moving domains, with streamline-upwind/Petrov-Galerkin (SUPG) stabilization, where

developed in [24, 25]. A priori and a posteriori error estimates for a space-time finite element discretization

for linear second order hyperbolic equations were presented in [26].

General formulations and analyses of space-time DG methods were presented in [27–29]. The methods

have been used for a number of practical applications, for example in [30] where a space-time DG method was

demonstrated on several aerodynamic applications. Formulations for the Oseen equations where developed in

[31], and for two-fluid flows in [32]. Since the space-time DG formulations lead to fully implicit discretizations,

many previous authors have studied specialized solution techniques. For example, [33] provided a pseudo-

time stepping method to deal with the time evolution, and a h-multigrid solver was introduced in [34]. Also,

space-time hybridizable discontinuous Galerkin (HDG) methods were recently proposed in [35, 36].
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Most work on space-time DG methods have focused on spatial meshes that do not undergo connectivity

changes throughout the time evolution. The corresponding space-time meshes are then essentially composed

of extruded prism-elements, possibly deforming in time. Some previous work have explored time adaptivity,

for example in [37] where a space-time finite volume method with nonuniform time stepping was developed.

However, to handle moving domain problems with large deformations, fully unstructured space-time meshes

are required the spatial mesh topology has to be modified during the simulation. Previous work on fully

unstructured space-time meshes includes [38], which proposed a space-time finite volume method on un-

structured meshes generated by a standard 3D mesh generator. A so-called tent-pitcher space-time mesh

generator based on an advancing front method was introduced in [39, 40] with various extensions in [41–43].

Finally, in [44] space-time meshes were generated by connecting spatial meshes using a Delaunay approach,

which required some additional techniques to eliminate sliver elements.

In this work, we present a space-time discontinuous Galerkin discretization of the compressible Navier-

Stokes equations and a novel fully unstructured space-time mesh generation procedure. The resulting

discretizations from the space-time DG method are higher-dimensional and fully implicit, and we solve the

resulting nonlinear systems of equations using efficient parallel Newton-Krylov solvers [45, 46]. We generate

high-quality moving meshes using the DistMesh algorithm [47], and construct the space-time elements for

each layer of timesteps using a local construction. Unlike the previous work outline above, our procedures

allow for local mesh topology changes in the spatial meshes in order to handle large deformation problems

without regenerating meshes from scratch. Moreover, the space-time meshes are fully unstructured and

generated in an efficient and robust way, only depending on combinatoric properties of how the vertices are

connected. Since no additional nodes are inserted besides those on the spatial meshes, the computational cost

for solving the discretized systems is kept at a minimum. The resulting scheme can essentially handle any

type of domain deformations, even including topological changes. The order of accuracy can be arbitrarily

high in both space and time, provided suitable curved meshes can be generated.

The paper is organized as follows: First, in Section 2 we introduce the governing equations and derive our

space-time DG formulation. Next, in Section 3 we introduce our local mesh operations and the combinatorial

algorithm for generating a globally conforming space-time mesh. In Section 4 we present a number of

examples and applications using our methods. We demonstrate our framework on a model 2D problem

of an inviscid Euler vortex, where we show that the scheme remains high-order accurate even for complex

mesh reconfigurations. We also present three 2D laminar flow problems of a mixer with a rotating object,

two pitching tandem airfoils, and an airfoil with a deploying spoiler, which show our method’s capability to
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handle complex deformations.

2. Governing Equations

2.1. The Compressible Navier-Stokes Equations and its Space-Time Formulation

Consider the conservation form of the compressible Navier-Stokes equations [2] on a time-varying domain

in R2 between time t = 0 to t = T for some fixed final time T > 0. Let (x1, x2) be the spatial variables.

We define Ωt ⊂ R2 as this domain at time t and when t1 < t2, we define the space-time domain Ω[t1, t2] =

{(x1, x2, t) | t1 ≤ t ≤ t2, (x1, x2) ∈ Ωt}. Denote ∇X = (∂x1
, ∂x2

) as the standard 2D spatial gradient

operator and write the system as:

∂u

∂t
+∇X · F inv(u) = ∇X · F vis(u,∇Xu), (1)

with appropriate boundary conditions imposed on the domain boundary ∂Ω[0, T ] and initial condition on

Ω0. Here,

u =



ρ

ρu1

ρu2

ρE


, F inv

1 (u) =



ρu1

ρu2
1 + p

ρu1u2

u1(ρE + p)


, F vis

1 (u,∇Xu) =



0

τ11

τ12

τ11u1 + τ12u2 −Θ1



F inv
2 (u) =



ρu2

ρu1u2

ρu2
2 + p

u2(ρE + p)


, F vis

2 (u,∇Xu) =



0

τ21

τ22

τ21u1 + τ22u2 −Θ2


, (2)

with viscous stress tensor τij and heat flux Θi given by

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij(

∂u1

∂x1
+
∂u2

∂x2
)

)
(3)

and

Θi = − µ

Pr

∂

∂xi

(
E +

p

ρ
− 1

2
(u2

1 + u2
2)

)
, (4)

where δij is the Kronecker delta function, µ is the viscosity coefficient and Pr is the Prandtl number.
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In the solution vector u, ρ is the fluid mass density, E is the total energy, u1 and u2 are the components

of the velocity along the x1 and x2 directions, respectively. The quantity p is the pressure, which has the

form

p = (γ − 1)ρ

(
E − 1

2
(u2

1 + u2
2)

)
, (5)

where γ is the adiabatic gas constant.

Next, we define our space-time formulation of the two-dimensional spatial domain Ωt from t = 0 to

t = T in the three-dimensional space-time domain Ω[0, T ]. We introduce a new space-time gradient operator

∇XT = (∂x1 , ∂x2 , ∂t) and write the Navier-Stokes equations in Ω[0, T ] as

∇XT · F̃ inv(u) = ∇X · F vis(u,∇Xu), (6)

where

F̃ inv
1 (u) = F inv

1 (u), F̃ inv
2 (u) = F inv

2 (u), F̃ inv
3 (u) = u. (7)

The boundary conditions on ∂Ω[0, T ] for equations (6) are the same as the boundary conditions given for the

original equations (1), and the boundary conditions on Ω0 are the given initial conditions. On the boundary

ΩT of Ω[0, T ], no boundary conditions are needed for the space-time formulation, since the characteristics

move in the positive time-direction.

2.2. Discontinuous Galerkin Discretization of Euler Equations

First, we consider the first-order space-time formulation of the Euler equations,

∇XT · F̃ inv(u) = 0. (8)

We introduce a conforming triangulation T h
[0,T ] = {K} of the 3D space-time domain Ω[0, T ] into tetrahedral

elements K. On T h
[0,T ], we define the broken space Vh

T as the spaces of functions whose restriction to each

element K are polynomial functions of degree at most p ≥ 1 [48]:

Vh
T = {v ∈ [L2(Ω[0, T ])]4 | v|K ∈ [Pp(K)]4 ∀K ∈ T h

[0,T ]}, (9)
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where Pp(K) denotes the space of polynomials of degree at most p ≥ 1 on K. Our DG formulation for

equation (8) then becomes: find uh ∈ Vh
T such that for each K ∈ T h

[0,T ], we have

∫
K

(
∇XT · F̃ inv(uh)

)
· vh dV = −

∫
K

F̃ inv(uh) : ∇XT v
h dV +

∮
∂K

( ˜̂F inv · n) · vh dA = 0, ∀vh ∈ Vh
T .

(10)

Here, n = (n1, n1, n3) is the outward unit normal to the boundary ∂K of the space-time tetrahedron K.

The numerical flux ˜̂F inv · n is an approximation to F̃ inv · n on the face of element K, which is specified in

terms of uh on the two sides of the element boundary and by the boundary conditions. More precisely, if

we define ns = (n1, n2) and F̃ inv
s = (F̃ inv

1 , F̃ inv
2 ), and normalize ñs = ns/|ns| and ñ3 = n3/|n3|, we can

decompose the numerical flux into two parts as

˜̂F inv · n = |ns|
[

̂F̃ inv
s · ñs

]
+ |n3|

[
̂̃F inv
3 ñ3

]
= |ns|Fs + |n3|F t. (11)

For the first term, we define the spatial numerical flux Fs = ̂F̃ inv
s · ñs as the standard approximate Riemann

solver proposed by Roe [49]. For the second term, we define the temporal numerical flux F t = ̂̃F inv
3 ñ3 by

standard upwinding of the corresponding linear time-derivative term ut in equation (8).

Note that on the boundaries Ω0 and ΩT , the boundary conditions are indirectly incorporated by the

temporal numerical fluxes Ft. In particular, since these are defined by upwinding, the initial conditions of

equations (1) are used on Ω0 and the interior solutions on ΩT . This property makes it possible to advance

the solution for a single interval ∆t at a time, without connecting the entire space-time solution domain. In

this sense, the space-time DG formulation is similar to a standard implicit method of lines formulation.

The discretization above results in a final non-linear system of equations of the form

R(uh) = 0, (12)

which is an algebraic system without explicit time dependence. Note that unlike method-of-lines discretiza-

tions, the time discretization is part of the DG formulation and thus it is impossible to choose other methods,

such as multistep or explicit time integrators. We solve the system (12) using Newton’s method and an

efficient parallel block-ILU(0) preconditioned GMRES method [45, 46].
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2.3. Discontinuous Galerkin Discretization of Viscosity Terms

Next we describe the discretization of the viscous terms in the compressible Navier-Stokes equations.

We apply a standard procedure for second-order terms [50], where the system (6) is split into a first-order

system of equations:

∇XT · F̃ inv(u) = ∇X · F vis(u, q), (13)

∇Xu = q. (14)

This system if discretized using a standard Galerkin procedure. We introduce the broken space Σh
T as

Σh
T = {σ ∈ [L2(Ω[0, T ])]4×2 | σ|K ∈ [Pp(K)]4×2 ∀K ∈ T h

[0,T ]}, (15)

and the DG formulation for equations (13) and (14) becomes: find uh ∈ Vh
T and qh ∈ Σh

T such that for each

K ∈ T h
[0,T ], we have

−
∫
K

F̃ inv(uh) : ∇XT v
h dx+

∮
∂K

( ˜̂F inv · n) · vh ds

= −
∫
K

F vis(uh, qh) : ∇Xv
h dx+

∮
∂K

( ̂F vis · ns) · vh ds, ∀vh ∈ Vh
T (16)∫

K

qh : σh dx = −
∫
K

uh · (∇X · σh) dx+

∮
∂K

(ûh ⊗ ns) : σh ds, ∀σh ∈ Σh
T . (17)

Recall that ns = (n1, n2) are the first two components (that is, the spatial component) of the outward unit

normal n at the boundary ∂K.

The numerical fluxes ̂F vis · ns and ûh are approximations to F vis ·ns and u on the boundary of element

K. For the inviscid part ˜̂F inv · n, we use (11) as previously described. For the viscous numerical flux, we

first perform a similar normalization:

̂F vis · ns = |ns| ̂F vis · ñs. (18)

Since the viscous terms in equations (13) as well as all of equations (14) only involve derivatives with respect

to the two spatial variables (x1 and x2), we can approximate ̂F vis · ñs and ûh using standard schemes without

modifications. Here, we choose the numerical fluxes according to the Compact Discontinuous Galerkin

(CDG) method [51]. By equations (16) and (17), a non-linear discrete system is formulated which we again

solve using a parallel Newton-GMRES solver [45].
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Figure 1: Space-Time Mesh Generation. The left figure illustrates two mesh layers at time t and t + ∆t, and the right figure
shows a corresponding 3D space-time mesh between the two layers. The blue faces show a cross-section of the tetrahedral
mesh.

3. Space-Time Mesh Generation

Our mesh generator is based on the DistMesh algorithm [47], which iteratively improves a triangular

mesh using only node movements and element connectivity updates [18]. To reduce the computational

cost, we generate tetrahedral space-time meshes for each slab Ω[t, t + ∆t] separately, see figure 1. Since

the DistMesh algorithm is entirely based on local mesh modifications, the space-time mesh can be both

efficiently and robustly generated directly from these operations.

More specifically, given an unstructured mesh of Ωt ∈ R2 at time t, we first generate a unstructured

mesh of Ωt+∆t as the time-dependent flow domain is deforming, using only node movements and local edge

flips. Based on the resulting two layers of triangular meshes, we apply an efficient combinatorial tetrahedral

triangulation method to generate the space-time mesh of Ω[t, t+∆t]. We then solve the compressible Navier-

Stokes equations in this space-time mesh using the DG scheme described in the previous section, and repeat

the procedure for the next space-time slab Ω[t + ∆t, t + 2∆t], etc. The domains Ωt are never re-meshed

from scratch, instead only one initial mesh generation for Ω0 is needed, which is then improved at each

subsequent time step. More importantly, all the mesh improvement techniques are performed on the 2D

spatial mesh, and the tetrahedral triangulation is entirely based on local combinatorial connections.

3.1. Mesh Motion and Edge Flipping

At time t = 0, an initial triangulation T h
0 of Ω0 is generated using any standard spatial mesh generation

technique. At the next time step ∆t, as the domain deforms, the triangulation T h
∆t of Ω∆t is obtained by

performing local operations on the previous triangulation T h
0 . First, we move the boundary nodes rigidly

according to the prescribed geometry motion. This approach is sufficient for our examples, but in general it

might be necessary to, for example, redistribute the boundary nodes if the boundary deformations are large.

The element qualities generally decrease after the boundary nodes are moved, and we use the DistMesh

scheme [47] to improve the mesh.
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Figure 2: Force-based smoothing and edge flipping. The left plot shows the net force exerted on one node, and the right plot
gives an example of edge flipping for improving the triangle qualities.

As illustrated in figure 2, the movement of interior nodes is driven by repulsive forces from each attached

edge, which depend on the edge length l and an equilibrium length l0:

|F (l)| =


k(l − l0) if l ≥ l0,

0 if l < l0,

(19)

where k is a constant (corresponding to Hooke’s constant for a linear elastic spring). The equilibrium length

l0 has to be set manually. For a uniform mesh it can be a constant, but for more general adaptive meshes

it can be given by a specified mesh size function. In addition, a scaling is applied to ensure that most edges

are under compression [47].

For each node p, denote by F (p) the sum of all forces from edges connected to p. Then we iteratively

update the node position by

p(n+1) = p(n) + δF (p(n)) (20)

where δ is an appropriate pseudo time step. The iterations are repeated until an approximate force equilib-

rium is obtained.

When the time-dependent domain undergoes large deformations, node movements are usually not suffi-

cient to obtain high-quality elements and avoid element inversion. For our space-time meshes, however, we

can perform local connectivity changes to improve the mesh qualities [18]. For a triangular mesh, this can

be done using edge swapping operations [52] as shown in figure 2, where two adjacent triangles flip their

shared edge and produce two new triangles sharing the new edge.

To simplify the tetrahedral triangulation algorithm in the later sections, we require that each element

is flipped at most once during each time step, which means that all the flipped elements come in pairs.

This simplification does not appear to impose a severe limitation in any of our numerical tests, which
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Figure 3: Tetrahedral Triangulation. The left plot illustrates a valid triangulation for an element without edge flips, and the
right plot shows a triangulation for a pair of elements with a flipped edge.

include highly complex domain motions and deformations. In principle it is possible that multiple flips

may be required to obtain high element qualities, in which case we simply reduce the time step. Another

effective way to further alleviate this limitation is to restrict the mesh topology changes to certain regions

of the domain and keep other parts of the mesh either fixed or rigidly following the boundary motion. By

performing local mesh adaption only on the regions which allow for mesh topology changes, we obtain a

sufficient number of flipped pairs to keep a high mesh quality.

Note that during the process described, the number of nodes, edges and elements remain unchanged

(we discuss density control for adding or removing mesh nodes below). In fact, all elements have the same

edge connections from T h
0 to T h

∆t except those involved in the edge swapping. In summary, the process will

generate a sequence of two-dimensional meshes {T h
0 , T h

∆t, T h
2∆t, . . . , T h

T } using only local mesh operations.

3.2. Tetrahedral Triangulation of the Space-Time Domain Ω[t, t+ ∆t]

The next step is to efficiently generate a space-time mesh Ω[t, t + ∆t] for each time step based on the

initial mesh of the spatial domain Ωt and the deformed and improved mesh of Ωt+∆t. Recall that our mesh

moving and edge flipping algorithm is able to keep the same number of nodes on Ωt+∆t as that of Ωt, so we

can simply connect each node of Ωt with its corresponding node of Ωt+∆t, as the first step of our space-time

mesh generation. This point-wise connection will ensure that the space-time mesh respects the moving

boundary, due to the rigid motion of boundary nodes from Ωt to Ωt+∆t.

First, consider an element of Ωt without edge flipping (figure 3, left). This element can be extruded to

Ωt+∆t and form an irregular triangular prism, where ‘irregular’ means that the edge on the bottom face

is not necessarily parallel to its corresponding edge on the top face (due to different node displacements

during the force-based smoothing procedure). Next, for elements involved in an edge flip during the interval

[t, t + ∆t], each can be extruded together with the paired element it flipped an edge with, which locally

forms a quadrangular prism with two reverse diagonals on the top and the bottom faces (figure 3, right).
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Again, similar to the unflipped case, the edges at Ωt are not necessarily parallel to those at Ωt+∆t. However,

for convenience in our notation, we will still refer to these vertically skew quadrilaterals as ‘lateral faces’ of

the prisms. Finally, it is clear that the amount of node displacement during a time step must be limited to

ensure sufficiently high element qualities. We control this dynamically by adjusting the size of the time step

∆t and the pseudo time step δ in order to avoid inverted prisms.

The point-wise connection strategy described above produces a mesh of triangular and quadrangular

prisms. Next we will consider how to split these into a conforming mesh of tetrahedra, by first describing

how to perform a valid local triangulation of a prism, and second how to globally ensure that two adjacent

prisms respect the same diagonal on their shared lateral face.

3.2.1. Local Triangulation of Prisms

We will study local triangulations that are entirely based on the nodes in the given spatial meshes, that

is, no additional nodes are inserted. First of all, we locally index the nodes of each prism in a counter-

clockwise order. As shown in figure 4, for each prism V between Ωt and Ωt+∆t, if V a triangular prism,

we locally number the vertices on the bottom face as {pV,t1 , pV,t2 , pV,t3 } and the vertices on its top face as

{pV,t+∆t
1 , pV,t+∆t

2 , pV,t+∆t
3 }. Similarly, vertices of a quadrangular prism V on the bottom and top face are

locally numbered as {pV,t1 , pV,t2 , pV,t3 , pV,t4 } and {pV,t+∆t
1 , pV,t+∆t

2 , pV,t+∆t
3 , pV,t+∆t

4 }, respectively. In addition,

without loss of generality, we require that the original shared edge on Ωt is the line segment pV,t2 pV,t4 and the

new shared edge on Ωt+∆t is the line segment pV,t+∆t
1 pV,t+∆t

3 . We will denote by FV
i the lateral face with

vertices at pV,ti , pV,t+∆t
i , pV,tj and pV,t+∆t

j , where j = (i mod n) + 1, n is the number of lateral faces of V ,

and 1 ≤ i ≤ n.

For each lateral face FV
i , there are two possible face diagonals which we define using a sign function

SV
i (pV,ti , pV,t+∆t

i , pV,tj , pV,t+∆t
j ) for each FV

i according to

SV
i (pV,ti , pV,t+∆t

i , pV,tj , pV,t+∆t
j ) =


−1 if the diagonal edge is pV,ti pV,t+∆t

j

+1 if the diagonal edge is pV,t+∆t
i pV,tj

(21)

for 1 ≤ i ≤ n.

Now, a triangulation of a triangular prism V is completely determined by the values of its 3 sign functions

SV
1 , SV

2 and SV
3 . Combinatorially, it is easy to see that there are 23 = 8 different combinations, but

only 6 of these give valid triangulations (illustrated in figure 4, left). Note that the two uniform cases

{SV
1 = +1, SV

2 = +1, SV
3 = +1} and {SV

1 = −1, SV
2 = −1, SV

3 = −1} cannot be used for valid triangulations.
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Figure 4: All the valid triangulations of a triangular prism (left) and of a quadrangular prism (right). The sets below each
triangulation show the values of the corresponding sign functions.

For the quadrangular case, we first make the following definition:

Definition 1. For a quadrangular prism V , we define the standard value of the sign function SV
i as +1 if

i is odd and −1 if i is even.

Since a quadrangular prism V has 4 lateral faces, a triangulation is determined by the values of the 4

corresponding sign functions SV
1 , SV

2 , SV
3 and SV

4 , for a total of 24 = 16 different combinations. However,

in order allow for a valid triangulation of V , a combination of sign functions must satisfy the following

condition:

Condition 1. There are at least two consecutive sign functions SV
i and SV

mod(i,4)+1 which are set to their
standard values.

Geometrically, this condition means at least one of the 4 tetrahedra {pV,t1 , pV,t2 , pV,t4 , pV,t+∆t
1 }, {pV,t2 , pV,t3 ,

pV,t4 , pV,t+∆t
3 }, {pV,t2 , pV,t+∆t

1 , pV,t+∆t
2 , pV,t+∆t

3 } or {pV,t4 , pV,t+∆t
1 , pV,t+∆t

3 , pV,t+∆t
4 } must be formed and in-

cluded in the final triangulation. This results in a total of 9 possible combinations of SV
1 , SV

2 , SV
3 and SV

4

that correspond to valid triangulations of V (illustrated in figure 4, right).

3.2.2. Global Space-Time Mesh Generation

The last step is to obtain a global tetrahedral triangulation from the extruded prism elements between Ωt

to Ωt+∆t. This is nontrivial as the local triangulations are not independent, because each prism should match
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the diagonals of shared lateral faces with their neighbor prisms. Here we describe an efficient depth-first

algorithm which finds a global triangulation that satisfies these restrictions.

Before describing the algorithm, we introduce the following definitions:

Definition 2. For a prism V , let V ∗ be the adjacent prism of V with FV ∗

i∗ = FV
i for an index i∗. We say

FV
i is a wall if the values of SV

i and SV ∗

i∗ are both set and SV
i = SV ∗

i∗ . We say FV
i is accessible if the values

of SV
i and SV ∗

i∗ are both unset.

During the algorithm, we will make the assumption that each prism V only has three possible states as

follows,

Triangular Prism at State 1. {FV
1 , F

V
2 , F

V
3 } are all accessible;

Triangular Prism at State 2. Exactly one of {FV
1 , F

V
2 , F

V
3 } has become a wall and the other two are

accessible;

Triangular Prism at State 3. {FV
1 , F

V
2 , F

V
3 } have all become walls and {SV

1 , S
V
2 , S

V
3 } can make a valid

triangulation of V .

Quadrangular Prism at State 1. {FV
1 , F

V
2 , F

V
3 , F

V
4 } are all accessible;

Quadrangular Prism at State 2. Exactly one of the pair faces {FV
1 , F

V
3 } and {FV

2 , F
V
4 } have both be-

come walls, at least one of two corresponding SV
i was set to its standard value, and both FV

i in the other
pair are accessible.

Quadrangular Prism at State 3. {FV
1 , F

V
2 , F

V
3 , F

V
4 } have all become walls and {SV

1 , S
V
2 , S

V
3 , S

V
4 } can

make a valid triangulation of V .

With this assumption, we now introduce the algorithm by its three main operations.

Operation 1: Optimal Local Triangulation of Prisms.

Based on the assumption, throughout the algorithm, if V has not been triangulated it must be at state 1 or

2. We then choose an optimal local triangulation of V by

arg max
T V

min
K∈T V

Q(K) (22)

where T V denotes the set of all the possible valid triangulations of V , whose sign functions respect the ones

prescribed on the walls. Q(K) represents the quality of each tetrahedron K of T V , which is calculated by

the measure proposed by Field [53]

Q(K) = 72
√

3
Vol(K)

(
∑6

i=1 li(K)2)3/2
, (23)

where Vol(K) is the volume of K and li is the length of each edge i = 1, . . . , 6.

From the local triangulations in figure 4, it can easily be verified that T V is nonempty when V is at

state 1 or 2. In other words, we can always find a valid triangulation of V .
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Operation 2: Sign Function Synchronization of Neighbor Prisms.

When a prism V is triangulated by operation 1, in order to not violate the assumption made at the beginning,

we have to transfer V to state 3. Therefore, as operation 2, we start from each accessible FV
i , and update

the sign functions of the corresponding neighbor prisms to make FV
i a wall. For instance, suppose FV

i was

accessible before the local triangulation of V , and V ∗ is the adjacent prism with FV ∗

i∗ = FV
i for some index

i∗. Again, according to the assumption, V ∗ must be in state 1 or 2 since FV ∗

i∗ was accessible before the

triangulation of V . So in total, there are 4 possible cases for V ∗:

Case 1. If V ∗ is triangular at state 1, we simply set SV ∗

i∗ = SV
i , which makes FV

i and FV ∗

i∗ walls and
transfers V ∗ to state 2;

Case 2. If V ∗ is quadrangular at state 1, we set SV ′

i∗ = SV
i and SV ∗

mod(i∗+1,4)+1 to their standard values.

This transfers V ∗ into state 2. If V ∗∗ is the adjacent prism of V ∗ with shared face FV ∗

mod(i∗+1,4)+1, then we
continue to update sign functions of V ∗∗ recursively using operation 2;

Case 3. Suppose V ∗ is triangular at state 2 with a wall FV ∗

j∗ for some j∗ 6= i∗. We then use operation 1 to

triangulate V ∗ immediately under the restrictions imposed by the prescribed values of SV ∗

j∗ and SV ∗

i∗ = SV
i .

Let k∗ be the third index other than i∗ and j∗ and V ∗∗ be the adjacent prism of V ∗ with shared face FV ∗

k∗ .
To transfer V ∗ to state 3, we have to continue updating sign functions of V ∗∗ recursively using operation 2;

Case 4. Suppose V ∗ is quadrangular at state 2 with a pair of opposite walls, say, SV ∗

j∗ and SV ∗

k∗ (where
i∗ 6= j∗ and i∗ 6= k∗). Let l∗ be the fourth index other than i∗, j∗ and k∗. Again, we use operation 1 to
triangulate V ∗, under the restrictions imposed by the prescribed values of SV ∗

j∗ and SV ∗

k∗ , as well as SV ∗

i∗ = SV
i .

In spite of having three restrictions, we claim that the equation (22) is always solvable for V ∗. To prove this,
we first note that either SV ∗

j∗ or SV ∗

k∗ has been set to their standard values since V ∗ is at state 2. Therefore,

as long as SV ′

l∗ is set to the standard value, the combination of sign functions must satisfy Condition 1 and
thus gives a valid local triangulation. Finally, similarly to the previous case, if V ∗∗ is the adjacent prism of
V ∗ with the shared face FV ∗

l∗ , we continue to update sign functions of V ∗∗ recursively using operation 2, in
order to turn FV ∗

l∗ into a wall and thereby transfer V ∗ to state 3.

Operation 3: Triangulation Adjustment of Root Prism.

As shown in figure 5, if we triangulate a prism V by operation 1 and repeatedly encounter the cases 2 − 4

when synchronizing sign functions of neighbors by operation 2, then a path will be made which we will refer

to as an ‘updating path’. In fact, every updating path will eventually end with one of three possibilities:

1. a prism belonging to Case 1 (figure 5, right); 2. a domain boundary; 3. back to the root prism V from

a face which is not yet a wall (figure 5, left). The third case is the only potentially difficult one, since the

last prism of an updating path is a neighbor of the root prism V , but they may have inconsistent values

of the sign functions corresponding to their shared face. Suppose the last prism is V ′ with the shared face

FV ′

i′ = FV
i but SV ′

i′ 6= SV
i . Operation 3 is to change the value of SV

i to that of SV ′

i′ and thus make both

FV ′

i′ and FV
i into walls.
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Figure 5: The examples of updating paths. Each triangle represents a triangular prism and each quadrilateral represents a
quadrangular prism. The yellow element is the root prism V , the green elements are prisms at state either 1 or 2, and the red
elements are already triangulated, i.e., at state 3. The purple elements denote an updating path directed by the black arrows.
The corresponding case number that each purple element belongs to is also shown. The example path on the left ends when it
returns to V , and the example path on the right ends with a triangular prism belonging to Case 1.

It is clear from the local triangulations derived in Section 3.2.1 that changing values of SV
i might result

in a new combination of sign functions the does not correspond to a valid local triangulation of the root

prism V . We will avoid this situation by arranging the order by which new updating paths are launched.

First, we consider a triangular root prism V . If V was at state 1 before its triangulation, at least two

updating paths will be launched from V . If the first two updating paths are launched from faces with different

values of their sign functions, then there will always be a valid triangulation of V regardless of whether any

path will return to V or the value of the third sign function will be changed. In fact, the condition above can

always be satisfied if the first updating path is launched from the face with a sign function value different

from the other two. Similarly, if V was at state 2 with a wall FV
i before its triangulation, operation 3 will

not destroy the validity of the local triangulation provided that the first updating path is launched from a

face with sign function value different from SV
i .

Next we consider the case that the root prism V is quadrangular. Recall that for a valid triangulation of

V to exist, it is required that there are two consecutive sign functions set to their standard values. If V was

at state 2 before its triangulation, it must have a wall, say FV
i , whose sign function was set to the standard

value. After triangulation by operation 1, there will be another face adjacent to FV
i , say FV

j , whose sign

function is also set to the standard value. When the first updating path from FV
j is launched, Condition 1

will then not be violated even if operation 3 is applied. Finally, if V was in state 1, to respect Condition 1 we

have to launch the first two updating paths from faces with standard sign function values. This can always

be done, since no face of V is a wall and thus any one can be changed to the standard value if necessary.
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Based on the three operations described above, the full algorithm is summarized in algorithm 1. Recall

that we described the operations based on the assumption that throughout the algorithm, each prism only

has three possible states. In fact, initially all prisms faces are set to state 1; and as the algorithm progresses,

the operations in the algorithm can only change a prism into state 2 or 3. Finally, the global tetrahedral

triangulation is complete if and only if all the prism faces have become walls. Therefore, by induction, it is

clear that the assumption holds for all prisms and that the algorithm will return a global triangulation of

the space-time domain Ω[t, t+ ∆t].

Algorithm 1 Space-Time Mesh Generation

Require: A spatial mesh MESH1 of Ωt and MESH2 of Ωt+∆t

Ensure: A space-time mesh STMESH of Ω[t, t + ∆t]
Create prisms by extruding elements from MESH1 to MESH2 and make a list of those prisms called PList
Initialize an empty list STMESH for storing the elements of the space-time mesh
while PList is non-empty do

Pop a prism V from PList
if V is not at state 3 then

Triangulate V by operation 1
Make a list of FV

i which has not been a wall, called FList
Sort FList by the order of launching updating paths discussed for operation 3
for FV

i in FList do

Find the neighbor prism NBPrism adjacent to V by FV
i . Initialization of an updating path

while NBPrism exists (not exist if encountering domain boundary) and is not V do
Synchronize sign functions of NBPrism by operation 2
if NBPrism belongs to Case 2-4 then

Update NBPrism by operation 2 and continue the updating path
else

Break . The updating path ends with a NBPrism of Case 1
end if

end while
if NBPrism is V then . The updating path back to the root prism

Adjust the values of sign functions of V by operation 3 if necessary
end if

end for
end if
Push all the elements from the resultant triangulation of V into STMESH

end while
return STMESH

3.3. Density Control and Other Local Mesh Operations

In many applications with large domain deformations, a dynamically changing mesh size functions is

needed as the mesh changes. To incorporate this into our space-time meshes, we present two more local

mesh operations – edge splitting and edge collapsing [54], for locally increasing or reducing the number of

elements when mesh density control is needed.

For edge splitting (see figure 6, top), we can locally refine the mesh by adding the middle point of an

edge and then splitting two adjacent elements into four smaller ones. On the other hand, if a coarser local

mesh is needed, we consider two cases for edge collapsing. If a node is shared by three elements, we simply
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remove it and substitute a new larger element (figure 6, middle). If a node is shared by four elements,

we remove it and locally re-triangulate the resulting quadrilateral into two triangular elements (figure 6,

bottom). Besides coarsening of the mesh, edge collapsing can also be used to improve the mesh quality by

removing thin elements with big obtuse angles. As before, in order to avoid the possible conflict between

the mesh operations, we require that within a time step any element can be involved in at most one edge

flip, split, or collapse operation.

One advantage of these three local mesh operations is that like the edge flipping, they do not change any

mesh connectivities except for the elements involved. Locally, in the setting of the space-time framework,

these elements can be extruded together along the temporal dimension. For the first case of edge collapsing,

it forms a triangular prism. For edge splitting and the second case of edge collapsing, a quadrangular

prism is created. It can easily be verified that the local triangulations of these new types of prisms respect

the same conditions as in Section 3.2.1. More precisely, using the terminology in the previous sections,

if {SV
1 , S

V
2 , S

V
3 } of a triangular prism have different values or {SV

1 , S
V
2 , S

V
3 , S

V
4 } of a quadrangular prism

satisfy Condition 1, a valid triangulation of these new prisms can be obtained by adding one or two interior

edges. Three examples of these triangulations are illustrated in figure 6, right. In summary, this allows us to

use our global space-time mesh generation algorithm as described in Section 3.2.2 without any modifications.

Figure 6: Edge Splitting and Edge collapsing. These operations are used to control the local mesh density by adding or
removing nodes. The right figures show three examples of local space-time triangulations, one for each case.
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4. Numerical Results

4.1. Euler Vortex

First, we solve the Euler equations for a model problem of a compressible vortex in a 20-by-20 square

domain and make a convergence test to demonstrate the high order accuracy of our space-time discontinuous

Galerkin Method.

The vortex is initially centered at (x0, y0) = (8, 8) and moves with the free-stream at an angle θ = π/4

with respect to the x-axis. The analytical solution at (x, y, t) is given by

u = u∞(cos θ − ε((y − y0)− v̄t)
2πrc

exp(
f(x, y, t)

2
)) (24)

v = u∞(sin θ +
ε((x− x0)− ūt)

2πrc
exp(

f(x, y, t)

2
)) (25)

ρ = ρ∞(1− ε2(γ − 1)M2
∞

8π2
exp(f(x, y, t)))

1
γ−1 (26)

p = p∞(1− ε2(γ − 1)M2
∞

8π2
exp(f(x, y, t)))

γ
γ−1 (27)

where f(x, y, t) = (1 − ((x − x0) − ūt)2 − ((y − y0) − v̄t)2)/r2
c , M∞ = 0.5 is the Mach number, γ = cp/cv,

and u∞, p∞, ρ∞ are free-stream velocity, pressure and density, respectively. Moreover, ū and v̄ are the

Cartesian components of the free-stream velocity with ū = u∞ cos θ and v̄ = u∞ sin θ. The parameter ε = 3

is the strength of the vortex and rc = 1.5 is its size.

As a starting point, an unstructured mesh of the domain is created with element size h by DistMesh

[47]. In order to show that our method remains high-order accurate even for large mesh deformations,

we rotate some of the vertices (the blue nodes showed in figure 7) about the center of the domain with

the angular velocity ω = 2
3π, which induces large mesh deformations. To avoid inverted and low-quality

elements, we improve the elements by our mesh moving and element flipping techniques. Then we use our

space-time DG method to solve the Euler equations based on this moving mesh until time T =
√

42 + 42

and compare the numerical results with the analytical solutions above. The time step ∆t (i.e. the thickness

of each space-time mesh) is chosen as ∆t << h to ensure that truncation errors are dominated by the spatial

discretization. Note that this choice of small ∆t is not due to the limitations of the edge flips or due to

any stability restrictions from the discretization, we could have chosen a much larger ∆t if we allowed for

temporal errors.

We carry out the convergence test for a range of spatial mesh sizes h and polynomial degrees p. For a

comparison, we also solve the problem on a fixed mesh, where no vertices are rotated and thus the initial
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Space-Time Mesh of Ω[0,∆t] Space-Time Mesh of Ω[2.5, 2.5 + ∆t] Space-Time Mesh of Ω[5, 5 + ∆t]
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Figure 7: Convergence Test for the Euler Vortex Problem. The top three plots are samples of space-time meshes of Ω[0,∆t],
Ω[2.5, 2.5 + ∆t] and Ω[5, 5 + ∆t] with ∆t = 5× 10−3, h = 1.25 and p = 3. In these plots, the thickness of each space-time mesh
is rescaled to 1.25 to better illustrate the mesh structure. The seven blues nodes are rotated about the center of the domain
in a rigid manner, which induces other vertex movements and local element flipping. Below each mesh, the corresponding
solutions are shown (pressure fields). The bottom plot shows the convergence results for p = 1, 2 and 3.
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Figure 8: Spatial Meshes of a Spinning Cross. The left plot shows the initial mesh of the spatial domain Ω0, the right plot
shows the mesh of the spatial domain Ω2.0

unstructured mesh remains unchanged for all time steps. In figure 7, three sample space-time meshes and

solutions of the pressure field are given, and the bottom convergence plot compares the errors in the L2-

norm of our space-time DG method for the moving and the fixed mesh, respectively. It can be seen that the

solutions from our moving meshes have essentially the same accuracy as the ones using a fixed mesh. This is

different from the mapping-based ALE schemes commonly used with high-order methods, as shown in [13]

where a similar Euler vortex problem gave less accurate results on a moving mesh than on a fixed mesh,

since the ALE mapping between the physical and the reference domain introduced undesired variations in

the mesh resolution. In our space-time framework, although the mesh is moving in the spatial domain, the

tetrahedral mesh is fixed for each space-time domain Ω[t, t + ∆t] and no mapping is employed. From the

convergence plot, the results clearly show that the orders of convergence are approximately O(hp+1).

4.2. Spinning Cross

Next, we consider a 3-by-3 square domain where a cross is spinning counterclockwise at the center, which

is similar to the example problem in [38]. We solve the compressible Navier-Stokes equations starting from

a zero-velocity initial condition, and set the Mach number 0.2 and Reynolds number 1500, based on the

cross diameter 1.5 and the angular velocity ω = 1.

We initialize the mesh by gluing three parts together: two graded meshes around the fixed outside walls

and the spinning cross walls, and a Cartesian grid in the middle (as shown in figure 8). To simplify the mesh

movement, we move the graded mesh around the cross rigidly with the geometry movement, fix the graded

mesh around the outside walls, and only apply our moving mesh and flipping techniques to the uniform

mesh in the middle. Figure 8 shows that our method can retain the quality of the elements even with the

large deformations induced by the spinning cross.
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Entropy Plot at t = 1.0 Entropy Plot at t = 2.0 Entropy Plot at t = 3.0

Entropy Plot at t = 4.0 Entropy Plot at t = 5.0 Entropy Plot at t = 6.0

Entropy Plot at t = 7.0 Entropy Plot at t = 8.0 Entropy Plot at t = 9.0

Figure 9: Compressible Navier-Stokes flow in a domain with a spinning cross (entropy).

Finally, to better resolve the solution, we implement our space-time DG method with polynomial orders

p = 2 with linear element geometries. Entropy plots of the flow solutions at a few time steps are shown in

figure 9. Note that the optimal order of accuracy O(hp+1) will not be achieved unless the boundary of the

cross is also curved, which is an important future improvement.

4.3. Pitching Tandem Airfoils

We next consider a Navier-Stokes simulation similar to the one studied in [55]. It consists of two pitching

NACA 0012 airfoils with chord length c = 1 in a 6 × 2 rectangular domain. As shown in figure 10, at the

initial time t = 0 the two foils have a zero pitching angle and are aligned on the horizontal axis close to

each other. The distance between the trailing edge of the first foil and the leading edge of the second foil is

d = 0.1. The two foils are both treated as rigid bodies and rotated around the points p = c/3 to the right
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Figure 10: The pitching tandem airfoil model.

of their leading edges. The rotation follows a prescribed harmonic function as

θ = A sin(−2πft) (28)

where A = π/6 and f = 0.05. The flow has Mach number 0.2 and Reynolds number 3000.

As the two foils are placed very close and rotated based on the same harmonic function, our space-time

formulation only requires an unstructured two-dimensional mesh of the initial domain Ω0 and is able to

improve the mesh automatically by local mesh operations. We again implement our space-time DG method

with polynomial order p = 2 with linear element geometries. Three sample meshes and the corresponding

entropy plots are given in figure 11. In figure 12, plots of drag and lift coefficients are shown.

4.4. Airfoil with a Deploying Spoiler

As an example of more complicated domain deformation, we solve for the flow around a NACA0012

airfoil with chord length 1, in a 6 × 2 rectangular domain, similar to the problem introduced in [56]. As

illustrated in figure 13, the foil is located between x = 0 to x = 1 with axis of symmetry y = 0. We then

remove a right triangle with curved hypotenuse from x = 0.6383 to x = 0.7534 and replace it by a thin

spoiler of length 0.1. We keep a horizontal gap of width 2 × 10−3 between the foil and the spoiler, which

are only connected at the point (0.6383, 0.0422). An adaptive mesh is applied with refined elements around

the spoiler. When the spoiler is deployed, it rotates about the connecting point with the foil with angular

velocity 0.1, which generates a large domain deformation around the spoiler. To address this, we update the

adaptive mesh size function at each timestep and improve the mesh quality by our local mesh operations.

The numerical simulation starts with a steady flow around the flat foil with a closed spoiler, at Mach
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Entropy Plot at t = 5.0 Unstructured Mesh of the spatial domain at t = 5.0

Entropy Plot at t = 10.0 Unstructured Mesh of the spatial domain at t = 10.0

Entropy Plot at t = 15.0 Unstructured Mesh of the spatial domain at t = 15.0

Figure 11: Compressible Navier-Stokes flow around two pitching tandem airfoils, entropy of the solutions (left) and the spatial
meshes (right) at 3 time instances.
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Figure 12: Drag and lift coefficients around the pitching tandem NACA0012 airfoils as a function of time.
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The initial spatial mesh at t = 0.0

Zoom-in spatial mesh around spoiler at t = 0.0 Zoom-in spatial mesh around spoiler at t = 6.0

Zoom-in spatial mesh around spoiler at t = 12.0 Zoom-in spatial mesh around spoiler at t = 18.0

Figure 13: Spatial Meshes of Airfoil with a Deploying Spoiler.

number 0.2 and Reynolds number 5000, based on the airfoil chord length 1 and the free-stream velocity 1.

Next, we fix the foil but raise the spoiler gradually up to a 90 degrees angle, which results in massive flow

separation behind the foil. We keep the spoiler at the vertical state for a short time period, and then close it

again by reversing the motion. During this entire process, we use our space-time DG method to solve for the

compressible viscous flow during the raising and closing part, and a regular two-dimensional method-of-lines

DG method for the time period when the spoiler position is fixed. Again, as in the previous tests, we use

polynomial orders p = 2 with linear element geometries, in order to better resolve the solution fields.

In figure 13, some mesh plots are given to show how our local mesh operations improve the spatial mesh

as the spoiler is raised, and three samples of entropy plots are shown in figure 14. In the zoom-in plots,

we can confirm that our space-time DG method retains the high quality of the solutions even for the large
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Entropy Plot at t = 12.0 Zoom-in Entropy Plot around spoiler at t = 12.0

Entropy Plot at t = 28.0 Zoom-in Entropy Plot around spoiler at t = 28.0

Entropy Plot at t = 44.0 Zoom-in Entropy Plot around spoiler at t = 44.0

Figure 14: Compressible Navier-Stokes flow around an airfoil with a deploying spoiler .
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Figure 15: Drag and lift coefficients around the NACA0012 airfoil with a deploying spoiler as a function of time.
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deformation between the foil and the spoiler. The lift and the drag coefficients during the entire process are

shown in figure 15.

5. Conclusions and Future Work

We have presented a fully unstructured space-time mesh generator and a high-order accurate discon-

tinuous Galerkin discretization of the space-time Navier-Stokes equations. Using local mesh operations on

the spatial mesh only, we generate simplex elements for slabs of space-time domains within each timestep

separately and use implicit solvers to advance the solution in time. Our method can handle complex domain

changes and mesh reconfigurations, without reduced accuracy or conservation problems. We demonstrated

the scheme on a model test problem as well as applications involving complex mesh motions.

One of the main goals of our future work is the extension of the space-time mesh generation procedure

to three spatial dimensions plus time. The moving mesh generation extends to 3D in a straight-forward

way [47], although the corresponding element topology operations (edge flips and face swaps) are more

complicated [18]. However, they are still local in the sense that they only replace a number of neighboring

elements by an alternate set of elements. Therefore, given two layers of 3D tetrahedral meshes, the structures

of the corresponding 4D prismatic elements are given by similar point-wise connections between the two

meshes. The local triangulations of these 4D prisms can be analyzed using the process described in this

paper. For unflipped tetrahedra, their triangulation depends entirely on the combinatorial properties of the

prism vertices. For the tetrahedra involved in element flips, their triangulation becomes more complicated.

One option is to allow for insertion of an additional vertex within each 4D prism corresponding to the flipped

tetrahedra, which can always achieve a valid triangulation for any combination of connections between the

vertices. The robustness of this approach and the resulting mesh quality has to been further investigated.

Finally, another important extension for high-order accurate methods is the generation of curved space-time

elements.
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[39] A. Üngör, A. Sheffer, Pitching tents in space-time: mesh generation for discontinuous Galerkin method, Internat. J.

Found. Comput. Sci. 13 (2002) 201–221. Volume and surface triangulations.
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